code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __A = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , ) -> Any: output_path.parent.mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __UpperCamelCase , __UpperCamelCase , f=output_path.as_posix() , input_names=__UpperCamelCase , output_names=__UpperCamelCase , dynamic_axes=__UpperCamelCase , do_constant_folding=__UpperCamelCase , use_external_data_format=__UpperCamelCase , enable_onnx_checker=__UpperCamelCase , opset_version=__UpperCamelCase , ) else: export( __UpperCamelCase , __UpperCamelCase , f=output_path.as_posix() , input_names=__UpperCamelCase , output_names=__UpperCamelCase , dynamic_axes=__UpperCamelCase , do_constant_folding=__UpperCamelCase , opset_version=__UpperCamelCase , ) @torch.no_grad() def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> List[Any]: _lowerCAmelCase =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCAmelCase ="""cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCAmelCase ="""cpu""" _lowerCAmelCase =Path(__UpperCamelCase ) # VAE DECODER _lowerCAmelCase =AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCAmelCase =vae_decoder.config.latent_channels # forward only through the decoder part _lowerCAmelCase =vae_decoder.decode onnx_export( __UpperCamelCase , model_args=( torch.randn(1 , __UpperCamelCase , 25 , 25 ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__UpperCamelCase , ) del vae_decoder if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') __A = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
367
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''llama''' lowerCamelCase = ['''past_key_values'''] def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase =num_attention_heads _lowerCAmelCase =num_key_value_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =initializer_range _lowerCAmelCase =rms_norm_eps _lowerCAmelCase =pretraining_tp _lowerCAmelCase =use_cache _lowerCAmelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) _lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase ) _lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
341
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __A = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __A = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __A = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import warnings from .generation import TFGenerationMixin class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
341
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def _lowerCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) _lowerCAmelCase =UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =AudioDiffusionPipeline(vqvae=__UpperCAmelCase , unet=self.dummy_unet , mel=__UpperCAmelCase , scheduler=__UpperCAmelCase ) _lowerCAmelCase =pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(42 ) _lowerCAmelCase =pipe(generator=__UpperCAmelCase , steps=4 ) _lowerCAmelCase =output.audios[0] _lowerCAmelCase =output.images[0] _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(42 ) _lowerCAmelCase =pipe(generator=__UpperCAmelCase , steps=4 , return_dict=__UpperCAmelCase ) _lowerCAmelCase =output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _lowerCAmelCase =np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase =np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase =np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _lowerCAmelCase =Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _lowerCAmelCase =DDIMScheduler() _lowerCAmelCase =self.dummy_vqvae_and_unet _lowerCAmelCase =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__UpperCAmelCase , scheduler=__UpperCAmelCase ) _lowerCAmelCase =pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) np.random.seed(0 ) _lowerCAmelCase =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(42 ) _lowerCAmelCase =pipe(raw_audio=__UpperCAmelCase , generator=__UpperCAmelCase , start_step=5 , steps=10 ) _lowerCAmelCase =output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _lowerCAmelCase =np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase =np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _lowerCAmelCase =self.dummy_unet_condition _lowerCAmelCase =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__UpperCAmelCase , mel=__UpperCAmelCase , scheduler=__UpperCAmelCase ) _lowerCAmelCase =pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) np.random.seed(0 ) _lowerCAmelCase =torch.rand((1, 1, 10) ) _lowerCAmelCase =pipe(generator=__UpperCAmelCase , encoding=__UpperCAmelCase ) _lowerCAmelCase =output.images[0] _lowerCAmelCase =np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase =np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =torch_device _lowerCAmelCase =DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) _lowerCAmelCase =pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(42 ) _lowerCAmelCase =pipe(generator=__UpperCAmelCase ) _lowerCAmelCase =output.audios[0] _lowerCAmelCase =output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _lowerCAmelCase =np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase =np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
369
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
341
0
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> list: _lowerCAmelCase =word.split() def justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: _lowerCAmelCase =max_width - width _lowerCAmelCase =len(__UpperCamelCase ) if len(__UpperCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowerCAmelCase =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowerCAmelCase =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowerCAmelCase =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__UpperCamelCase ): num_spaces_between_words_list[i] += 1 _lowerCAmelCase =[] for i in range(__UpperCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__UpperCamelCase ) _lowerCAmelCase =[] _lowerCAmelCase =[] _lowerCAmelCase =0 for word in words: if width + len(__UpperCamelCase ) + len(__UpperCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__UpperCamelCase ) width += len(__UpperCamelCase ) else: # justify the line and add it to result answer.append(justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) # reset new line and new width _lowerCAmelCase , _lowerCAmelCase =[word], len(__UpperCamelCase ) _lowerCAmelCase =max_width - width - len(__UpperCamelCase ) answer.append(""" """.join(__UpperCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
370
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase = JukeboxTokenizer lowerCamelCase = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _lowerCAmelCase ( self ) -> str: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowerCAmelCase ( self ) -> Any: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
341
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = XGLMConfig lowerCamelCase = {} lowerCamelCase = '''gelu''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =ffn_dim _lowerCAmelCase =activation_function _lowerCAmelCase =activation_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =None _lowerCAmelCase =0 _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Dict: return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =self.get_config() _lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self ) -> str: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={ """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =TFXGLMModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 ) def _lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _lowerCAmelCase ( self ) -> Union[str, Any]: super().test_resize_token_embeddings() @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) _lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) _lowerCAmelCase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] ) _lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase ="""left""" # use different length sentences to test batching _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] _lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase ) _lowerCAmelCase =inputs["""input_ids"""] _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
371
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =monolingual_vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase ={} _lowerCAmelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =cnt cnt += 1 with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase =line.strip().split()[0] _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None _lowerCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
341
0
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) _lowerCAmelCase ="""""" while len(__UpperCamelCase ) % 3 != 0: _lowerCAmelCase ="""0""" + bin_string _lowerCAmelCase =[ bin_string[index : index + 3] for index in range(len(__UpperCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _lowerCAmelCase =0 for index, val in enumerate(__UpperCamelCase ): oct_val += int(2 ** (2 - index) * int(__UpperCamelCase ) ) oct_string += str(__UpperCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
350
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
341
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''cvt''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =num_channels _lowerCAmelCase =patch_sizes _lowerCAmelCase =patch_stride _lowerCAmelCase =patch_padding _lowerCAmelCase =embed_dim _lowerCAmelCase =num_heads _lowerCAmelCase =depth _lowerCAmelCase =mlp_ratio _lowerCAmelCase =attention_drop_rate _lowerCAmelCase =drop_rate _lowerCAmelCase =drop_path_rate _lowerCAmelCase =qkv_bias _lowerCAmelCase =cls_token _lowerCAmelCase =qkv_projection_method _lowerCAmelCase =kernel_qkv _lowerCAmelCase =padding_kv _lowerCAmelCase =stride_kv _lowerCAmelCase =padding_q _lowerCAmelCase =stride_q _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps
341
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = ['''image_processor''', '''tokenizer'''] lowerCamelCase = '''CLIPImageProcessor''' lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCAmelCase , ) _lowerCAmelCase =kwargs.pop("""feature_extractor""" ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: _lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
341
0
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase =int(__UpperCamelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =divmod(__UpperCamelCase , 2 ) return binary_recursive(__UpperCamelCase ) + str(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase =str(__UpperCamelCase ).strip() if not number: raise ValueError("""No input value was provided""" ) _lowerCAmelCase ="""-""" if number.startswith("""-""" ) else """""" _lowerCAmelCase =number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return F'''{negative}0b{binary_recursive(int(__UpperCamelCase ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['PerceiverFeatureExtractor'] __A = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
import qiskit def _lowerCamelCase(__UpperCamelCase = 2 ) -> qiskit.result.counts.Counts: _lowerCAmelCase =qubits # Using Aer's simulator _lowerCAmelCase =qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register _lowerCAmelCase =qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __UpperCamelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __UpperCamelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__UpperCamelCase ) ) , list(range(__UpperCamelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _lowerCAmelCase =qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1000 ) return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=1024 , __UpperCamelCase=1024 , __UpperCamelCase=False , **__UpperCamelCase ) -> int: _lowerCAmelCase =AutoTokenizer.from_pretrained(__UpperCamelCase ) _lowerCAmelCase =SeqaSeqDataset(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , type_path="""train""" , **__UpperCamelCase ) _lowerCAmelCase =tok.pad_token_id def get_lens(__UpperCamelCase ): _lowerCAmelCase =tqdm( DataLoader(__UpperCamelCase , batch_size=512 , num_workers=8 , shuffle=__UpperCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _lowerCAmelCase =[] for batch in dl: _lowerCAmelCase =batch["""input_ids"""].ne(__UpperCamelCase ).sum(1 ).tolist() _lowerCAmelCase =batch["""labels"""].ne(__UpperCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__UpperCamelCase , __UpperCamelCase ): max_lens.append(max(__UpperCamelCase , __UpperCamelCase ) ) else: max_lens.extend(__UpperCamelCase ) return max_lens _lowerCAmelCase =get_lens(__UpperCamelCase ) _lowerCAmelCase =SeqaSeqDataset(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , type_path="""val""" , **__UpperCamelCase ) _lowerCAmelCase =get_lens(__UpperCamelCase ) pickle_save(__UpperCamelCase , train_ds.len_file ) pickle_save(__UpperCamelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
355
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" ) _lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" ) _lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" ) _lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" ) _lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item _lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" ) _lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" ) _lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _lowerCAmelCase =old_checkpoint[path] _lowerCAmelCase =old_tensor.shape[0] // 3 _lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) _lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3 _lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 ) _lowerCAmelCase =query.reshape(__UpperCamelCase ) _lowerCAmelCase =key.reshape(__UpperCamelCase ) _lowerCAmelCase =value.reshape(__UpperCamelCase ) for path in paths: _lowerCAmelCase =path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0] else: _lowerCAmelCase =old_checkpoint[path["""old"""]] def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase ={} _lowerCAmelCase =checkpoint["""time_embed.0.weight"""] _lowerCAmelCase =checkpoint["""time_embed.0.bias"""] _lowerCAmelCase =checkpoint["""time_embed.2.weight"""] _lowerCAmelCase =checkpoint["""time_embed.2.bias"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""] _lowerCAmelCase =checkpoint["""out.0.weight"""] _lowerCAmelCase =checkpoint["""out.0.bias"""] _lowerCAmelCase =checkpoint["""out.2.weight"""] _lowerCAmelCase =checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 , __UpperCamelCase ): _lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} _lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase ) if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''input_blocks.{i}.1''', """new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''input_blocks.{i}.1.qkv.bias''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , ) _lowerCAmelCase =middle_blocks[0] _lowerCAmelCase =middle_blocks[1] _lowerCAmelCase =middle_blocks[2] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase ) for i in range(__UpperCamelCase ): _lowerCAmelCase =i // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =i % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]] _lowerCAmelCase ={} for layer in output_block_layers: _lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: _lowerCAmelCase =[layer_name] if len(__UpperCamelCase ) > 1: _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: _lowerCAmelCase =[] if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''output_blocks.{i}.1''', """new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''output_blocks.{i}.1.qkv.bias''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , ) else: _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] ) _lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] ) _lowerCAmelCase =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __A = parser.parse_args() __A = torch.load(args.checkpoint_path) with open(args.config_file) as f: __A = json.loads(f.read()) __A = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __A = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) __A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) __A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
341
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =monolingual_vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase ={} _lowerCAmelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =cnt cnt += 1 with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase =line.strip().split()[0] _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None _lowerCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
356
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: if len(__UpperCamelCase ) <= 1: return arr, 0 _lowerCAmelCase =len(__UpperCamelCase ) // 2 _lowerCAmelCase =arr[0:mid] _lowerCAmelCase =arr[mid:] _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any: _lowerCAmelCase =[] _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCamelCase() -> str: _lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) # an empty list should also have zero inversions _lowerCAmelCase =[] _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) if __name__ == "__main__": main()
341
0
"""simple docstring""" from manim import * class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =Text("""CPU""" , font_size=24 ) _lowerCAmelCase =Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) _lowerCAmelCase =[mem.copy() for i in range(4 )] _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =Text("""GPU""" , font_size=24 ) _lowerCAmelCase =Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =Text("""Model""" , font_size=24 ) _lowerCAmelCase =Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) _lowerCAmelCase =[] for i, rect in enumerate(__UpperCAmelCase ): rect.set_stroke(__UpperCAmelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase =Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCAmelCase , buff=0.0 ) self.add(__UpperCAmelCase ) cpu_targs.append(__UpperCAmelCase ) _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase =Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , aligned_edge=__UpperCAmelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase =MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase =MarkupText( f'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase ) , Write(__UpperCAmelCase ) ) self.play(Write(__UpperCAmelCase , run_time=1 ) , Create(__UpperCAmelCase , run_time=1 ) ) _lowerCAmelCase =[] _lowerCAmelCase =[] for i, rect in enumerate(__UpperCAmelCase ): _lowerCAmelCase =fill.copy().set_fill(__UpperCAmelCase , opacity=0.7 ) target.move_to(__UpperCAmelCase ) first_animations.append(GrowFromCenter(__UpperCAmelCase , run_time=1 ) ) _lowerCAmelCase =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCAmelCase , run_time=1.5 ) ) self.play(*__UpperCAmelCase ) self.play(*__UpperCAmelCase ) self.wait()
357
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None lowerCamelCase = 1 lowerCamelCase = None lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
341
0
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if height >= 1: move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) move_disk(__UpperCamelCase , __UpperCamelCase ) move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> str: print("""moving disk from""" , __UpperCamelCase , """to""" , __UpperCamelCase ) def _lowerCamelCase() -> Optional[Any]: _lowerCAmelCase =int(input("""Height of hanoi: """ ).strip() ) move_tower(__UpperCamelCase , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
358
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowerCamelCase() -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
341
0
"""simple docstring""" import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''microsoft/speecht5_tts''' lowerCamelCase = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) lowerCamelCase = '''text_reader''' lowerCamelCase = SpeechTaProcessor lowerCamelCase = SpeechTaForTextToSpeech lowerCamelCase = SpeechTaHifiGan lowerCamelCase = ['''text'''] lowerCamelCase = ['''audio'''] def _lowerCAmelCase ( self ) -> List[Any]: if self.post_processor is None: _lowerCAmelCase ="""microsoft/speecht5_hifigan""" super().setup() def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Tuple: _lowerCAmelCase =self.pre_processor(text=__UpperCAmelCase , return_tensors="""pt""" , truncation=__UpperCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase =load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase =torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: with torch.no_grad(): return self.model.generate_speech(**__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: with torch.no_grad(): return self.post_processor(__UpperCAmelCase ).cpu().detach()
359
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple: _lowerCAmelCase =compute_bleu( reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
341
0
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase = 10**9 ) -> int: _lowerCAmelCase =1 _lowerCAmelCase =2 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _lowerCAmelCase =2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
360
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowerCamelCase(__UpperCamelCase ) -> List[str]: if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) __A = parser.parse_args() __A = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
341
0
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple: _lowerCAmelCase =compute_bleu( reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __A = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowerCamelCase(__UpperCamelCase ) -> List[str]: if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) __A = parser.parse_args() __A = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" from __future__ import annotations import queue class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =data _lowerCAmelCase =None _lowerCAmelCase =None def _lowerCamelCase() -> TreeNode: print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase =input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase =queue.Queue() _lowerCAmelCase =TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): _lowerCAmelCase =q.get() _lowerCAmelCase =F'''Enter the left node of {node_found.data}: ''' _lowerCAmelCase =input(__UpperCamelCase ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase =TreeNode(int(__UpperCamelCase ) ) _lowerCAmelCase =left_node q.put(__UpperCamelCase ) _lowerCAmelCase =F'''Enter the right node of {node_found.data}: ''' _lowerCAmelCase =input(__UpperCamelCase ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase =TreeNode(int(__UpperCamelCase ) ) _lowerCAmelCase =right_node q.put(__UpperCamelCase ) raise def _lowerCamelCase(__UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def _lowerCamelCase(__UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def _lowerCamelCase(__UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def _lowerCamelCase(__UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return _lowerCAmelCase =queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): _lowerCAmelCase =q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _lowerCamelCase(__UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return _lowerCAmelCase =queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): _lowerCAmelCase =[] while not q.empty(): _lowerCAmelCase =q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return _lowerCAmelCase =[] _lowerCAmelCase =node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(__UpperCamelCase ) _lowerCAmelCase =n.left # end of while means current node doesn't have left child _lowerCAmelCase =stack.pop() # start to traverse its right child _lowerCAmelCase =n.right def _lowerCamelCase(__UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return _lowerCAmelCase =[] _lowerCAmelCase =node while n or stack: while n: stack.append(__UpperCamelCase ) _lowerCAmelCase =n.left _lowerCAmelCase =stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase =n.right def _lowerCamelCase(__UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return _lowerCAmelCase , _lowerCAmelCase =[], [] _lowerCAmelCase =node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase =stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def _lowerCamelCase(__UpperCamelCase = "" , __UpperCamelCase=50 , __UpperCamelCase="*" ) -> str: if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase =divmod(width - len(__UpperCamelCase ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) __A = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
363
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __A = datasets.logging.get_logger(__name__) __A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' __A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' __A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict: _lowerCAmelCase ={doc: key_lines} _lowerCAmelCase ={doc: sys_lines} _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) if remove_nested: _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: _lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 for name, metric in metrics: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: _lowerCAmelCase =(conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def _lowerCamelCase(__UpperCamelCase ) -> Tuple: _lowerCAmelCase =False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: _lowerCAmelCase =line.split()[5] if not parse_col == "-": _lowerCAmelCase =True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]: _lowerCAmelCase =[ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: _lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCAmelCase =evaluate( key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , ) return score
341
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = False lowerCamelCase = 3.0 class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=__UpperCAmelCase ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {"""a""": 2, """c""": 2.2_5} ) @require_cuda def _lowerCAmelCase ( self ) -> int: # If no defaults are changed, `to_kwargs` returns an empty dict. _lowerCAmelCase =GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase =Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , __UpperCAmelCase ) @require_multi_gpu def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": __A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __A = Accelerator(kwargs_handlers=[ddp_scaler]) __A = torch.nn.Linear(100, 200) __A = accelerator.prepare(model) # Check the values changed in kwargs __A = '' __A = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
364
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = XGLMConfig lowerCamelCase = {} lowerCamelCase = '''gelu''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =ffn_dim _lowerCAmelCase =activation_function _lowerCAmelCase =activation_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =None _lowerCAmelCase =0 _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Dict: return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =self.get_config() _lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self ) -> str: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={ """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =TFXGLMModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 ) def _lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _lowerCAmelCase ( self ) -> Union[str, Any]: super().test_resize_token_embeddings() @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) _lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) _lowerCAmelCase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] ) _lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase ="""left""" # use different length sentences to test batching _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] _lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase ) _lowerCAmelCase =inputs["""input_ids"""] _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
341
0
"""simple docstring""" import socket def _lowerCamelCase() -> Any: _lowerCAmelCase =socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowerCAmelCase =socket.gethostname() _lowerCAmelCase =12312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: _lowerCAmelCase =sock.recv(1024 ) if not data: break out_file.write(__UpperCamelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
365
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __A = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __A = 0 __A = 1 __A = 2 __A = 3 __A = 4 class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = '''left''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =3 _lowerCAmelCase =do_lower_case _lowerCAmelCase =remove_space _lowerCAmelCase =keep_accents _lowerCAmelCase =vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> str: return len(self.sp_model ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None return state def __setstate__( self , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if self.remove_space: _lowerCAmelCase =""" """.join(inputs.strip().split() ) else: _lowerCAmelCase =inputs _lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase ) _lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase =outputs.lower() return outputs def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =self.preprocess_text(__UpperCAmelCase ) _lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _lowerCAmelCase =[] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase =cur_pieces[1:] else: _lowerCAmelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: return self.sp_model.PieceToId(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str: _lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase ) _lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase =[] _lowerCAmelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _lowerCAmelCase =[] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase ="""""".join(__UpperCAmelCase ) _lowerCAmelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
341
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _lowerCamelCase() -> None: print("""Making key files...""" ) make_key_files("""rsa""" , 1024 ) print("""Key files generation successful.""" ) def _lowerCamelCase(__UpperCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: print("""Generating prime p...""" ) _lowerCAmelCase =rabinMiller.generate_large_prime(__UpperCamelCase ) print("""Generating prime q...""" ) _lowerCAmelCase =rabinMiller.generate_large_prime(__UpperCamelCase ) _lowerCAmelCase =p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: _lowerCAmelCase =random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__UpperCamelCase , (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) _lowerCAmelCase =cryptoMath.find_mod_inverse(__UpperCamelCase , (p - 1) * (q - 1) ) _lowerCAmelCase =(n, e) _lowerCAmelCase =(n, d) return (public_key, private_key) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None: if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("""\nWARNING:""" ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' """Use a different name or delete these files and re-run this program.""" ) sys.exit() _lowerCAmelCase , _lowerCAmelCase =generate_key(__UpperCamelCase ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , """w""" ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , """w""" ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
366
"""simple docstring""" from __future__ import annotations def _lowerCamelCase(__UpperCamelCase ) -> bool: _lowerCAmelCase =str(__UpperCamelCase ) return n == n[::-1] def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str: _lowerCAmelCase =0 for i in range(1 , __UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
341
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __A = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model _lowerCAmelCase =list(s_dict.keys() ) for key in keys: _lowerCAmelCase =R""".*/layers_(\d+)""" _lowerCAmelCase =key if re.match(__UpperCamelCase , __UpperCamelCase ): _lowerCAmelCase =re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , __UpperCamelCase ) _lowerCAmelCase =R"""(encoder|decoder)\/""" if re.match(__UpperCamelCase , __UpperCamelCase ): _lowerCAmelCase =re.match(__UpperCamelCase , __UpperCamelCase ).groups() if groups[0] == "encoder": _lowerCAmelCase =re.sub(R"""/mlp/""" , R"""/1/mlp/""" , __UpperCamelCase ) _lowerCAmelCase =re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , __UpperCamelCase ) elif groups[0] == "decoder": _lowerCAmelCase =re.sub(R"""/mlp/""" , R"""/2/mlp/""" , __UpperCamelCase ) _lowerCAmelCase =re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , __UpperCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _lowerCAmelCase =new_key.replace(__UpperCamelCase , __UpperCamelCase ) print(F'''{key} -> {new_key}''' ) _lowerCAmelCase =s_dict.pop(__UpperCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCAmelCase =s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCAmelCase =s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _lowerCAmelCase =s_dict[key].shape[0] _lowerCAmelCase =s_dict[key] for idx in range(__UpperCamelCase ): _lowerCAmelCase =expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' ) s_dict.pop(__UpperCamelCase ) return s_dict __A = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Tuple: # Convert a google style config to the hugging face fromat import regex as re with open(__UpperCamelCase , """r""" ) as f: _lowerCAmelCase =f.read() _lowerCAmelCase =re.findall(R"""(.*) = ([0-9.]*)""" , __UpperCamelCase ) _lowerCAmelCase ={} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _lowerCAmelCase =float(__UpperCamelCase ) if """.""" in value else int(__UpperCamelCase ) _lowerCAmelCase =re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , __UpperCamelCase )[0] _lowerCAmelCase =str(activation[1] ) _lowerCAmelCase =num_experts _lowerCAmelCase =SwitchTransformersConfig(**__UpperCamelCase ) return config def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase="./" , __UpperCamelCase=8 ) -> Tuple: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) _lowerCAmelCase =checkpoints.load_tax_checkpoint(__UpperCamelCase ) if gin_file is not None: _lowerCAmelCase =convert_gin_to_config(__UpperCamelCase , __UpperCamelCase ) else: _lowerCAmelCase =SwitchTransformersConfig.from_pretrained(__UpperCamelCase ) _lowerCAmelCase =SwitchTransformersForConditionalGeneration(__UpperCamelCase ) _lowerCAmelCase =flax_params["""target"""] _lowerCAmelCase =flatten_dict(__UpperCamelCase , sep="""/""" ) _lowerCAmelCase =rename_keys(__UpperCamelCase ) _lowerCAmelCase =unflatten_dict(__UpperCamelCase , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__UpperCamelCase , __UpperCamelCase ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') __A = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
367
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''llama''' lowerCamelCase = ['''past_key_values'''] def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase =num_attention_heads _lowerCAmelCase =num_key_value_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =initializer_range _lowerCAmelCase =rms_norm_eps _lowerCAmelCase =pretraining_tp _lowerCAmelCase =use_cache _lowerCAmelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) _lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase ) _lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
341
0
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __A = datasets.logging.get_logger(__name__) __A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' __A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' __A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict: _lowerCAmelCase ={doc: key_lines} _lowerCAmelCase ={doc: sys_lines} _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) if remove_nested: _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: _lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 for name, metric in metrics: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: _lowerCAmelCase =(conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def _lowerCamelCase(__UpperCamelCase ) -> Tuple: _lowerCAmelCase =False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: _lowerCAmelCase =line.split()[5] if not parse_col == "-": _lowerCAmelCase =True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]: _lowerCAmelCase =[ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: _lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCAmelCase =evaluate( key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , ) return score
368
"""simple docstring""" import warnings from .generation import TFGenerationMixin class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
341
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def _lowerCAmelCase ( self , __UpperCAmelCase ) -> float: return 0.0 def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> tuple[int | float, int | float]: _lowerCAmelCase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCAmelCase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None: _lowerCAmelCase =512 _lowerCAmelCase =[1] + [0] * (size - 1) _lowerCAmelCase =[filter_type.process(__UpperCamelCase ) for item in inputs] _lowerCAmelCase =[0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase =np.abs(np.fft.fft(__UpperCamelCase ) ) _lowerCAmelCase =20 * np.logaa(__UpperCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCAmelCase =get_bounds(__UpperCamelCase , __UpperCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__UpperCamelCase ) plt.show() def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None: _lowerCAmelCase =512 _lowerCAmelCase =[1] + [0] * (size - 1) _lowerCAmelCase =[filter_type.process(__UpperCamelCase ) for item in inputs] _lowerCAmelCase =[0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase =np.angle(np.fft.fft(__UpperCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__UpperCamelCase , -2 * pi ) ) plt.show()
369
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
341
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=False ) -> List[Any]: _lowerCAmelCase =OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): _lowerCAmelCase ="""segformer.encoder.""" + key if key.startswith("""backbone""" ): _lowerCAmelCase =key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCAmelCase =key[key.find("""patch_embed""" ) + len("""patch_embed""" )] _lowerCAmelCase =key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(__UpperCamelCase )-1}''' ) if "norm" in key: _lowerCAmelCase =key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCAmelCase =key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] _lowerCAmelCase =key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(__UpperCamelCase )-1}''' ) if "layer_norm1" in key: _lowerCAmelCase =key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: _lowerCAmelCase =key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 _lowerCAmelCase =key[key.find("""block""" ) + len("""block""" )] _lowerCAmelCase =key.replace(F'''block{idx}''' , F'''block.{int(__UpperCamelCase )-1}''' ) if "attn.q" in key: _lowerCAmelCase =key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: _lowerCAmelCase =key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: _lowerCAmelCase =key.replace("""attn""" , """attention.self""" ) if "fc1" in key: _lowerCAmelCase =key.replace("""fc1""" , """dense1""" ) if "fc2" in key: _lowerCAmelCase =key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: _lowerCAmelCase =key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: _lowerCAmelCase =key.replace("""linear_fuse.conv""" , """linear_fuse""" ) _lowerCAmelCase =key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCAmelCase =key[key.find("""linear_c""" ) + len("""linear_c""" )] _lowerCAmelCase =key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(__UpperCamelCase )-1}''' ) if key.startswith("""head""" ): _lowerCAmelCase =key.replace("""head""" , """classifier""" ) _lowerCAmelCase =value return new_state_dict def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Dict: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCAmelCase =state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _lowerCAmelCase =state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _lowerCAmelCase =kv_weight[ : config.hidden_sizes[i], : ] _lowerCAmelCase =kv_bias[: config.hidden_sizes[i]] _lowerCAmelCase =kv_weight[ config.hidden_sizes[i] :, : ] _lowerCAmelCase =kv_bias[ config.hidden_sizes[i] : ] def _lowerCamelCase() -> List[Any]: _lowerCAmelCase ="""http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase =Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: _lowerCAmelCase =SegformerConfig() _lowerCAmelCase =False # set attributes based on model_name _lowerCAmelCase ="""huggingface/label-files""" if "segformer" in model_name: _lowerCAmelCase =model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: _lowerCAmelCase =150 _lowerCAmelCase ="""ade20k-id2label.json""" _lowerCAmelCase =(1, 150, 128, 128) elif "city" in model_name: _lowerCAmelCase =19 _lowerCAmelCase ="""cityscapes-id2label.json""" _lowerCAmelCase =(1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: _lowerCAmelCase =True _lowerCAmelCase =model_name[4:6] _lowerCAmelCase =1000 _lowerCAmelCase ="""imagenet-1k-id2label.json""" _lowerCAmelCase =(1, 1000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes _lowerCAmelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase =idalabel _lowerCAmelCase ={v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCAmelCase =[64, 128, 320, 512] _lowerCAmelCase =256 elif size == "b2": _lowerCAmelCase =[64, 128, 320, 512] _lowerCAmelCase =768 _lowerCAmelCase =[3, 4, 6, 3] elif size == "b3": _lowerCAmelCase =[64, 128, 320, 512] _lowerCAmelCase =768 _lowerCAmelCase =[3, 4, 18, 3] elif size == "b4": _lowerCAmelCase =[64, 128, 320, 512] _lowerCAmelCase =768 _lowerCAmelCase =[3, 8, 27, 3] elif size == "b5": _lowerCAmelCase =[64, 128, 320, 512] _lowerCAmelCase =768 _lowerCAmelCase =[3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) _lowerCAmelCase =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__UpperCamelCase , align=__UpperCamelCase , do_random_crop=__UpperCamelCase ) # prepare image _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: _lowerCAmelCase =torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) else: _lowerCAmelCase =torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys _lowerCAmelCase =rename_keys(__UpperCamelCase , encoder_only=__UpperCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__UpperCamelCase , __UpperCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCAmelCase =False _lowerCAmelCase =SegformerForImageClassification(__UpperCamelCase ) else: _lowerCAmelCase =SegformerForSemanticSegmentation(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # forward pass _lowerCAmelCase =model(__UpperCamelCase ) _lowerCAmelCase =outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCAmelCase =torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCAmelCase =torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCAmelCase =torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCAmelCase =torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCAmelCase =torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCAmelCase =torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCAmelCase =torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCAmelCase =torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCAmelCase =torch.tensor( [ [ [-1.1_3_7_2E0_1, -1.2_7_8_7E0_1, -1.3_4_7_7E0_1], [-1.2_5_3_6E0_1, -1.4_1_9_4E0_1, -1.4_4_0_9E0_1], [-1.3_2_1_7E0_1, -1.4_8_8_8E0_1, -1.5_3_2_7E0_1], ], [ [-1.4_7_9_1E0_1, -1.7_1_2_2E0_1, -1.8_2_7_7E0_1], [-1.7_1_6_3E0_1, -1.9_1_9_2E0_1, -1.9_5_3_3E0_1], [-1.7_8_9_7E0_1, -1.9_9_9_1E0_1, -2.0_3_1_5E0_1], ], [ [7.6_7_2_3E-0_1, 4.1_9_2_1E-0_1, -7.7_8_7_8E-0_2], [4.7_7_7_2E-0_1, 9.5_5_5_7E-0_3, -2.8_0_8_2E-0_1], [3.6_0_3_2E-0_1, -2.4_8_2_6E-0_1, -5.1_1_6_8E-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCAmelCase =torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCAmelCase =torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCAmelCase =torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCAmelCase =torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCAmelCase =torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCAmelCase =torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: _lowerCAmelCase =logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
370
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase = JukeboxTokenizer lowerCamelCase = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _lowerCAmelCase ( self ) -> str: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowerCAmelCase ( self ) -> Any: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
341
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = MgpstrTokenizer lowerCamelCase = False lowerCamelCase = {} lowerCamelCase = False def _lowerCAmelCase ( self ) -> Union[str, Any]: super().setUp() # fmt: off _lowerCAmelCase =["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCAmelCase =dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Any: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase ="""tester""" _lowerCAmelCase ="""tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def _lowerCAmelCase ( self ) -> str: pass def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _lowerCAmelCase ="""[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) _lowerCAmelCase =tokenizer.encode([special_token] , add_special_tokens=__UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , 1 ) _lowerCAmelCase =tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _lowerCAmelCase , _lowerCAmelCase =self.get_input_output_texts(__UpperCAmelCase ) _lowerCAmelCase =tokenizer.tokenize(__UpperCAmelCase ) _lowerCAmelCase =tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) _lowerCAmelCase =tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertNotEqual(len(__UpperCAmelCase ) , 0 ) _lowerCAmelCase =tokenizer.decode(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , __UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def _lowerCAmelCase ( self ) -> str: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def _lowerCAmelCase ( self ) -> List[str]: pass
371
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =monolingual_vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase ={} _lowerCAmelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =cnt cnt += 1 with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase =line.strip().split()[0] _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None _lowerCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
341
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __A = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def _lowerCamelCase(__UpperCamelCase=True ) -> Optional[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__magic_name__ ) ) class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: with TemporaryDirectory() as tmp_dir: _lowerCAmelCase =dataset_module_factory(__UpperCAmelCase , cache_dir=__UpperCAmelCase ) _lowerCAmelCase =import_main_class(dataset_module.module_path , dataset=__UpperCAmelCase ) _lowerCAmelCase =builder_cls( cache_dir=__UpperCAmelCase , config_name=__UpperCAmelCase , hash=dataset_module.hash , ) _lowerCAmelCase ="""/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__UpperCAmelCase ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) _lowerCAmelCase =cached_path(__UpperCAmelCase , cache_dir=__UpperCAmelCase ) self.assertTrue(os.path.exists(__UpperCAmelCase ) ) @pytest.mark.integration def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" _lowerCAmelCase =dataset_module_factory("""wikipedia""" , cache_dir=__UpperCamelCase ) _lowerCAmelCase =import_main_class(dataset_module.module_path ) _lowerCAmelCase =builder_cls( cache_dir=__UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _lowerCAmelCase =None builder_instance.download_and_prepare() _lowerCAmelCase =builder_instance.as_dataset() assert ds @pytest.mark.integration def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]: _lowerCAmelCase =dataset_module_factory("""wikipedia""" , cache_dir=__UpperCamelCase ) _lowerCAmelCase =import_main_class(dataset_module.module_path , dataset=__UpperCamelCase ) _lowerCAmelCase =builder_cls( cache_dir=__UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) _lowerCAmelCase =builder_instance.as_streaming_dataset() assert ds assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert "train" in ds assert isinstance(ds["""train"""] , __UpperCamelCase ) assert next(iter(ds["""train"""] ) )
350
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
341
0
class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Union[str, Any]: _lowerCAmelCase =data _lowerCAmelCase =previous _lowerCAmelCase =next_node def __str__( self ) -> str: return f'''{self.data}''' def _lowerCAmelCase ( self ) -> int: return self.data def _lowerCAmelCase ( self ) -> Union[str, Any]: return self.next def _lowerCAmelCase ( self ) -> Dict: return self.previous class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =head def __iter__( self ) -> Union[str, Any]: return self def _lowerCAmelCase ( self ) -> List[Any]: if not self.current: raise StopIteration else: _lowerCAmelCase =self.current.get_data() _lowerCAmelCase =self.current.get_next() return value class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Tuple: _lowerCAmelCase =None # First node in list _lowerCAmelCase =None # Last node in list def __str__( self ) -> Union[str, Any]: _lowerCAmelCase =self.head _lowerCAmelCase =[] while current is not None: nodes.append(current.get_data() ) _lowerCAmelCase =current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =self.head while current: if current.get_data() == value: return True _lowerCAmelCase =current.get_next() return False def __iter__( self ) -> int: return LinkedListIterator(self.head ) def _lowerCAmelCase ( self ) -> Optional[int]: if self.head: return self.head.get_data() return None def _lowerCAmelCase ( self ) -> int: if self.tail: return self.tail.get_data() return None def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: if self.head is None: _lowerCAmelCase =node _lowerCAmelCase =node else: self.insert_before_node(self.head , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: _lowerCAmelCase =Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _lowerCAmelCase =node _lowerCAmelCase =node.previous if node.get_previous() is None: _lowerCAmelCase =node_to_insert else: _lowerCAmelCase =node_to_insert _lowerCAmelCase =node_to_insert def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _lowerCAmelCase =node _lowerCAmelCase =node.next if node.get_next() is None: _lowerCAmelCase =node_to_insert else: _lowerCAmelCase =node_to_insert _lowerCAmelCase =node_to_insert def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _lowerCAmelCase =1 _lowerCAmelCase =Node(__UpperCAmelCase ) _lowerCAmelCase =self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 _lowerCAmelCase =node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Node: _lowerCAmelCase =self.head while node: if node.get_data() == item: return node _lowerCAmelCase =node.get_next() raise Exception("""Node not found""" ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Dict: if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: _lowerCAmelCase =self.head.get_next() if node == self.tail: _lowerCAmelCase =self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def _lowerCAmelCase ( __UpperCAmelCase ) -> None: if node.get_next(): _lowerCAmelCase =node.previous if node.get_previous(): _lowerCAmelCase =node.next _lowerCAmelCase =None _lowerCAmelCase =None def _lowerCAmelCase ( self ) -> Optional[Any]: return self.head is None def _lowerCamelCase() -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''cvt''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =num_channels _lowerCAmelCase =patch_sizes _lowerCAmelCase =patch_stride _lowerCAmelCase =patch_padding _lowerCAmelCase =embed_dim _lowerCAmelCase =num_heads _lowerCAmelCase =depth _lowerCAmelCase =mlp_ratio _lowerCAmelCase =attention_drop_rate _lowerCAmelCase =drop_rate _lowerCAmelCase =drop_path_rate _lowerCAmelCase =qkv_bias _lowerCAmelCase =cls_token _lowerCAmelCase =qkv_projection_method _lowerCAmelCase =kernel_qkv _lowerCAmelCase =padding_kv _lowerCAmelCase =stride_kv _lowerCAmelCase =padding_q _lowerCAmelCase =stride_q _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps
341
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _lowerCamelCase(__UpperCamelCase ) -> List[str]: _lowerCAmelCase =[ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Any: _lowerCAmelCase , _lowerCAmelCase =emb.weight.shape _lowerCAmelCase =nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) _lowerCAmelCase =emb.weight.data return lin_layer def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase="facebook/mbart-large-en-ro" , __UpperCamelCase=False , __UpperCamelCase=False ) -> str: _lowerCAmelCase =torch.load(__UpperCamelCase , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__UpperCamelCase ) _lowerCAmelCase =state_dict["""encoder.embed_tokens.weight"""].shape[0] _lowerCAmelCase =MBartConfig.from_pretrained(__UpperCamelCase , vocab_size=__UpperCamelCase ) if mbart_aa and finetuned: _lowerCAmelCase ="""relu""" _lowerCAmelCase =state_dict["""decoder.embed_tokens.weight"""] _lowerCAmelCase =MBartForConditionalGeneration(__UpperCamelCase ) model.model.load_state_dict(__UpperCamelCase ) if finetuned: _lowerCAmelCase =make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') __A = parser.parse_args() __A = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
352
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = ['''image_processor''', '''tokenizer'''] lowerCamelCase = '''CLIPImageProcessor''' lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCAmelCase , ) _lowerCAmelCase =kwargs.pop("""feature_extractor""" ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: _lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
341
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =3 _lowerCAmelCase =do_lower_case _lowerCAmelCase =remove_space _lowerCAmelCase =keep_accents _lowerCAmelCase =vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _lowerCAmelCase =jieba _lowerCAmelCase =str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCAmelCase ( self ) -> Dict: return len(self.sp_model ) def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: if self.remove_space: _lowerCAmelCase =""" """.join(inputs.strip().split() ) else: _lowerCAmelCase =inputs _lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase ) _lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase =outputs.lower() return outputs def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =self.preprocess_text(__UpperCAmelCase ) _lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _lowerCAmelCase =[] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase =cur_pieces[1:] else: _lowerCAmelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: return self.sp_model.PieceToId(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> int: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) _lowerCAmelCase =text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['PerceiverFeatureExtractor'] __A = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , **__UpperCAmelCase ) -> Optional[int]: super().__init__(**__UpperCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: if "text_queries" in kwargs: _lowerCAmelCase =kwargs.pop("""text_queries""" ) if isinstance(__UpperCAmelCase , (str, Image.Image) ): _lowerCAmelCase ={"""image""": image, """candidate_labels""": candidate_labels} else: _lowerCAmelCase =image _lowerCAmelCase =super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) return results def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ={} if "threshold" in kwargs: _lowerCAmelCase =kwargs["""threshold"""] if "top_k" in kwargs: _lowerCAmelCase =kwargs["""top_k"""] return {}, {}, postprocess_params def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =load_image(inputs["""image"""] ) _lowerCAmelCase =inputs["""candidate_labels"""] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowerCAmelCase =candidate_labels.split(""",""" ) _lowerCAmelCase =torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__UpperCAmelCase ): _lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=self.framework ) _lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(__UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: _lowerCAmelCase =model_inputs.pop("""target_size""" ) _lowerCAmelCase =model_inputs.pop("""candidate_label""" ) _lowerCAmelCase =model_inputs.pop("""is_last""" ) _lowerCAmelCase =self.model(**__UpperCAmelCase ) _lowerCAmelCase ={"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0.1 , __UpperCAmelCase=None ) -> Tuple: _lowerCAmelCase =[] for model_output in model_outputs: _lowerCAmelCase =model_output["""candidate_label"""] _lowerCAmelCase =BaseModelOutput(__UpperCAmelCase ) _lowerCAmelCase =self.image_processor.post_process_object_detection( outputs=__UpperCAmelCase , threshold=__UpperCAmelCase , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): _lowerCAmelCase =outputs["""scores"""][index].item() _lowerCAmelCase =self._get_bounding_box(outputs["""boxes"""][index][0] ) _lowerCAmelCase ={"""score""": score, """label""": label, """box""": box} results.append(__UpperCAmelCase ) _lowerCAmelCase =sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase ) if top_k: _lowerCAmelCase =results[:top_k] return results def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =box.int().tolist() _lowerCAmelCase ={ """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = FunnelTokenizer lowerCamelCase = FunnelTokenizerFast lowerCamelCase = True lowerCamelCase = True def _lowerCAmelCase ( self ) -> Tuple: super().setUp() _lowerCAmelCase =[ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> List[str]: return FunnelTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Tuple: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase ="""UNwant\u00E9d,running""" _lowerCAmelCase ="""unwanted, running""" return input_text, output_text def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =self.tokenizer_class(self.vocab_file ) _lowerCAmelCase =tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: _lowerCAmelCase =tokenizer("""UNwant\u00E9d,running""" ) _lowerCAmelCase =len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) _lowerCAmelCase =tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
355
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" ) _lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" ) _lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" ) _lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" ) _lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item _lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" ) _lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" ) _lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _lowerCAmelCase =old_checkpoint[path] _lowerCAmelCase =old_tensor.shape[0] // 3 _lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) _lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3 _lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 ) _lowerCAmelCase =query.reshape(__UpperCamelCase ) _lowerCAmelCase =key.reshape(__UpperCamelCase ) _lowerCAmelCase =value.reshape(__UpperCamelCase ) for path in paths: _lowerCAmelCase =path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0] else: _lowerCAmelCase =old_checkpoint[path["""old"""]] def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase ={} _lowerCAmelCase =checkpoint["""time_embed.0.weight"""] _lowerCAmelCase =checkpoint["""time_embed.0.bias"""] _lowerCAmelCase =checkpoint["""time_embed.2.weight"""] _lowerCAmelCase =checkpoint["""time_embed.2.bias"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""] _lowerCAmelCase =checkpoint["""out.0.weight"""] _lowerCAmelCase =checkpoint["""out.0.bias"""] _lowerCAmelCase =checkpoint["""out.2.weight"""] _lowerCAmelCase =checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 , __UpperCamelCase ): _lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} _lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase ) if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''input_blocks.{i}.1''', """new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''input_blocks.{i}.1.qkv.bias''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , ) _lowerCAmelCase =middle_blocks[0] _lowerCAmelCase =middle_blocks[1] _lowerCAmelCase =middle_blocks[2] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase ) for i in range(__UpperCamelCase ): _lowerCAmelCase =i // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =i % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]] _lowerCAmelCase ={} for layer in output_block_layers: _lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: _lowerCAmelCase =[layer_name] if len(__UpperCamelCase ) > 1: _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: _lowerCAmelCase =[] if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''output_blocks.{i}.1''', """new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''output_blocks.{i}.1.qkv.bias''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , ) else: _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] ) _lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] ) _lowerCAmelCase =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __A = parser.parse_args() __A = torch.load(args.checkpoint_path) with open(args.config_file) as f: __A = json.loads(f.read()) __A = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __A = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) __A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) __A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
341
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''xlm-roberta-xl''' def __init__( self , __UpperCAmelCase=25_08_80 , __UpperCAmelCase=25_60 , __UpperCAmelCase=36 , __UpperCAmelCase=32 , __UpperCAmelCase=1_02_40 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_14 , __UpperCAmelCase=1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-05 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
356
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: if len(__UpperCamelCase ) <= 1: return arr, 0 _lowerCAmelCase =len(__UpperCamelCase ) // 2 _lowerCAmelCase =arr[0:mid] _lowerCAmelCase =arr[mid:] _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any: _lowerCAmelCase =[] _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCamelCase() -> str: _lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) # an empty list should also have zero inversions _lowerCAmelCase =[] _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) if __name__ == "__main__": main()
341
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __A = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) __A = [] __A = [] __A = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} __A = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] __A = 0 for log in Path().glob('*.log'): __A = 0 with open(log, 'r') as f: for line in f: __A = json.loads(line) if line.get('nodeid', '') != "": __A = line['nodeid'] if line.get('duration', None) is not None: __A = F"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __A = [] log.unlink() __A = '' __A = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" __A = [] __A = {} for test in failed_tests: __A = test[0].split('::') __A = data[0].split('/')[-1] if data[0] not in filesafailed: __A = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __A = [test[0] for test in failed_table] __A = list(set(files)) # Count number of instances in failed_tests __A = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __A = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __A = 'Too many failed tests, please see the full report in the Action results.' __A = len(err) + 10 __A = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: __A = 'No failed tests! 🤗' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient __A = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": __A = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) __A = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) __A = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) __A = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) __A = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __A = '' for i, row in enumerate(test_failures): if row[0] != test_class: __A = row[0] else: __A = '' __A = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
357
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None lowerCamelCase = 1 lowerCamelCase = None lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
341
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __A = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _lowerCamelCase(__UpperCamelCase ) -> Optional[int]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> str: if args.student_type == "roberta": _lowerCAmelCase =False elif args.student_type == "gpt2": _lowerCAmelCase =False def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: if args.student_type == "roberta": _lowerCAmelCase =False def _lowerCamelCase() -> Any: _lowerCAmelCase =argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=__UpperCamelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__UpperCamelCase , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=__UpperCamelCase , type=__UpperCamelCase , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__UpperCamelCase , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=__UpperCamelCase , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=__UpperCamelCase , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=__UpperCamelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=__UpperCamelCase , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=__UpperCamelCase , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=__UpperCamelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=__UpperCamelCase , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=__UpperCamelCase , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=__UpperCamelCase , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=__UpperCamelCase , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=__UpperCamelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=__UpperCamelCase , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=__UpperCamelCase , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=__UpperCamelCase , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__UpperCamelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=__UpperCamelCase , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__UpperCamelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=__UpperCamelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__UpperCamelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__UpperCamelCase , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=__UpperCamelCase , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__UpperCamelCase , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=__UpperCamelCase , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=__UpperCamelCase , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=__UpperCamelCase , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=__UpperCamelCase , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=__UpperCamelCase , default=4000 , help="""Checkpoint interval.""" ) _lowerCAmelCase =parser.parse_args() sanity_checks(__UpperCamelCase ) # ARGS # init_gpu_params(__UpperCamelCase ) set_seed(__UpperCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(__UpperCamelCase ) , __UpperCamelCase , indent=4 ) git_log(args.dump_path ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =MODEL_CLASSES[args.student_type] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =MODEL_CLASSES[args.teacher_type] # TOKENIZER # _lowerCAmelCase =teacher_tokenizer_class.from_pretrained(args.teacher_name ) _lowerCAmelCase ={} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _lowerCAmelCase =tokenizer.all_special_tokens.index(__UpperCamelCase ) _lowerCAmelCase =tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _lowerCAmelCase =special_tok_ids _lowerCAmelCase =tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: _lowerCAmelCase =pickle.load(__UpperCamelCase ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: _lowerCAmelCase =pickle.load(__UpperCamelCase ) _lowerCAmelCase =np.maximum(__UpperCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _lowerCAmelCase =0.0 # do not predict special tokens _lowerCAmelCase =torch.from_numpy(__UpperCamelCase ) else: _lowerCAmelCase =None _lowerCAmelCase =LmSeqsDataset(params=__UpperCamelCase , data=__UpperCamelCase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _lowerCAmelCase =student_config_class.from_pretrained(args.student_config ) _lowerCAmelCase =True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _lowerCAmelCase =student_model_class.from_pretrained(args.student_pretrained_weights , config=__UpperCamelCase ) else: _lowerCAmelCase =student_model_class(__UpperCamelCase ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # _lowerCAmelCase =teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__UpperCamelCase ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__UpperCamelCase , __UpperCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__UpperCamelCase , __UpperCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _lowerCAmelCase =Distiller( params=__UpperCamelCase , dataset=__UpperCamelCase , token_probs=__UpperCamelCase , student=__UpperCamelCase , teacher=__UpperCamelCase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
358
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowerCamelCase() -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
341
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Union[str, Any]: _lowerCAmelCase ={} def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> List[str]: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _lowerCAmelCase =[[w, v]] if not self.graph.get(__UpperCAmelCase ): _lowerCAmelCase =[] def _lowerCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _lowerCAmelCase =[] _lowerCAmelCase =[] if s == -2: _lowerCAmelCase =list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _lowerCAmelCase =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCAmelCase =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _lowerCAmelCase =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1] else: _lowerCAmelCase =ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _lowerCAmelCase ( self , __UpperCAmelCase=-1 ) -> Optional[int]: if c == -1: _lowerCAmelCase =floor(random() * 1_00_00 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _lowerCAmelCase =floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _lowerCAmelCase =deque() _lowerCAmelCase =[] if s == -2: _lowerCAmelCase =list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _lowerCAmelCase =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: _lowerCAmelCase =0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _lowerCAmelCase ( self , __UpperCAmelCase ) -> int: return len(self.graph[u] ) def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> Dict: _lowerCAmelCase =[] _lowerCAmelCase =[] if s == -2: _lowerCAmelCase =list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _lowerCAmelCase =s _lowerCAmelCase =[] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCAmelCase =s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCAmelCase =node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1] else: _lowerCAmelCase =ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =[] _lowerCAmelCase =[] _lowerCAmelCase =list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _lowerCAmelCase =-2 _lowerCAmelCase =[] _lowerCAmelCase =s _lowerCAmelCase =False _lowerCAmelCase =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCAmelCase =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCAmelCase =len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCAmelCase =node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCAmelCase =True if len(__UpperCAmelCase ) != 0: _lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1] else: _lowerCAmelCase =False indirect_parents.append(__UpperCAmelCase ) _lowerCAmelCase =s _lowerCAmelCase =ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =[] _lowerCAmelCase =[] _lowerCAmelCase =list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _lowerCAmelCase =-2 _lowerCAmelCase =[] _lowerCAmelCase =s _lowerCAmelCase =False _lowerCAmelCase =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCAmelCase =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCAmelCase =len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCAmelCase =node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCAmelCase =True if len(__UpperCAmelCase ) != 0: _lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1] else: _lowerCAmelCase =False indirect_parents.append(__UpperCAmelCase ) _lowerCAmelCase =s _lowerCAmelCase =ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _lowerCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _lowerCAmelCase =time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =time() return end - begin def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> str: _lowerCAmelCase =time() self.bfs(__UpperCAmelCase ) _lowerCAmelCase =time() return end - begin class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Any: _lowerCAmelCase ={} def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Optional[Any]: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _lowerCAmelCase =[[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _lowerCAmelCase =[[w, u]] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> List[Any]: if s == d: return [] _lowerCAmelCase =[] _lowerCAmelCase =[] if s == -2: _lowerCAmelCase =list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _lowerCAmelCase =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCAmelCase =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _lowerCAmelCase =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1] else: _lowerCAmelCase =ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _lowerCAmelCase ( self , __UpperCAmelCase=-1 ) -> str: if c == -1: _lowerCAmelCase =floor(random() * 1_00_00 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _lowerCAmelCase =floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _lowerCAmelCase =deque() _lowerCAmelCase =[] if s == -2: _lowerCAmelCase =list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _lowerCAmelCase =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: return len(self.graph[u] ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =[] _lowerCAmelCase =[] _lowerCAmelCase =list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _lowerCAmelCase =-2 _lowerCAmelCase =[] _lowerCAmelCase =s _lowerCAmelCase =False _lowerCAmelCase =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCAmelCase =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCAmelCase =len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCAmelCase =node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCAmelCase =True if len(__UpperCAmelCase ) != 0: _lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1] else: _lowerCAmelCase =False indirect_parents.append(__UpperCAmelCase ) _lowerCAmelCase =s _lowerCAmelCase =ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =[] _lowerCAmelCase =[] _lowerCAmelCase =list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _lowerCAmelCase =-2 _lowerCAmelCase =[] _lowerCAmelCase =s _lowerCAmelCase =False _lowerCAmelCase =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCAmelCase =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCAmelCase =len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCAmelCase =node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCAmelCase =True if len(__UpperCAmelCase ) != 0: _lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1] else: _lowerCAmelCase =False indirect_parents.append(__UpperCAmelCase ) _lowerCAmelCase =s _lowerCAmelCase =ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _lowerCAmelCase ( self ) -> List[Any]: return list(self.graph ) def _lowerCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[Any]: _lowerCAmelCase =time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =time() return end - begin def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _lowerCAmelCase =time() self.bfs(__UpperCAmelCase ) _lowerCAmelCase =time() return end - begin
359
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple: _lowerCAmelCase =compute_bleu( reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
341
0
"""simple docstring""" from math import pow def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _lowerCAmelCase =int(pow(__UpperCamelCase , __UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _lowerCAmelCase , _lowerCAmelCase =backtrack( __UpperCamelCase , __UpperCamelCase , current_number + 1 , __UpperCamelCase , __UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _lowerCAmelCase , _lowerCAmelCase =backtrack( __UpperCamelCase , __UpperCamelCase , current_number + 1 , __UpperCamelCase , __UpperCamelCase ) return current_sum, solutions_count def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(__UpperCamelCase , __UpperCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowerCamelCase(__UpperCamelCase ) -> List[str]: if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) __A = parser.parse_args() __A = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
341
0
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __A = sys.version_info >= (3, 10) def _lowerCamelCase(__UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[Any]: return field(default_factory=lambda: default , metadata=__UpperCamelCase ) @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = 42 lowerCamelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''titi''' lowerCamelCase = '''toto''' class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''titi''' lowerCamelCase = '''toto''' lowerCamelCase = 42 @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = '''toto''' def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =BasicEnum(self.foo ) @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = '''toto''' def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =MixedTypeEnum(self.foo ) @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = None lowerCamelCase = field(default=__magic_name__ , metadata={'''help''': '''help message'''} ) lowerCamelCase = None lowerCamelCase = list_field(default=[] ) lowerCamelCase = list_field(default=[] ) @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = list_field(default=[] ) lowerCamelCase = list_field(default=[1, 2, 3] ) lowerCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) lowerCamelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = field() lowerCamelCase = field() lowerCamelCase = field() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =BasicEnum(self.required_enum ) @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = 42 lowerCamelCase = field() lowerCamelCase = None lowerCamelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) lowerCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = None lowerCamelCase = field(default=__magic_name__ , metadata={'''help''': '''help message'''} ) lowerCamelCase = None lowerCamelCase = list_field(default=[] ) lowerCamelCase = list_field(default=[] ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _lowerCAmelCase ={k: v for k, v in vars(__UpperCAmelCase ).items() if k != """container"""} _lowerCAmelCase ={k: v for k, v in vars(__UpperCAmelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , __UpperCAmelCase ) and yy.get("""choices""" , __UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](__UpperCAmelCase ) , yy["""type"""](__UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--bar""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--baz""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--flag""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((_lowerCAmelCase ) , ) =parser.parse_args_into_dataclasses(__UpperCAmelCase , look_for_args_file=__UpperCAmelCase ) self.assertFalse(example.flag ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=__UpperCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__UpperCAmelCase , help="""help message""" ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=__UpperCAmelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=__UpperCAmelCase , default=__UpperCAmelCase ) _lowerCAmelCase =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) _lowerCAmelCase =parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) _lowerCAmelCase =parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) _lowerCAmelCase =parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) _lowerCAmelCase =parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) _lowerCAmelCase =parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _lowerCAmelCase =parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) _lowerCAmelCase =parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _lowerCAmelCase =parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) _lowerCAmelCase =parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _lowerCAmelCase ( self ) -> List[Any]: @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = '''toto''' _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) _lowerCAmelCase =parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) _lowerCAmelCase =parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=__UpperCAmelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=__UpperCAmelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__UpperCAmelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual( __UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) _lowerCAmelCase =parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument("""--foo""" , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument("""--bar""" , default=__UpperCAmelCase , type=__UpperCAmelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=__UpperCAmelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=__UpperCAmelCase ) _lowerCAmelCase =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , bar=__UpperCAmelCase , baz=__UpperCAmelCase , ces=[] , des=[] ) ) _lowerCAmelCase =parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--required_str""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__UpperCAmelCase , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__UpperCAmelCase , ) expected.add_argument("""--opt""" , type=__UpperCAmelCase , default=__UpperCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__UpperCAmelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase ={ """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } _lowerCAmelCase =parser.parse_dict(__UpperCAmelCase )[0] _lowerCAmelCase =BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase ={ """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(__UpperCAmelCase , parser.parse_dict , __UpperCAmelCase , allow_extra_keys=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase ={ """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase =os.path.join(__UpperCAmelCase , """temp_json""" ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] _lowerCAmelCase =BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) _lowerCAmelCase ={ """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase =os.path.join(__UpperCAmelCase , """temp_yaml""" ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] _lowerCAmelCase =BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =HfArgumentParser(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __A = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __A = ['bert-base-uncased', 'bert-base-cased'] __A = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class lowerCamelCase__ ( tf.keras.Model ): '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =tokenizer _lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase ) _lowerCAmelCase =TFAutoModel.from_config(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Any: _lowerCAmelCase =self.tokenizer(__UpperCAmelCase ) _lowerCAmelCase =self.bert(**__UpperCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =[ BertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _lowerCAmelCase =[TFBertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__UpperCAmelCase , use_fast_bert_tokenizer=__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _lowerCAmelCase =[ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] _lowerCAmelCase =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowerCAmelCase ( self ) -> str: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding="""longest""" ) _lowerCAmelCase =tf_tokenizer(__UpperCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase =tf_tokenizer(self.paired_sentences ) _lowerCAmelCase =tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase =tf.function(__UpperCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase =tf.constant(__UpperCAmelCase ) _lowerCAmelCase =compiled_tokenizer(__UpperCAmelCase ) _lowerCAmelCase =tf_tokenizer(__UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase =ModelToSave(tokenizer=__UpperCAmelCase ) _lowerCAmelCase =tf.convert_to_tensor(self.test_sentences ) _lowerCAmelCase =model(__UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCAmelCase =Path(__UpperCAmelCase ) / """saved.model""" model.save(__UpperCAmelCase ) _lowerCAmelCase =tf.keras.models.load_model(__UpperCAmelCase ) _lowerCAmelCase =loaded_model(__UpperCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" from __future__ import annotations __A = 'Muhammad Umer Farooq' __A = 'MIT' __A = '1.0.0' __A = 'Muhammad Umer Farooq' __A = '[email protected]' __A = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> None: super().__init__() _lowerCAmelCase =[] _lowerCAmelCase =domain def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _lowerCAmelCase =parse.urljoin(self.domain , __UpperCAmelCase ) self.urls.append(__UpperCAmelCase ) def _lowerCamelCase(__UpperCamelCase ) -> str: return ".".join(get_sub_domain_name(__UpperCamelCase ).split(""".""" )[-2:] ) def _lowerCamelCase(__UpperCamelCase ) -> str: return parse.urlparse(__UpperCamelCase ).netloc def _lowerCamelCase(__UpperCamelCase = "https://github.com" ) -> list[str]: _lowerCAmelCase =get_domain_name(__UpperCamelCase ) # Initialize the parser _lowerCAmelCase =Parser(__UpperCamelCase ) try: # Open URL _lowerCAmelCase =requests.get(__UpperCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _lowerCAmelCase =set() for link in parser.urls: # open URL. # read = requests.get(link) try: _lowerCAmelCase =requests.get(__UpperCamelCase ) # Get the valid email. _lowerCAmelCase =re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__UpperCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__UpperCamelCase ) if __name__ == "__main__": __A = emails_from_url('https://github.com') print(F"""{len(emails)} emails found:""") print('\n'.join(sorted(emails)))
363
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __A = datasets.logging.get_logger(__name__) __A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' __A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' __A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict: _lowerCAmelCase ={doc: key_lines} _lowerCAmelCase ={doc: sys_lines} _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) if remove_nested: _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: _lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 for name, metric in metrics: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: _lowerCAmelCase =(conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def _lowerCamelCase(__UpperCamelCase ) -> Tuple: _lowerCAmelCase =False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: _lowerCAmelCase =line.split()[5] if not parse_col == "-": _lowerCAmelCase =True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]: _lowerCAmelCase =[ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: _lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCAmelCase =evaluate( key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , ) return score
341
0
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) __A = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions __A = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) __A = tf.keras.preprocessing.image.img_to_array(test_image) __A = np.expand_dims(test_image, axis=0) __A = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A = 'Normal' if result[0][0] == 1: __A = 'Abnormality detected'
364
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = XGLMConfig lowerCamelCase = {} lowerCamelCase = '''gelu''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =ffn_dim _lowerCAmelCase =activation_function _lowerCAmelCase =activation_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =None _lowerCAmelCase =0 _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Dict: return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =self.get_config() _lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self ) -> str: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={ """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =TFXGLMModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 ) def _lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _lowerCAmelCase ( self ) -> Union[str, Any]: super().test_resize_token_embeddings() @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) _lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) _lowerCAmelCase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] ) _lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase ="""left""" # use different length sentences to test batching _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] _lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase ) _lowerCAmelCase =inputs["""input_ids"""] _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
341
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __A = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __A = 0 __A = 1 __A = 2 __A = 3 __A = 4 class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = '''left''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =3 _lowerCAmelCase =do_lower_case _lowerCAmelCase =remove_space _lowerCAmelCase =keep_accents _lowerCAmelCase =vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> str: return len(self.sp_model ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None return state def __setstate__( self , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if self.remove_space: _lowerCAmelCase =""" """.join(inputs.strip().split() ) else: _lowerCAmelCase =inputs _lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase ) _lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase =outputs.lower() return outputs def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =self.preprocess_text(__UpperCAmelCase ) _lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _lowerCAmelCase =[] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase =cur_pieces[1:] else: _lowerCAmelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: return self.sp_model.PieceToId(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str: _lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase ) _lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase =[] _lowerCAmelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _lowerCAmelCase =[] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase ="""""".join(__UpperCAmelCase ) _lowerCAmelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
341
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = ['''pixel_values'''] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =resample _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase =image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase =do_convert_rgb def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) _lowerCAmelCase =(size["""height"""], size["""width"""]) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =resample if resample is not None else self.resample _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase =image_mean if image_mean is not None else self.image_mean _lowerCAmelCase =image_std if image_std is not None else self.image_std _lowerCAmelCase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase =size if size is not None else self.size _lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _lowerCAmelCase =make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase =[convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _lowerCAmelCase =[self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase =[self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase =[self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _lowerCAmelCase =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _lowerCAmelCase =BatchFeature(data={"""pixel_values""": images} , tensor_type=__UpperCAmelCase ) return encoded_outputs
366
"""simple docstring""" from __future__ import annotations def _lowerCamelCase(__UpperCamelCase ) -> bool: _lowerCAmelCase =str(__UpperCamelCase ) return n == n[::-1] def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str: _lowerCAmelCase =0 for i in range(1 , __UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
341
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __A = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __A = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __A = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[str]: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = CHRF.CHAR_ORDER , __UpperCAmelCase = CHRF.WORD_ORDER , __UpperCAmelCase = CHRF.BETA , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , ) -> Optional[Any]: _lowerCAmelCase =len(references[0] ) if any(len(__UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) _lowerCAmelCase =[[refs[i] for refs in references] for i in range(__UpperCAmelCase )] _lowerCAmelCase =CHRF(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =sb_chrf.corpus_score(__UpperCAmelCase , __UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
367
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''llama''' lowerCamelCase = ['''past_key_values'''] def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase =num_attention_heads _lowerCAmelCase =num_key_value_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =initializer_range _lowerCAmelCase =rms_norm_eps _lowerCAmelCase =pretraining_tp _lowerCAmelCase =use_cache _lowerCAmelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) _lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase ) _lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
341
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import warnings from .generation import TFGenerationMixin class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
341
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''gpt_bigcode''' lowerCamelCase = ['''past_key_values'''] lowerCamelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , __UpperCAmelCase=5_02_57 , __UpperCAmelCase=10_24 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_pytorch_tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=5_02_56 , __UpperCAmelCase=5_02_56 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Optional[int]: _lowerCAmelCase =vocab_size _lowerCAmelCase =n_positions _lowerCAmelCase =n_embd _lowerCAmelCase =n_layer _lowerCAmelCase =n_head _lowerCAmelCase =n_inner _lowerCAmelCase =activation_function _lowerCAmelCase =resid_pdrop _lowerCAmelCase =embd_pdrop _lowerCAmelCase =attn_pdrop _lowerCAmelCase =layer_norm_epsilon _lowerCAmelCase =initializer_range _lowerCAmelCase =scale_attn_weights _lowerCAmelCase =use_cache _lowerCAmelCase =attention_softmax_in_fpaa _lowerCAmelCase =scale_attention_softmax_in_fpaa _lowerCAmelCase =multi_query _lowerCAmelCase =bos_token_id _lowerCAmelCase =eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
369
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
341
0
"""simple docstring""" from math import factorial, radians def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase = 18 , __UpperCamelCase = 10 ) -> float: _lowerCAmelCase =angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _lowerCAmelCase =radians(__UpperCamelCase ) _lowerCAmelCase =angle_in_radians _lowerCAmelCase =3 _lowerCAmelCase =-1 for _ in range(__UpperCamelCase ): result += (b * (angle_in_radians**a)) / factorial(__UpperCamelCase ) _lowerCAmelCase =-b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": __import__('doctest').testmod()
370
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase = JukeboxTokenizer lowerCamelCase = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _lowerCAmelCase ( self ) -> str: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowerCAmelCase ( self ) -> Any: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
341
0
"""simple docstring""" from __future__ import annotations import math def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__UpperCamelCase ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , ) def _lowerCamelCase() -> None: _lowerCAmelCase =[90, 23, 6, 33, 21, 65, 123, 34423] _lowerCAmelCase =math.log(len(__UpperCamelCase ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
371
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =monolingual_vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase ={} _lowerCAmelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =cnt cnt += 1 with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase =line.strip().split()[0] _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None _lowerCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
341
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: if len(__UpperCamelCase ) < k or k < 0: raise ValueError("""Invalid Input""" ) _lowerCAmelCase =_lowerCAmelCase =sum(array[:k] ) for i in range(len(__UpperCamelCase ) - k ): _lowerCAmelCase =current_sum - array[i] + array[i + k] _lowerCAmelCase =max(__UpperCamelCase , __UpperCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __A = [randint(-1000, 1000) for i in range(100)] __A = randint(0, 110) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
350
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
341
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __A = logging.getLogger(__name__) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Tuple: # save results if os.path.exists(__UpperCamelCase ): if os.path.exists(os.path.join(__UpperCamelCase , """config.json""" ) ) and os.path.isfile( os.path.join(__UpperCamelCase , """config.json""" ) ): os.remove(os.path.join(__UpperCamelCase , """config.json""" ) ) if os.path.exists(os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) ): os.remove(os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) ) else: os.makedirs(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=False ) -> Tuple: _lowerCAmelCase =2 if unlogit: _lowerCAmelCase =torch.pow(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =p * torch.log(__UpperCamelCase ) _lowerCAmelCase =0 return -plogp.sum(dim=-1 ) def _lowerCamelCase(__UpperCamelCase ) -> str: logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(__UpperCamelCase ) ) ) ) for row in range(len(__UpperCamelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=False ) -> int: _lowerCAmelCase , _lowerCAmelCase =model.config.num_hidden_layers, model.config.num_attention_heads _lowerCAmelCase =torch.zeros(__UpperCamelCase , __UpperCamelCase ).to(args.device ) _lowerCAmelCase =torch.zeros(__UpperCamelCase , __UpperCamelCase ).to(args.device ) if head_mask is None: _lowerCAmelCase =torch.ones(__UpperCamelCase , __UpperCamelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__UpperCamelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _lowerCAmelCase =None _lowerCAmelCase =0.0 _lowerCAmelCase =0.0 for step, inputs in enumerate(tqdm(__UpperCamelCase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): _lowerCAmelCase =tuple(t.to(args.device ) for t in inputs ) ((_lowerCAmelCase ) , ) =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _lowerCAmelCase =model(__UpperCamelCase , labels=__UpperCamelCase , head_mask=__UpperCamelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__UpperCamelCase ): _lowerCAmelCase =entropy(attn.detach() , __UpperCamelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__UpperCamelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _lowerCAmelCase =2 _lowerCAmelCase =torch.pow(torch.pow(__UpperCamelCase , __UpperCamelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-2_0 if not args.dont_normalize_global_importance: _lowerCAmelCase =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(__UpperCamelCase ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(__UpperCamelCase ) logger.info("""Head ranked by importance scores""" ) _lowerCAmelCase =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _lowerCAmelCase =torch.arange( head_importance.numel() , device=args.device ) _lowerCAmelCase =head_ranks.view_as(__UpperCamelCase ) print_ad_tensor(__UpperCamelCase ) return attn_entropy, head_importance, total_loss def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase ) _lowerCAmelCase =1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , __UpperCamelCase , original_score * args.masking_threshold ) _lowerCAmelCase =torch.ones_like(__UpperCamelCase ) _lowerCAmelCase =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _lowerCAmelCase =original_score while current_score >= original_score * args.masking_threshold: _lowerCAmelCase =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _lowerCAmelCase =float("""Inf""" ) _lowerCAmelCase =head_importance.view(-1 ).sort()[1] if len(__UpperCamelCase ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads _lowerCAmelCase =current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) _lowerCAmelCase =new_head_mask.view(-1 ) _lowerCAmelCase =0.0 _lowerCAmelCase =new_head_mask.view_as(__UpperCamelCase ) _lowerCAmelCase =new_head_mask.clone().detach() print_ad_tensor(__UpperCamelCase ) # Compute metric and head importance again _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase , head_mask=__UpperCamelCase ) _lowerCAmelCase =1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , __UpperCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(__UpperCamelCase ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: _lowerCAmelCase =datetime.now() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase , compute_importance=__UpperCamelCase , head_mask=__UpperCamelCase ) _lowerCAmelCase =1 / loss _lowerCAmelCase =datetime.now() - before_time _lowerCAmelCase =sum(p.numel() for p in model.parameters() ) _lowerCAmelCase ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__UpperCamelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): _lowerCAmelCase =[ v, ] assert sum(len(__UpperCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__UpperCamelCase ) _lowerCAmelCase =sum(p.numel() for p in model.parameters() ) _lowerCAmelCase =datetime.now() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase , compute_importance=__UpperCamelCase , head_mask=__UpperCamelCase , actually_pruned=__UpperCamelCase , ) _lowerCAmelCase =1 / loss _lowerCAmelCase =datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , __UpperCamelCase , __UpperCamelCase , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , __UpperCamelCase , __UpperCamelCase ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(__UpperCamelCase , args.output_dir ) def _lowerCamelCase() -> int: _lowerCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=__UpperCamelCase , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=__UpperCamelCase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=__UpperCamelCase , type=__UpperCamelCase , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=__UpperCamelCase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=__UpperCamelCase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=__UpperCamelCase , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=__UpperCamelCase , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__UpperCamelCase , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=__UpperCamelCase , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=__UpperCamelCase , default=42 ) parser.add_argument("""--local_rank""" , type=__UpperCamelCase , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=__UpperCamelCase , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=__UpperCamelCase , default="""""" , help="""Can be used for distant debugging.""" ) _lowerCAmelCase =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__UpperCamelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _lowerCAmelCase =torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) _lowerCAmelCase =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _lowerCAmelCase =torch.device("""cuda""" , args.local_rank ) _lowerCAmelCase =1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _lowerCAmelCase =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _lowerCAmelCase =nn.parallel.DistributedDataParallel( __UpperCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__UpperCamelCase ) elif args.n_gpu > 1: _lowerCAmelCase =nn.DataParallel(__UpperCamelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__UpperCamelCase ) torch.save(__UpperCamelCase , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , __UpperCamelCase ) # Prepare dataset _lowerCAmelCase =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _lowerCAmelCase =(torch.from_numpy(__UpperCamelCase ),) _lowerCAmelCase =TensorDataset(*__UpperCamelCase ) _lowerCAmelCase =RandomSampler(__UpperCamelCase ) _lowerCAmelCase =DataLoader(__UpperCamelCase , sampler=__UpperCamelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _lowerCAmelCase =mask_heads(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) prune_heads(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''cvt''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =num_channels _lowerCAmelCase =patch_sizes _lowerCAmelCase =patch_stride _lowerCAmelCase =patch_padding _lowerCAmelCase =embed_dim _lowerCAmelCase =num_heads _lowerCAmelCase =depth _lowerCAmelCase =mlp_ratio _lowerCAmelCase =attention_drop_rate _lowerCAmelCase =drop_rate _lowerCAmelCase =drop_path_rate _lowerCAmelCase =qkv_bias _lowerCAmelCase =cls_token _lowerCAmelCase =qkv_projection_method _lowerCAmelCase =kernel_qkv _lowerCAmelCase =padding_kv _lowerCAmelCase =stride_kv _lowerCAmelCase =padding_q _lowerCAmelCase =stride_q _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps
341
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A = logging.get_logger(__name__) class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
352
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = ['''image_processor''', '''tokenizer'''] lowerCamelCase = '''CLIPImageProcessor''' lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCAmelCase , ) _lowerCAmelCase =kwargs.pop("""feature_extractor""" ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: _lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
341
0
"""simple docstring""" from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowerCamelCase() -> int: _lowerCAmelCase =ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=__UpperCamelCase ) _lowerCAmelCase =parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=__UpperCamelCase ) env_command_parser(subparsers=__UpperCamelCase ) launch_command_parser(subparsers=__UpperCamelCase ) tpu_command_parser(subparsers=__UpperCamelCase ) test_command_parser(subparsers=__UpperCamelCase ) # Let's go _lowerCAmelCase =parser.parse_args() if not hasattr(__UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run args.func(__UpperCamelCase ) if __name__ == "__main__": main()
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['PerceiverFeatureExtractor'] __A = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
from math import isclose, sqrt def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> tuple[float, float, float]: _lowerCAmelCase =point_y / 4 / point_x _lowerCAmelCase =2 * normal_gradient / (1 + normal_gradient * normal_gradient) _lowerCAmelCase =(1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _lowerCAmelCase =(sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _lowerCAmelCase =outgoing_gradient**2 + 4 _lowerCAmelCase =2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _lowerCAmelCase =(point_y - outgoing_gradient * point_x) ** 2 - 100 _lowerCAmelCase =( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _lowerCAmelCase =( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _lowerCAmelCase =x_minus if isclose(__UpperCamelCase , __UpperCamelCase ) else x_plus _lowerCAmelCase =point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _lowerCamelCase(__UpperCamelCase = 1.4 , __UpperCamelCase = -9.6 ) -> int: _lowerCAmelCase =0 _lowerCAmelCase =first_x_coord _lowerCAmelCase =first_y_coord _lowerCAmelCase =(10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =next_point(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __A = 5_0003 __A = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = PLBartTokenizer lowerCamelCase = None lowerCamelCase = False def _lowerCAmelCase ( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase =PLBartTokenizer(__UpperCAmelCase , language_codes="""base""" , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =PLBartTokenizer(__UpperCAmelCase , language_codes="""base""" , keep_accents=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _lowerCAmelCase =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase =tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) _lowerCAmelCase =tokenizer.vocab_size _lowerCAmelCase =[tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) for x in range(end - 4 , __UpperCAmelCase )] self.assertListEqual(__UpperCAmelCase , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) _lowerCAmelCase ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" _lowerCAmelCase =tokenizer(__UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) , __UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =PLBartTokenizer(__UpperCAmelCase , language_codes="""multi""" , keep_accents=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _lowerCAmelCase =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase =tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) _lowerCAmelCase =tokenizer.vocab_size _lowerCAmelCase =[tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) for x in range(end - 7 , __UpperCAmelCase )] self.assertListEqual( __UpperCAmelCase , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) _lowerCAmelCase ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" _lowerCAmelCase =tokenizer(__UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) , __UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase = '''uclanlp/plbart-python-en_XX''' lowerCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] lowerCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] lowerCamelCase = [ 134, 5_452, 33_460, 33_441, 33_463, 33_465, 33_463, 33_449, 988, 20, 33_456, 19, 33_456, 771, 39, 4_258, 889, 3_318, 33_441, 33_463, 33_465, 33_463, 33_449, 2_471, 2, PYTHON_CODE, ] @classmethod def _lowerCAmelCase ( cls ) -> Union[str, Any]: _lowerCAmelCase =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) _lowerCAmelCase =1 return cls def _lowerCAmelCase ( self ) -> Tuple: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Any: self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids ) _lowerCAmelCase =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] _lowerCAmelCase =self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , __UpperCAmelCase ) _lowerCAmelCase =10 _lowerCAmelCase =self.tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCAmelCase ) _lowerCAmelCase =PLBartTokenizer.from_pretrained(__UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCAmelCase ) @require_torch def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors="""pt""" ) _lowerCAmelCase =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) _lowerCAmelCase =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) _lowerCAmelCase =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =self.tokenizer(self.src_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=3 , return_tensors="""pt""" ) _lowerCAmelCase =self.tokenizer( text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=10 , return_tensors="""pt""" ) _lowerCAmelCase =targets["""input_ids"""] _lowerCAmelCase =shift_tokens_right(__UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
355
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" ) _lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" ) _lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" ) _lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" ) _lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item _lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" ) _lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" ) _lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _lowerCAmelCase =old_checkpoint[path] _lowerCAmelCase =old_tensor.shape[0] // 3 _lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) _lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3 _lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 ) _lowerCAmelCase =query.reshape(__UpperCamelCase ) _lowerCAmelCase =key.reshape(__UpperCamelCase ) _lowerCAmelCase =value.reshape(__UpperCamelCase ) for path in paths: _lowerCAmelCase =path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0] else: _lowerCAmelCase =old_checkpoint[path["""old"""]] def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase ={} _lowerCAmelCase =checkpoint["""time_embed.0.weight"""] _lowerCAmelCase =checkpoint["""time_embed.0.bias"""] _lowerCAmelCase =checkpoint["""time_embed.2.weight"""] _lowerCAmelCase =checkpoint["""time_embed.2.bias"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""] _lowerCAmelCase =checkpoint["""out.0.weight"""] _lowerCAmelCase =checkpoint["""out.0.bias"""] _lowerCAmelCase =checkpoint["""out.2.weight"""] _lowerCAmelCase =checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 , __UpperCamelCase ): _lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} _lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase ) if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''input_blocks.{i}.1''', """new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''input_blocks.{i}.1.qkv.bias''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , ) _lowerCAmelCase =middle_blocks[0] _lowerCAmelCase =middle_blocks[1] _lowerCAmelCase =middle_blocks[2] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase ) for i in range(__UpperCamelCase ): _lowerCAmelCase =i // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =i % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]] _lowerCAmelCase ={} for layer in output_block_layers: _lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: _lowerCAmelCase =[layer_name] if len(__UpperCamelCase ) > 1: _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: _lowerCAmelCase =[] if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''output_blocks.{i}.1''', """new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''output_blocks.{i}.1.qkv.bias''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , ) else: _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] ) _lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] ) _lowerCAmelCase =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __A = parser.parse_args() __A = torch.load(args.checkpoint_path) with open(args.config_file) as f: __A = json.loads(f.read()) __A = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __A = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) __A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) __A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
341
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __A = logging.getLogger(__name__) torch.set_grad_enabled(False) __A = 'cuda' if torch.cuda.is_available() else 'cpu' def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=100 , __UpperCamelCase=" " ) -> List[str]: _lowerCAmelCase =text.split(__UpperCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )] def _lowerCamelCase(__UpperCamelCase ) -> dict: _lowerCAmelCase , _lowerCAmelCase =[], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(__UpperCamelCase ): titles.append(title if title is not None else """""" ) texts.append(__UpperCamelCase ) return {"title": titles, "text": texts} def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> dict: _lowerCAmelCase =ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=__UpperCamelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] _lowerCAmelCase =ctx_encoder(input_ids.to(device=__UpperCamelCase ) , return_dict=__UpperCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> int: ###################################### logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _lowerCAmelCase =load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _lowerCAmelCase =dataset.map(__UpperCamelCase , batched=__UpperCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _lowerCAmelCase =DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__UpperCamelCase ) _lowerCAmelCase =DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _lowerCAmelCase =Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space _lowerCAmelCase =dataset.map( partial(__UpperCamelCase , ctx_encoder=__UpperCamelCase , ctx_tokenizer=__UpperCamelCase ) , batched=__UpperCamelCase , batch_size=processing_args.batch_size , features=__UpperCamelCase , ) # And finally save your dataset _lowerCAmelCase =os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(__UpperCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _lowerCAmelCase =faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=__UpperCamelCase ) # And save the index _lowerCAmelCase =os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(__UpperCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = field( default=str(Path(__magic_name__ ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) lowerCamelCase = field( default=__magic_name__ , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) lowerCamelCase = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) lowerCamelCase = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) lowerCamelCase = field( default=str(Path(__magic_name__ ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = field( default=__magic_name__ , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) lowerCamelCase = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) lowerCamelCase = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __A = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __A , __A , __A = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __A = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
356
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: if len(__UpperCamelCase ) <= 1: return arr, 0 _lowerCAmelCase =len(__UpperCamelCase ) // 2 _lowerCAmelCase =arr[0:mid] _lowerCAmelCase =arr[mid:] _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any: _lowerCAmelCase =[] _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCamelCase() -> str: _lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) # an empty list should also have zero inversions _lowerCAmelCase =[] _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) if __name__ == "__main__": main()
341
0
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = DownBlockaD # noqa F405 lowerCamelCase = '''down''' def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =[-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = ResnetDownsampleBlockaD # noqa F405 lowerCamelCase = '''down''' def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =[0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = AttnDownBlockaD # noqa F405 lowerCamelCase = '''down''' def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =[0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = CrossAttnDownBlockaD # noqa F405 lowerCamelCase = '''down''' def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase =32 return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =[0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = SimpleCrossAttnDownBlockaD # noqa F405 lowerCamelCase = '''down''' @property def _lowerCAmelCase ( self ) -> List[Any]: return super().get_dummy_input(include_encoder_hidden_states=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase =32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =[0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = SkipDownBlockaD # noqa F405 lowerCamelCase = '''down''' @property def _lowerCAmelCase ( self ) -> Any: return super().get_dummy_input(include_skip_sample=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =[-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = AttnSkipDownBlockaD # noqa F405 lowerCamelCase = '''down''' @property def _lowerCAmelCase ( self ) -> Optional[Any]: return super().get_dummy_input(include_skip_sample=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =[0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = DownEncoderBlockaD # noqa F405 lowerCamelCase = '''down''' @property def _lowerCAmelCase ( self ) -> str: return super().get_dummy_input(include_temb=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase ={ """in_channels""": 32, """out_channels""": 32, } _lowerCAmelCase =self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =[1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = AttnDownEncoderBlockaD # noqa F405 lowerCamelCase = '''down''' @property def _lowerCAmelCase ( self ) -> Optional[int]: return super().get_dummy_input(include_temb=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ={ """in_channels""": 32, """out_channels""": 32, } _lowerCAmelCase =self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =[0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = UNetMidBlockaD # noqa F405 lowerCamelCase = '''mid''' def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={ """in_channels""": 32, """temb_channels""": 1_28, } _lowerCAmelCase =self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =[-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = UNetMidBlockaDCrossAttn # noqa F405 lowerCamelCase = '''mid''' def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase =32 return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =[0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCamelCase = '''mid''' @property def _lowerCAmelCase ( self ) -> str: return super().get_dummy_input(include_encoder_hidden_states=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase =32 return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =[0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = UpBlockaD # noqa F405 lowerCamelCase = '''up''' @property def _lowerCAmelCase ( self ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =[-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = ResnetUpsampleBlockaD # noqa F405 lowerCamelCase = '''up''' @property def _lowerCAmelCase ( self ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =[0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = CrossAttnUpBlockaD # noqa F405 lowerCamelCase = '''up''' @property def _lowerCAmelCase ( self ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase =32 return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =[-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = SimpleCrossAttnUpBlockaD # noqa F405 lowerCamelCase = '''up''' @property def _lowerCAmelCase ( self ) -> Optional[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase , include_encoder_hidden_states=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase =32 return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =[0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = AttnUpBlockaD # noqa F405 lowerCamelCase = '''up''' @property def _lowerCAmelCase ( self ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =[0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = SkipUpBlockaD # noqa F405 lowerCamelCase = '''up''' @property def _lowerCAmelCase ( self ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =[-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = AttnSkipUpBlockaD # noqa F405 lowerCamelCase = '''up''' @property def _lowerCAmelCase ( self ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =[0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = UpDecoderBlockaD # noqa F405 lowerCamelCase = '''up''' @property def _lowerCAmelCase ( self ) -> Any: return super().get_dummy_input(include_temb=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase ={"""in_channels""": 32, """out_channels""": 32} _lowerCAmelCase =self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =[0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(__UpperCAmelCase ) class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = AttnUpDecoderBlockaD # noqa F405 lowerCamelCase = '''up''' @property def _lowerCAmelCase ( self ) -> Tuple: return super().get_dummy_input(include_temb=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase ={"""in_channels""": 32, """out_channels""": 32} _lowerCAmelCase =self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =[0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(__UpperCAmelCase )
357
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None lowerCamelCase = 1 lowerCamelCase = None lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
341
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """width_multiplier""" ) ) class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase="swish" , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=None , __UpperCAmelCase=0.2_5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , ) -> Optional[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =make_divisible(5_12 * width_multiplier , divisor=8 ) _lowerCAmelCase =hidden_act _lowerCAmelCase =conv_kernel_size _lowerCAmelCase =output_stride _lowerCAmelCase =classifier_dropout_prob _lowerCAmelCase =use_labels _lowerCAmelCase =is_training _lowerCAmelCase =num_labels _lowerCAmelCase =initializer_range _lowerCAmelCase =scope _lowerCAmelCase =width_multiplier _lowerCAmelCase =ffn_dropout _lowerCAmelCase =attn_dropout def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self ) -> str: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =MobileViTVaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _lowerCAmelCase =model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =MobileViTVaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =MobileViTVaForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _lowerCAmelCase =model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =MobileViTVaModelTester(self ) _lowerCAmelCase =MobileViTVaConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def _lowerCAmelCase ( self ) -> str: pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def _lowerCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def _lowerCAmelCase ( self ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def _lowerCAmelCase ( self ) -> List[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCAmelCase ( self ) -> str: pass def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(__UpperCAmelCase ) _lowerCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> str: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowerCAmelCase =model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase =model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _lowerCAmelCase =outputs.hidden_states _lowerCAmelCase =5 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowerCAmelCase =2 for i in range(len(__UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =MobileViTVaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _lowerCamelCase() -> Optional[Any]: _lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ) -> Tuple: return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __UpperCAmelCase ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**__UpperCAmelCase ) # verify the logits _lowerCAmelCase =torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _lowerCAmelCase =torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) _lowerCAmelCase =model.to(__UpperCAmelCase ) _lowerCAmelCase =MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**__UpperCAmelCase ) _lowerCAmelCase =outputs.logits # verify the logits _lowerCAmelCase =torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCAmelCase ) _lowerCAmelCase =torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) _lowerCAmelCase =model.to(__UpperCAmelCase ) _lowerCAmelCase =MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**__UpperCAmelCase ) _lowerCAmelCase =outputs.logits.detach().cpu() _lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(50, 60)] ) _lowerCAmelCase =torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) _lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) _lowerCAmelCase =torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
358
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowerCamelCase() -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
341
0
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
359
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple: _lowerCAmelCase =compute_bleu( reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
341
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self ) -> int: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def __UpperCAmelCase ( self ) -> str: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self ) -> str: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) _lowerCAmelCase =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__UpperCAmelCase ) @property def __UpperCAmelCase ( self ) -> Optional[Any]: def extract(*__UpperCAmelCase , **__UpperCAmelCase ): class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Optional[Any]: _lowerCAmelCase =torch.ones([0] ) def __UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: self.pixel_values.to(__UpperCAmelCase ) return self return Out() return extract def __UpperCAmelCase ( self ) -> str: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet _lowerCAmelCase =PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowerCAmelCase =77 _lowerCAmelCase =self.dummy_image.to(__UpperCAmelCase ) _lowerCAmelCase =init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowerCAmelCase =AltDiffusionImgaImgPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCAmelCase ) _lowerCAmelCase =alt_pipe.to(__UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =alt_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__UpperCAmelCase , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =alt_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase =np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __UpperCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet _lowerCAmelCase =PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowerCAmelCase =77 _lowerCAmelCase =self.dummy_image.to(__UpperCAmelCase ) # put models in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =vae.half() _lowerCAmelCase =bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =AltDiffusionImgaImgPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCAmelCase ) _lowerCAmelCase =alt_pipe.to(__UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =alt_pipe( [prompt] , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , image=__UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __UpperCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCAmelCase =init_image.resize((7_60, 5_04) ) _lowerCAmelCase ="""BAAI/AltDiffusion""" _lowerCAmelCase =AltDiffusionImgaImgPipeline.from_pretrained( __UpperCAmelCase , safety_checker=__UpperCAmelCase , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""A fantasy landscape, trending on artstation""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] _lowerCAmelCase =image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowerCAmelCase =np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase =init_image.resize((7_68, 5_12) ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) _lowerCAmelCase ="""BAAI/AltDiffusion""" _lowerCAmelCase =AltDiffusionImgaImgPipeline.from_pretrained( __UpperCAmelCase , safety_checker=__UpperCAmelCase , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""A fantasy landscape, trending on artstation""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
360
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowerCamelCase(__UpperCamelCase ) -> List[str]: if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) __A = parser.parse_args() __A = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
341
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: # Construct model if gpta_config_file == "": _lowerCAmelCase =GPTaConfig() else: _lowerCAmelCase =GPTaConfig.from_json_file(__UpperCamelCase ) _lowerCAmelCase =GPTaModel(__UpperCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model _lowerCAmelCase =pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _lowerCAmelCase =pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __UpperCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __A = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __A = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = ['''image_processor''', '''tokenizer'''] lowerCamelCase = '''AutoImageProcessor''' lowerCamelCase = '''AutoTokenizer''' def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[int]: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCAmelCase , ) _lowerCAmelCase =kwargs.pop("""feature_extractor""" ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =self.image_processor _lowerCAmelCase =False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) _lowerCAmelCase =kwargs.pop("""images""" , __UpperCAmelCase ) _lowerCAmelCase =kwargs.pop("""text""" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: _lowerCAmelCase =args[0] _lowerCAmelCase =args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _lowerCAmelCase =self.image_processor(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: _lowerCAmelCase =self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCAmelCase =encodings["""input_ids"""] return inputs def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @contextmanager def _lowerCAmelCase ( self ) -> int: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) _lowerCAmelCase =True _lowerCAmelCase =self.tokenizer yield _lowerCAmelCase =self.image_processor _lowerCAmelCase =False def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=None ) -> Tuple: if added_vocab is None: _lowerCAmelCase =self.tokenizer.get_added_vocab() _lowerCAmelCase ={} while tokens: _lowerCAmelCase =re.search(r"""<s_(.*?)>""" , __UpperCAmelCase , re.IGNORECASE ) if start_token is None: break _lowerCAmelCase =start_token.group(1 ) _lowerCAmelCase =re.search(rf'''</s_{key}>''' , __UpperCAmelCase , re.IGNORECASE ) _lowerCAmelCase =start_token.group() if end_token is None: _lowerCAmelCase =tokens.replace(__UpperCAmelCase , """""" ) else: _lowerCAmelCase =end_token.group() _lowerCAmelCase =re.escape(__UpperCAmelCase ) _lowerCAmelCase =re.escape(__UpperCAmelCase ) _lowerCAmelCase =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , __UpperCAmelCase , re.IGNORECASE ) if content is not None: _lowerCAmelCase =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _lowerCAmelCase =self.tokenajson(__UpperCAmelCase , is_inner_value=__UpperCAmelCase , added_vocab=__UpperCAmelCase ) if value: if len(__UpperCAmelCase ) == 1: _lowerCAmelCase =value[0] _lowerCAmelCase =value else: # leaf nodes _lowerCAmelCase =[] for leaf in content.split(r"""<sep/>""" ): _lowerCAmelCase =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _lowerCAmelCase =leaf[1:-2] # for categorical special tokens output[key].append(__UpperCAmelCase ) if len(output[key] ) == 1: _lowerCAmelCase =output[key][0] _lowerCAmelCase =tokens[tokens.find(__UpperCAmelCase ) + len(__UpperCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCAmelCase , added_vocab=__UpperCAmelCase ) if len(__UpperCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _lowerCAmelCase ( self ) -> str: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCAmelCase , ) return self.image_processor_class @property def _lowerCAmelCase ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCAmelCase , ) return self.image_processor
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =str(id_ ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =[] _lowerCAmelCase ={} # {vertex:distance} def __lt__( self , __UpperCAmelCase ) -> Union[str, Any]: return self.key < other.key def __repr__( self ) -> Any: return self.id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: self.neighbors.append(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: _lowerCAmelCase =weight def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> list: _lowerCAmelCase =[] for u in graph: _lowerCAmelCase =math.inf _lowerCAmelCase =None _lowerCAmelCase =0 _lowerCAmelCase =graph[:] while q: _lowerCAmelCase =min(__UpperCamelCase ) q.remove(__UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase =u _lowerCAmelCase =u.edges[v.id] for i in range(1 , len(__UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Iterator[tuple]: for u in graph: _lowerCAmelCase =math.inf _lowerCAmelCase =None _lowerCAmelCase =0 _lowerCAmelCase =list(__UpperCamelCase ) hq.heapify(__UpperCamelCase ) while h: _lowerCAmelCase =hq.heappop(__UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase =u _lowerCAmelCase =u.edges[v.id] hq.heapify(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowerCamelCase() -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __A = datasets.logging.get_logger(__name__) __A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' __A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' __A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict: _lowerCAmelCase ={doc: key_lines} _lowerCAmelCase ={doc: sys_lines} _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) if remove_nested: _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: _lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 for name, metric in metrics: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: _lowerCAmelCase =(conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def _lowerCamelCase(__UpperCamelCase ) -> Tuple: _lowerCAmelCase =False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: _lowerCAmelCase =line.split()[5] if not parse_col == "-": _lowerCAmelCase =True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]: _lowerCAmelCase =[ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: _lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCAmelCase =evaluate( key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , ) return score
341
0
"""simple docstring""" import math import sys def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase ="""""" try: with open(__UpperCamelCase , """rb""" ) as binary_file: _lowerCAmelCase =binary_file.read() for dat in data: _lowerCAmelCase =F'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase ={"""0""": """0""", """1""": """1"""} _lowerCAmelCase , _lowerCAmelCase ="""""", """""" _lowerCAmelCase =len(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCAmelCase =lexicon[curr_string] result += last_match_id _lowerCAmelCase =last_match_id + """0""" if math.loga(__UpperCamelCase ).is_integer(): _lowerCAmelCase ={} for curr_key in list(__UpperCamelCase ): _lowerCAmelCase =lexicon.pop(__UpperCamelCase ) _lowerCAmelCase =new_lex _lowerCAmelCase =last_match_id + """1""" index += 1 _lowerCAmelCase ="""""" return result def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None: _lowerCAmelCase =8 try: with open(__UpperCamelCase , """wb""" ) as opened_file: _lowerCAmelCase =[ to_write[i : i + byte_length] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__UpperCamelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase =0 for letter in data_bits: if letter == "1": break counter += 1 _lowerCAmelCase =data_bits[counter:] _lowerCAmelCase =data_bits[counter + 1 :] return data_bits def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None: _lowerCAmelCase =read_file_binary(__UpperCamelCase ) _lowerCAmelCase =remove_prefix(__UpperCamelCase ) _lowerCAmelCase =decompress_data(__UpperCamelCase ) write_file_binary(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
364
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = XGLMConfig lowerCamelCase = {} lowerCamelCase = '''gelu''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =ffn_dim _lowerCAmelCase =activation_function _lowerCAmelCase =activation_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =None _lowerCAmelCase =0 _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Dict: return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =self.get_config() _lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self ) -> str: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={ """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =TFXGLMModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 ) def _lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _lowerCAmelCase ( self ) -> Union[str, Any]: super().test_resize_token_embeddings() @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) _lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) _lowerCAmelCase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] ) _lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase ="""left""" # use different length sentences to test batching _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] _lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase ) _lowerCAmelCase =inputs["""input_ids"""] _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
341
0
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """num_attention_heads""" ) ) class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=16 , __UpperCAmelCase=[1_28, 2_56, 3_84] , __UpperCAmelCase=[4, 6, 8] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=[16, 16, 16] , __UpperCAmelCase=0 , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) -> List[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =num_channels _lowerCAmelCase =kernel_size _lowerCAmelCase =stride _lowerCAmelCase =padding _lowerCAmelCase =hidden_sizes _lowerCAmelCase =num_attention_heads _lowerCAmelCase =depths _lowerCAmelCase =key_dim _lowerCAmelCase =drop_path_rate _lowerCAmelCase =patch_size _lowerCAmelCase =attention_ratio _lowerCAmelCase =mlp_ratio _lowerCAmelCase =initializer_range _lowerCAmelCase =[ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =num_labels _lowerCAmelCase =initializer_range def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ) -> str: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _lowerCAmelCase =LevitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =(self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase =image_size[0], image_size[1] for _ in range(4 ): _lowerCAmelCase =floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _lowerCAmelCase =floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =self.num_labels _lowerCAmelCase =LevitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =LevitModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def _lowerCAmelCase ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self ) -> List[str]: return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def _lowerCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def _lowerCAmelCase ( self ) -> str: pass @unittest.skip(reason="""Levit does not output attentions""" ) def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(__UpperCAmelCase ) _lowerCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowerCAmelCase =model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase =model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _lowerCAmelCase =outputs.hidden_states _lowerCAmelCase =len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) _lowerCAmelCase =(self.model_tester.image_size, self.model_tester.image_size) _lowerCAmelCase , _lowerCAmelCase =image_size[0], image_size[1] for _ in range(4 ): _lowerCAmelCase =floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _lowerCAmelCase =floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCAmelCase ( self ) -> str: pass def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: _lowerCAmelCase =super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Any: if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _lowerCAmelCase =model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() _lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) _lowerCAmelCase =model(**__UpperCAmelCase ).loss loss.backward() def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase =False _lowerCAmelCase =True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _lowerCAmelCase =model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() _lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) _lowerCAmelCase =model(**__UpperCAmelCase ).loss loss.backward() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =[ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type['title']}''' ): _lowerCAmelCase =problem_type["""title"""] _lowerCAmelCase =problem_type["""num_labels"""] _lowerCAmelCase =model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() _lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if problem_type["num_labels"] > 1: _lowerCAmelCase =inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) _lowerCAmelCase =inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCAmelCase ) as warning_list: _lowerCAmelCase =model(**__UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def _lowerCAmelCase ( self ) -> str: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =LevitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _lowerCamelCase() -> Dict: _lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ) -> Optional[Any]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCAmelCase ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**__UpperCAmelCase ) # verify the logits _lowerCAmelCase =torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _lowerCAmelCase =torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
365
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __A = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __A = 0 __A = 1 __A = 2 __A = 3 __A = 4 class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = '''left''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =3 _lowerCAmelCase =do_lower_case _lowerCAmelCase =remove_space _lowerCAmelCase =keep_accents _lowerCAmelCase =vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> str: return len(self.sp_model ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None return state def __setstate__( self , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if self.remove_space: _lowerCAmelCase =""" """.join(inputs.strip().split() ) else: _lowerCAmelCase =inputs _lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase ) _lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase =outputs.lower() return outputs def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =self.preprocess_text(__UpperCAmelCase ) _lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _lowerCAmelCase =[] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase =cur_pieces[1:] else: _lowerCAmelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: return self.sp_model.PieceToId(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str: _lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase ) _lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase =[] _lowerCAmelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _lowerCAmelCase =[] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase ="""""".join(__UpperCAmelCase ) _lowerCAmelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
341
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __A = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __A = 0 __A = 1 __A = 2 __A = 3 __A = 4 class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = '''left''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =3 _lowerCAmelCase =do_lower_case _lowerCAmelCase =remove_space _lowerCAmelCase =keep_accents _lowerCAmelCase =vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> str: return len(self.sp_model ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None return state def __setstate__( self , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if self.remove_space: _lowerCAmelCase =""" """.join(inputs.strip().split() ) else: _lowerCAmelCase =inputs _lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase ) _lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase =outputs.lower() return outputs def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =self.preprocess_text(__UpperCAmelCase ) _lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _lowerCAmelCase =[] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase =cur_pieces[1:] else: _lowerCAmelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: return self.sp_model.PieceToId(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str: _lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase ) _lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase =[] _lowerCAmelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _lowerCAmelCase =[] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase ="""""".join(__UpperCAmelCase ) _lowerCAmelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
366
"""simple docstring""" from __future__ import annotations def _lowerCamelCase(__UpperCamelCase ) -> bool: _lowerCAmelCase =str(__UpperCamelCase ) return n == n[::-1] def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str: _lowerCAmelCase =0 for i in range(1 , __UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
341
0
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = XLMProphetNetTokenizer lowerCamelCase = False lowerCamelCase = True def _lowerCAmelCase ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase =XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""[PAD]""" _lowerCAmelCase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__UpperCAmelCase ) , 10_12 ) def _lowerCAmelCase ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _lowerCAmelCase =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase =tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def _lowerCAmelCase ( self ) -> int: return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase ="""Hello World!""" _lowerCAmelCase =[3_53_89, 66_72, 49, 2] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def _lowerCAmelCase ( self ) -> Any: # fmt: off _lowerCAmelCase ={"""input_ids""": [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
367
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''llama''' lowerCamelCase = ['''past_key_values'''] def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase =num_attention_heads _lowerCAmelCase =num_key_value_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =initializer_range _lowerCAmelCase =rms_norm_eps _lowerCAmelCase =pretraining_tp _lowerCAmelCase =use_cache _lowerCAmelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) _lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase ) _lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
341
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) def _lowerCamelCase(__UpperCamelCase ) -> List[List[ImageInput]]: if isinstance(__UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCamelCase ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = ['''pixel_values'''] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =size if size is not None else {"""shortest_edge""": 2_24} _lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _lowerCAmelCase =crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _lowerCAmelCase =get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =do_center_crop _lowerCAmelCase =crop_size _lowerCAmelCase =resample _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: _lowerCAmelCase =get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: _lowerCAmelCase =(size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _lowerCAmelCase =get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase =to_numpy_array(__UpperCAmelCase ) if do_resize: _lowerCAmelCase =self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: _lowerCAmelCase =self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: _lowerCAmelCase =self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) if do_normalize: _lowerCAmelCase =self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) _lowerCAmelCase =to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =resample if resample is not None else self.resample _lowerCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase =image_mean if image_mean is not None else self.image_mean _lowerCAmelCase =image_std if image_std is not None else self.image_std _lowerCAmelCase =size if size is not None else self.size _lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _lowerCAmelCase =crop_size if crop_size is not None else self.crop_size _lowerCAmelCase =get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) _lowerCAmelCase =make_batched(__UpperCAmelCase ) _lowerCAmelCase =[ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] _lowerCAmelCase ={"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
368
"""simple docstring""" import warnings from .generation import TFGenerationMixin class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
341
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=False ) -> int: try: _lowerCAmelCase =os.environ[key] except KeyError: # KEY isn't set, default to `default`. _lowerCAmelCase =default else: # KEY is set, convert it to True or False. try: _lowerCAmelCase =strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value __A = parse_flag_from_env('RUN_SLOW', default=False) def _lowerCamelCase(__UpperCamelCase ) -> Any: return unittest.skip("""Test was skipped""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Dict: return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]: return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> List[str]: return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Tuple: return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> str: return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Dict: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Tuple: return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Tuple: return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> List[str]: return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Dict: return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> str: return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Tuple: return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]: return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[Any]: if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version(""">=""" , __UpperCamelCase ) , F'''test requires torch version >= {version}''' )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Tuple: return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Dict: return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase ) -> Optional[int]: return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__UpperCamelCase ) __A = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _lowerCamelCase(__UpperCamelCase ) -> List[str]: return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__UpperCamelCase ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase = True @classmethod def _lowerCAmelCase ( cls ) -> Any: _lowerCAmelCase =tempfile.mkdtemp() @classmethod def _lowerCAmelCase ( cls ) -> Optional[int]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _lowerCAmelCase ( self ) -> List[Any]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__UpperCAmelCase ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: _lowerCAmelCase =mocks if isinstance(__UpperCAmelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: _lowerCAmelCase =AcceleratorState() _lowerCAmelCase =tensor[None].clone().to(state.device ) _lowerCAmelCase =gather(__UpperCamelCase ).cpu() _lowerCAmelCase =tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _lowerCAmelCase =returncode _lowerCAmelCase =stdout _lowerCAmelCase =stderr async def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: while True: _lowerCAmelCase =await stream.readline() if line: callback(__UpperCamelCase ) else: break async def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=False ) -> _RunOutput: if echo: print("""\nRunning: """ , """ """.join(__UpperCamelCase ) ) _lowerCAmelCase =await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _lowerCAmelCase =[] _lowerCAmelCase =[] def tee(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="" ): _lowerCAmelCase =line.decode("""utf-8""" ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=180 , __UpperCamelCase=False , __UpperCamelCase=True ) -> _RunOutput: _lowerCAmelCase =asyncio.get_event_loop() _lowerCAmelCase =loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) _lowerCAmelCase =""" """.join(__UpperCamelCase ) if result.returncode > 0: _lowerCAmelCase ="""\n""".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' pass def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=False ) -> int: try: _lowerCAmelCase =subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , """decode""" ): _lowerCAmelCase =output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
369
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
341
0
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __A = input('Enter image url: ').strip() print(F"""Downloading image from {url} ...""") __A = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image __A = soup.find('meta', {'property': 'og:image'})['content'] __A = requests.get(image_url).content __A = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
370
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase = JukeboxTokenizer lowerCamelCase = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _lowerCAmelCase ( self ) -> str: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowerCAmelCase ( self ) -> Any: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
341
0
"""simple docstring""" from scipy.stats import spearmanr import datasets __A = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __A = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __A = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: _lowerCAmelCase =spearmanr(__UpperCAmelCase , __UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
371
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =monolingual_vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase ={} _lowerCAmelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =cnt cnt += 1 with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase =line.strip().split()[0] _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase =len(self.fairseq_tokens_to_ids ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None _lowerCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
341
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Any = PegasusTokenizer lowerCamelCase__: Optional[int] = PegasusTokenizerFast lowerCamelCase__: Optional[Any] = True lowerCamelCase__: Dict = True def _lowerCamelCase ( self: Union[str, Any] ) -> str: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Any = PegasusTokenizer(__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Dict ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def _lowerCamelCase ( self: List[str] , **__lowerCamelCase: Tuple ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] ) -> List[str]: return ("This is a test", "This is a test") def _lowerCamelCase ( self: List[str] ) -> str: __UpperCAmelCase : Dict = "</s>" __UpperCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Any: __UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(__lowerCamelCase ) , 11_03 ) def _lowerCamelCase ( self: Optional[int] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : int = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) __UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] __UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __UpperCAmelCase : Tuple = "<mask_1> To ensure a <mask_2> flow of bank resolutions." __UpperCAmelCase : Optional[int] = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __UpperCAmelCase : Optional[int] = tokenizer([raw_input_str] , return_tensors=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 __UpperCAmelCase : Any = "To ensure a smooth flow of bank resolutions." __UpperCAmelCase : str = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __UpperCAmelCase : Tuple = tokenizer([raw_input_str] , return_tensors=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowerCamelCase ( self: int ) -> Dict: __UpperCAmelCase : Tuple = ["This is going to be way too long." * 1_50, "short example"] __UpperCAmelCase : Any = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : Dict = self._large_tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) __UpperCAmelCase : Any = self._large_tokenizer( text_target=__lowerCamelCase , max_length=5 , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCamelCase ) == 2 # input_ids, attention_mask. @slow def _lowerCamelCase ( self: int ) -> List[str]: # fmt: off __UpperCAmelCase : str = {"input_ids": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = PegasusTokenizer lowerCamelCase__: Union[str, Any] = PegasusTokenizerFast lowerCamelCase__: List[Any] = True lowerCamelCase__: Optional[Any] = True def _lowerCamelCase ( self: Optional[int] ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Optional[Any] = PegasusTokenizer(__lowerCamelCase , offset=0 , mask_token_sent=__lowerCamelCase , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: List[Any] ) -> Tuple: return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def _lowerCamelCase ( self: Union[str, Any] , **__lowerCamelCase: Union[str, Any] ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Optional[Any] ) -> Optional[Any]: return ("This is a test", "This is a test") def _lowerCamelCase ( self: Tuple ) -> str: __UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : str = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) __UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] __UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Tuple = ["This is going to be way too long." * 10_00, "short example"] __UpperCAmelCase : Union[str, Any] = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : Tuple = self._large_tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) __UpperCAmelCase : int = self._large_tokenizer( text_target=__lowerCamelCase , max_length=5 , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCamelCase ) == 2 # input_ids, attention_mask. def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[int] = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) __UpperCAmelCase : Any = self._large_tokenizer(__lowerCamelCase ).input_ids self.assertListEqual( __lowerCamelCase , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
342
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
1
from __future__ import annotations def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> float: if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, ) -> float: if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, ) -> float: if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( snake_case__, nominal_annual_percentage_rate / 365, number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
342
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
from math import log from scipy.constants import Boltzmann, physical_constants _snake_case = 300 # TEMPERATURE (unit = K) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, ) -> float: if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
342
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
1
from __future__ import annotations class _snake_case : def __init__( self: int , __lowerCamelCase: int = 0 ) -> Any: __UpperCAmelCase : List[Any] = key def _lowerCamelCase ( self: Any , __lowerCamelCase: str , __lowerCamelCase: int ) -> list[str]: assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(__lowerCamelCase ) ^ key ) for ch in content] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: int ) -> list[str]: assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(__lowerCamelCase ) ^ key ) for ch in content] def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: int = 0 ) -> str: assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __UpperCAmelCase : List[Any] = "" for ch in content: ans += chr(ord(__lowerCamelCase ) ^ key ) return ans def _lowerCamelCase ( self: str , __lowerCamelCase: str , __lowerCamelCase: int = 0 ) -> str: assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : int = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __UpperCAmelCase : int = "" for ch in content: ans += chr(ord(__lowerCamelCase ) ^ key ) return ans def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: int = 0 ) -> bool: assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) try: with open(__lowerCamelCase ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__lowerCamelCase , __lowerCamelCase ) ) except OSError: return False return True def _lowerCamelCase ( self: str , __lowerCamelCase: str , __lowerCamelCase: int ) -> bool: assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) try: with open(__lowerCamelCase ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__lowerCamelCase , __lowerCamelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
342
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> List[str]: __UpperCAmelCase : List[str] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __UpperCAmelCase : Optional[int] = 128 elif "12-12" in model_name: __UpperCAmelCase : int = 12 __UpperCAmelCase : int = 12 elif "14-14" in model_name: __UpperCAmelCase : Dict = 14 __UpperCAmelCase : Dict = 14 elif "16-16" in model_name: __UpperCAmelCase : Optional[Any] = 16 __UpperCAmelCase : List[str] = 16 else: raise ValueError("Model not supported" ) __UpperCAmelCase : Tuple = "huggingface/label-files" if "speech-commands" in model_name: __UpperCAmelCase : List[Any] = 35 __UpperCAmelCase : Optional[int] = "speech-commands-v2-id2label.json" else: __UpperCAmelCase : Tuple = 527 __UpperCAmelCase : str = "audioset-id2label.json" __UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Any = idalabel __UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__ ) -> Dict: if "module.v" in name: __UpperCAmelCase : Tuple = name.replace("module.v", "audio_spectrogram_transformer" ) if "cls_token" in name: __UpperCAmelCase : Optional[int] = name.replace("cls_token", "embeddings.cls_token" ) if "dist_token" in name: __UpperCAmelCase : Any = name.replace("dist_token", "embeddings.distillation_token" ) if "pos_embed" in name: __UpperCAmelCase : Any = name.replace("pos_embed", "embeddings.position_embeddings" ) if "patch_embed.proj" in name: __UpperCAmelCase : int = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: __UpperCAmelCase : Tuple = name.replace("blocks", "encoder.layer" ) if "attn.proj" in name: __UpperCAmelCase : Dict = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: __UpperCAmelCase : int = name.replace("attn", "attention.self" ) if "norm1" in name: __UpperCAmelCase : Any = name.replace("norm1", "layernorm_before" ) if "norm2" in name: __UpperCAmelCase : Dict = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: __UpperCAmelCase : int = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: __UpperCAmelCase : Any = name.replace("mlp.fc2", "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __UpperCAmelCase : str = name.replace("audio_spectrogram_transformer.norm", "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: __UpperCAmelCase : Tuple = name.replace("module.mlp_head.0", "classifier.layernorm" ) if "module.mlp_head.1" in name: __UpperCAmelCase : List[str] = name.replace("module.mlp_head.1", "classifier.dense" ) return name def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Any = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __UpperCAmelCase : Any = key.split("." ) __UpperCAmelCase : Dict = int(key_split[3] ) __UpperCAmelCase : str = config.hidden_size if "weight" in key: __UpperCAmelCase : Tuple = val[:dim, :] __UpperCAmelCase : int = val[dim : dim * 2, :] __UpperCAmelCase : Optional[Any] = val[-dim:, :] else: __UpperCAmelCase : Optional[int] = val[:dim] __UpperCAmelCase : int = val[dim : dim * 2] __UpperCAmelCase : Any = val[-dim:] else: __UpperCAmelCase : List[Any] = val return orig_state_dict def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[Any] = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(snake_case__, snake_case__ ) @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = get_audio_spectrogram_transformer_config(snake_case__ ) __UpperCAmelCase : Optional[int] = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict __UpperCAmelCase : str = model_name_to_url[model_name] __UpperCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" ) # remove some keys remove_keys(snake_case__ ) # rename some keys __UpperCAmelCase : Optional[Any] = convert_state_dict(snake_case__, snake_case__ ) # load 🤗 model __UpperCAmelCase : Union[str, Any] = ASTForAudioClassification(snake_case__ ) model.eval() model.load_state_dict(snake_case__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __UpperCAmelCase : List[Any] = -4.267_7393 if "speech-commands" not in model_name else -6.84_5978 __UpperCAmelCase : Optional[Any] = 4.568_9974 if "speech-commands" not in model_name else 5.565_4526 __UpperCAmelCase : Optional[Any] = 1024 if "speech-commands" not in model_name else 128 __UpperCAmelCase : int = ASTFeatureExtractor(mean=snake_case__, std=snake_case__, max_length=snake_case__ ) if "speech-commands" in model_name: __UpperCAmelCase : str = load_dataset("speech_commands", "v0.02", split="validation" ) __UpperCAmelCase : List[str] = dataset[0]["audio"]["array"] else: __UpperCAmelCase : Dict = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint", filename="sample_audio.flac", repo_type="dataset", ) __UpperCAmelCase , __UpperCAmelCase : List[str] = torchaudio.load(snake_case__ ) __UpperCAmelCase : Dict = waveform.squeeze().numpy() __UpperCAmelCase : Tuple = feature_extractor(snake_case__, sampling_rate=1_6000, return_tensors="pt" ) # forward pass __UpperCAmelCase : Tuple = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __UpperCAmelCase : List[Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __UpperCAmelCase : Optional[Any] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __UpperCAmelCase : Union[str, Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __UpperCAmelCase : Any = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __UpperCAmelCase : Any = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __UpperCAmelCase : List[Any] = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __UpperCAmelCase : Union[str, Any] = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(snake_case__ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
1
import math def _UpperCamelCase ( snake_case__ ) -> bool: assert isinstance(snake_case__, snake_case__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __UpperCAmelCase : Optional[Any] = range(3, int(math.sqrt(snake_case__ ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def _UpperCamelCase ( snake_case__, snake_case__=1, **snake_case__ ) -> List[Any]: __UpperCAmelCase : List[str] = factor * value __UpperCAmelCase : Dict = value while not is_prime(snake_case__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **snake_case__ ) return value
342
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _snake_case = '''src/transformers''' _snake_case = '''docs/source/en''' _snake_case = '''.''' def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]: with open(snake_case__, "r", encoding="utf-8", newline="\n" ) as f: __UpperCAmelCase : List[Any] = f.readlines() # Find the start prompt. __UpperCAmelCase : Optional[int] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 __UpperCAmelCase : List[str] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _snake_case = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') _snake_case = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) def _UpperCamelCase ( snake_case__ ) -> List[str]: __UpperCAmelCase : List[Any] = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", snake_case__ ) return [m.group(0 ) for m in matches] def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Union[str, Any] = 2 if text == "✅" or text == "❌" else len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = (width - text_length) // 2 __UpperCAmelCase : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _UpperCamelCase ( ) -> Union[str, Any]: __UpperCAmelCase : List[str] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase : Dict = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __UpperCAmelCase : Tuple = {name: config.replace("Config", "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __UpperCAmelCase : List[Any] = collections.defaultdict(snake_case__ ) __UpperCAmelCase : List[str] = collections.defaultdict(snake_case__ ) __UpperCAmelCase : Tuple = collections.defaultdict(snake_case__ ) __UpperCAmelCase : int = collections.defaultdict(snake_case__ ) __UpperCAmelCase : Union[str, Any] = collections.defaultdict(snake_case__ ) # Let's lookup through all transformers object (once). for attr_name in dir(snake_case__ ): __UpperCAmelCase : Optional[Any] = None if attr_name.endswith("Tokenizer" ): __UpperCAmelCase : Optional[Any] = slow_tokenizers __UpperCAmelCase : Optional[Any] = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): __UpperCAmelCase : Tuple = fast_tokenizers __UpperCAmelCase : Optional[Any] = attr_name[:-13] elif _re_tf_models.match(snake_case__ ) is not None: __UpperCAmelCase : Dict = tf_models __UpperCAmelCase : str = _re_tf_models.match(snake_case__ ).groups()[0] elif _re_flax_models.match(snake_case__ ) is not None: __UpperCAmelCase : Union[str, Any] = flax_models __UpperCAmelCase : Any = _re_flax_models.match(snake_case__ ).groups()[0] elif _re_pt_models.match(snake_case__ ) is not None: __UpperCAmelCase : List[Any] = pt_models __UpperCAmelCase : Optional[Any] = _re_pt_models.match(snake_case__ ).groups()[0] if lookup_dict is not None: while len(snake_case__ ) > 0: if attr_name in model_name_to_prefix.values(): __UpperCAmelCase : Dict = True break # Try again after removing the last word in the name __UpperCAmelCase : List[Any] = "".join(camel_case_split(snake_case__ )[:-1] ) # Let's build that table! __UpperCAmelCase : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __UpperCAmelCase : Tuple = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __UpperCAmelCase : Dict = [len(snake_case__ ) + 2 for c in columns] __UpperCAmelCase : List[str] = max([len(snake_case__ ) for name in model_names] ) + 2 # Build the table per se __UpperCAmelCase : int = "|" + "|".join([_center_text(snake_case__, snake_case__ ) for c, w in zip(snake_case__, snake_case__ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" __UpperCAmelCase : str = {True: "✅", False: "❌"} for name in model_names: __UpperCAmelCase : Dict = model_name_to_prefix[name] __UpperCAmelCase : Optional[int] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(snake_case__, snake_case__ ) for l, w in zip(snake_case__, snake_case__ )] ) + "|\n" return table def _UpperCamelCase ( snake_case__=False ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = _find_text_in_file( filename=os.path.join(snake_case__, "index.md" ), start_prompt="<!--This table is updated automatically from the auto modules", end_prompt="<!-- End table-->", ) __UpperCAmelCase : int = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(snake_case__, "index.md" ), "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
342
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = '''RegNetConfig''' # Base docstring _snake_case = '''facebook/regnet-y-040''' _snake_case = [1, 1088, 7, 7] # Image classification docstring _snake_case = '''facebook/regnet-y-040''' _snake_case = '''tabby, tabby cat''' _snake_case = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _snake_case ( tf.keras.layers.Layer ): def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: int = 3 , __lowerCamelCase: int = 1 , __lowerCamelCase: int = 1 , __lowerCamelCase: Optional[str] = "relu" , **__lowerCamelCase: Any , ) -> Dict: super().__init__(**__lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCAmelCase : Union[str, Any] = tf.keras.layers.ConvaD( filters=__lowerCamelCase , kernel_size=__lowerCamelCase , strides=__lowerCamelCase , padding="VALID" , groups=__lowerCamelCase , use_bias=__lowerCamelCase , name="convolution" , ) __UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) __UpperCAmelCase : List[Any] = ACTaFN[activation] if activation is not None else tf.identity def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] ) -> Union[str, Any]: __UpperCAmelCase : int = self.convolution(self.padding(__lowerCamelCase ) ) __UpperCAmelCase : str = self.normalization(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = self.activation(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: str , __lowerCamelCase: RegNetConfig , **__lowerCamelCase: Union[str, Any] ) -> Union[str, Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Tuple = config.num_channels __UpperCAmelCase : List[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Dict ) -> int: __UpperCAmelCase : str = shape_list(__lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCAmelCase : Dict = tf.transpose(__lowerCamelCase , perm=(0, 2, 3, 1) ) __UpperCAmelCase : Optional[int] = self.embedder(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: Dict , __lowerCamelCase: int , __lowerCamelCase: int = 2 , **__lowerCamelCase: List[str] ) -> Dict: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Any = tf.keras.layers.ConvaD( filters=__lowerCamelCase , kernel_size=1 , strides=__lowerCamelCase , use_bias=__lowerCamelCase , name="convolution" ) __UpperCAmelCase : Union[str, Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: tf.Tensor , __lowerCamelCase: bool = False ) -> tf.Tensor: return self.normalization(self.convolution(__lowerCamelCase ) , training=__lowerCamelCase ) class _snake_case ( tf.keras.layers.Layer ): def __init__( self: int , __lowerCamelCase: int , __lowerCamelCase: int , **__lowerCamelCase: int ) -> Union[str, Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase , name="pooler" ) __UpperCAmelCase : str = [ tf.keras.layers.ConvaD(filters=__lowerCamelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__lowerCamelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def _lowerCamelCase ( self: Any , __lowerCamelCase: str ) -> Tuple: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCAmelCase : Any = self.pooler(__lowerCamelCase ) for layer_module in self.attention: __UpperCAmelCase : List[str] = layer_module(__lowerCamelCase ) __UpperCAmelCase : List[str] = hidden_state * pooled return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: Union[str, Any] , __lowerCamelCase: RegNetConfig , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int = 1 , **__lowerCamelCase: int ) -> Union[str, Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Tuple = in_channels != out_channels or stride != 1 __UpperCAmelCase : Dict = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(__lowerCamelCase , stride=__lowerCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCAmelCase : List[str] = [ TFRegNetConvLayer(__lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __lowerCamelCase , stride=__lowerCamelCase , groups=__lowerCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__lowerCamelCase , kernel_size=1 , activation=__lowerCamelCase , name="layer.2" ), ] __UpperCAmelCase : Any = ACTaFN[config.hidden_act] def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Tuple = hidden_state for layer_module in self.layers: __UpperCAmelCase : Dict = layer_module(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = self.shortcut(__lowerCamelCase ) hidden_state += residual __UpperCAmelCase : int = self.activation(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: str , __lowerCamelCase: RegNetConfig , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int = 1 , **__lowerCamelCase: int ) -> Optional[Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : str = in_channels != out_channels or stride != 1 __UpperCAmelCase : Tuple = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Dict = ( TFRegNetShortCut(__lowerCamelCase , stride=__lowerCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) __UpperCAmelCase : Optional[Any] = [ TFRegNetConvLayer(__lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __lowerCamelCase , stride=__lowerCamelCase , groups=__lowerCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__lowerCamelCase , kernel_size=1 , activation=__lowerCamelCase , name="layer.3" ), ] __UpperCAmelCase : List[Any] = ACTaFN[config.hidden_act] def _lowerCamelCase ( self: Any , __lowerCamelCase: str ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = hidden_state for layer_module in self.layers: __UpperCAmelCase : str = layer_module(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.shortcut(__lowerCamelCase ) hidden_state += residual __UpperCAmelCase : List[Any] = self.activation(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: Dict , __lowerCamelCase: RegNetConfig , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int = 2 , __lowerCamelCase: int = 2 , **__lowerCamelCase: Any ) -> Optional[int]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : List[str] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __UpperCAmelCase : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , stride=__lowerCamelCase , name="layers.0" ), *[layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _lowerCamelCase ( self: Dict , __lowerCamelCase: Any ) -> Dict: for layer_module in self.layers: __UpperCAmelCase : Union[str, Any] = layer_module(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: List[str] , __lowerCamelCase: RegNetConfig , **__lowerCamelCase: Optional[Any] ) -> str: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : int = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) __UpperCAmelCase : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , depth=__lowerCamelCase , name=f'''stages.{i+1}''' ) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: tf.Tensor , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True ) -> TFBaseModelOutputWithNoAttention: __UpperCAmelCase : str = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCAmelCase : Dict = hidden_states + (hidden_state,) __UpperCAmelCase : Union[str, Any] = stage_module(__lowerCamelCase ) if output_hidden_states: __UpperCAmelCase : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase , hidden_states=__lowerCamelCase ) @keras_serializable class _snake_case ( tf.keras.layers.Layer ): lowerCamelCase__: int = RegNetConfig def __init__( self: Dict , __lowerCamelCase: Any , **__lowerCamelCase: Union[str, Any] ) -> Optional[int]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Any = config __UpperCAmelCase : List[Any] = TFRegNetEmbeddings(__lowerCamelCase , name="embedder" ) __UpperCAmelCase : Tuple = TFRegNetEncoder(__lowerCamelCase , name="encoder" ) __UpperCAmelCase : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase , name="pooler" ) @unpack_inputs def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: tf.Tensor , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[int] = self.embedder(__lowerCamelCase , training=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = self.encoder( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , training=__lowerCamelCase ) __UpperCAmelCase : Dict = encoder_outputs[0] __UpperCAmelCase : Optional[Any] = self.pooler(__lowerCamelCase ) # Change to NCHW output format have uniformity in the modules __UpperCAmelCase : Optional[int] = tf.transpose(__lowerCamelCase , perm=(0, 3, 1, 2) ) __UpperCAmelCase : int = tf.transpose(__lowerCamelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCAmelCase : Dict = tuple([tf.transpose(__lowerCamelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase , pooler_output=__lowerCamelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _snake_case ( _lowercase ): lowerCamelCase__: Dict = RegNetConfig lowerCamelCase__: List[Any] = "regnet" lowerCamelCase__: Dict = "pixel_values" @property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} _snake_case = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' _snake_case = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _lowercase , ) class _snake_case ( _lowercase ): def __init__( self: List[str] , __lowerCamelCase: RegNetConfig , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Tuple ) -> Tuple: super().__init__(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : str = TFRegNetMainLayer(__lowerCamelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: tf.Tensor , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Dict=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[int] = self.regnet( pixel_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , training=__lowerCamelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _lowercase , ) class _snake_case ( _lowercase , _lowercase ): def __init__( self: Tuple , __lowerCamelCase: RegNetConfig , *__lowerCamelCase: str , **__lowerCamelCase: List[str] ) -> List[str]: super().__init__(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = config.num_labels __UpperCAmelCase : Union[str, Any] = TFRegNetMainLayer(__lowerCamelCase , name="regnet" ) # classification head __UpperCAmelCase : Optional[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: tf.Tensor = None , __lowerCamelCase: tf.Tensor = None , __lowerCamelCase: bool = None , __lowerCamelCase: bool = None , __lowerCamelCase: Union[str, Any]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[int] = self.regnet( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , training=__lowerCamelCase ) __UpperCAmelCase : str = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase : Optional[int] = self.classifier[0](__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = self.classifier[1](__lowerCamelCase ) __UpperCAmelCase : Optional[int] = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase , logits=__lowerCamelCase ) if not return_dict: __UpperCAmelCase : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states )
342
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: List[str] = IFPipeline lowerCamelCase__: Union[str, Any] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} lowerCamelCase__: Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__: Tuple = PipelineTesterMixin.required_optional_params - {"latents"} def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: return self._get_dummy_components() def _lowerCamelCase ( self: Dict , __lowerCamelCase: Dict , __lowerCamelCase: int=0 ) -> Dict: if str(__lowerCamelCase ).startswith("mps" ): __UpperCAmelCase : int = torch.manual_seed(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __UpperCAmelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCamelCase ( self: int ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCamelCase ( self: Tuple ) -> List[str]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCamelCase ( self: str ) -> Dict: self._test_save_load_local() def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCamelCase ( self: Optional[int] ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self: str ) -> Optional[int]: # if __UpperCAmelCase : int = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) __UpperCAmelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) __UpperCAmelCase , __UpperCAmelCase : Dict = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __UpperCAmelCase : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) __UpperCAmelCase : Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __UpperCAmelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) __UpperCAmelCase : Optional[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] ) -> int: # pipeline 1 _start_torch_memory_measurement() __UpperCAmelCase : Optional[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : Optional[int] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , num_inference_steps=2 , generator=__lowerCamelCase , output_type="np" , ) __UpperCAmelCase : Any = output.images[0] assert image.shape == (64, 64, 3) __UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 __UpperCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) # pipeline 2 _start_torch_memory_measurement() __UpperCAmelCase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , ) __UpperCAmelCase : int = output.images[0] assert image.shape == (2_56, 2_56, 3) __UpperCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __UpperCAmelCase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Dict ) -> Dict: # pipeline 1 _start_torch_memory_measurement() __UpperCAmelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , num_inference_steps=2 , generator=__lowerCamelCase , output_type="np" , ) __UpperCAmelCase : str = output.images[0] assert image.shape == (64, 64, 3) __UpperCAmelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __UpperCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) # pipeline 2 _start_torch_memory_measurement() __UpperCAmelCase : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : Tuple = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Dict = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , original_image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , ) __UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) __UpperCAmelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __UpperCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: str ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() __UpperCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : List[Any] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , num_inference_steps=2 , generator=__lowerCamelCase , output_type="np" , ) __UpperCAmelCase : int = output.images[0] assert image.shape == (64, 64, 3) __UpperCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __UpperCAmelCase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) # pipeline 2 _start_torch_memory_measurement() __UpperCAmelCase : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , original_image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , ) __UpperCAmelCase : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) __UpperCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __UpperCAmelCase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) def _UpperCamelCase ( ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
342
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
1
import math class _snake_case : def __init__( self: str , __lowerCamelCase: List[Any]=0 ) -> List[Any]: # a graph with Node 0,1,...,N-1 __UpperCAmelCase : Optional[Any] = n __UpperCAmelCase : Tuple = [ [math.inf for j in range(0 , __lowerCamelCase )] for i in range(0 , __lowerCamelCase ) ] # adjacency matrix for weight __UpperCAmelCase : List[Any] = [ [math.inf for j in range(0 , __lowerCamelCase )] for i in range(0 , __lowerCamelCase ) ] # dp[i][j] stores minimum distance from i to j def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> int: __UpperCAmelCase : List[Any] = w def _lowerCamelCase ( self: Any ) -> str: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __UpperCAmelCase : Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: return self.dp[u][v] if __name__ == "__main__": _snake_case = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
1
import itertools import math def _UpperCamelCase ( snake_case__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(snake_case__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : int = 2 while True: if is_prime(snake_case__ ): yield num num += 1 def _UpperCamelCase ( snake_case__ = 1_0001 ) -> int: return next(itertools.islice(prime_generator(), nth - 1, snake_case__ ) ) if __name__ == "__main__": print(F'{solution() = }')
342
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( _lowercase ): lowerCamelCase__: UNetaDModel lowerCamelCase__: ScoreSdeVeScheduler def __init__( self: List[Any] , __lowerCamelCase: UNetaDModel , __lowerCamelCase: ScoreSdeVeScheduler ) -> Optional[int]: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self: Union[str, Any] , __lowerCamelCase: int = 1 , __lowerCamelCase: int = 20_00 , __lowerCamelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase: Optional[str] = "pil" , __lowerCamelCase: bool = True , **__lowerCamelCase: Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: __UpperCAmelCase : List[Any] = self.unet.config.sample_size __UpperCAmelCase : Dict = (batch_size, 3, img_size, img_size) __UpperCAmelCase : Optional[int] = self.unet __UpperCAmelCase : Optional[Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase ) * self.scheduler.init_noise_sigma __UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__lowerCamelCase ) self.scheduler.set_sigmas(__lowerCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCAmelCase : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCAmelCase : Dict = self.unet(__lowerCamelCase , __lowerCamelCase ).sample __UpperCAmelCase : Optional[int] = self.scheduler.step_correct(__lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # prediction step __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , __lowerCamelCase ).sample __UpperCAmelCase : Tuple = self.scheduler.step_pred(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean __UpperCAmelCase : Optional[int] = sample_mean.clamp(0 , 1 ) __UpperCAmelCase : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase : Dict = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__lowerCamelCase )
342
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _snake_case = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _snake_case = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _snake_case = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _snake_case = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } _snake_case = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } _snake_case = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } _snake_case = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _snake_case = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _snake_case = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: List[str] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__: List[str] = DPRContextEncoderTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase__: Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Any = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__: Any = DPRQuestionEncoderTokenizer _snake_case = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) _snake_case = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) _snake_case = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowercase ) class _snake_case : def __call__( self: str , __lowerCamelCase: int , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Union[bool, str] = False , __lowerCamelCase: Union[bool, str] = False , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: Optional[bool] = None , **__lowerCamelCase: Optional[int] , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: __UpperCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Dict = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] __UpperCAmelCase : Dict = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] __UpperCAmelCase : str = len(__lowerCamelCase ) __UpperCAmelCase : List[str] = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages assert len(__lowerCamelCase ) == len( __lowerCamelCase ), f'''There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts.''' __UpperCAmelCase : int = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] __UpperCAmelCase : Tuple = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] __UpperCAmelCase : List[Any] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: __UpperCAmelCase : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __UpperCAmelCase : Tuple = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: BatchEncoding , __lowerCamelCase: DPRReaderOutput , __lowerCamelCase: int = 16 , __lowerCamelCase: int = 64 , __lowerCamelCase: int = 4 , ) -> List[DPRSpanPrediction]: __UpperCAmelCase : Union[str, Any] = reader_input["input_ids"] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = reader_output[:3] __UpperCAmelCase : int = len(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) __UpperCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __UpperCAmelCase : Dict = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __UpperCAmelCase : List[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __UpperCAmelCase : int = sequence_ids.index(self.pad_token_id ) else: __UpperCAmelCase : Union[str, Any] = len(__lowerCamelCase ) __UpperCAmelCase : List[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , __lowerCamelCase: int , __lowerCamelCase: int , ) -> List[DPRSpanPrediction]: __UpperCAmelCase : Tuple = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __UpperCAmelCase : str = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' __UpperCAmelCase : Any = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowercase ) class _snake_case ( _lowercase , _lowercase ): lowerCamelCase__: Optional[int] = VOCAB_FILES_NAMES lowerCamelCase__: int = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__: Union[str, Any] = ["input_ids", "attention_mask"] lowerCamelCase__: str = DPRReaderTokenizer
342
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: str=13 , __lowerCamelCase: int=32 , __lowerCamelCase: Optional[int]=3 , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: int=[10, 20, 30, 40] , __lowerCamelCase: Union[str, Any]=[2, 2, 3, 2] , __lowerCamelCase: str=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[str]=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: List[str]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Any=3 , __lowerCamelCase: Any=None , ) -> Optional[int]: __UpperCAmelCase : Dict = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : str = image_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : Dict = num_stages __UpperCAmelCase : Any = hidden_sizes __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : Tuple = use_labels __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Dict = out_features __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Union[str, Any] = scope __UpperCAmelCase : Union[str, Any] = num_stages def _lowerCamelCase ( self: Optional[int] ) -> List[str]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Optional[int] ) -> List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowerCamelCase ( self: Dict ) -> Optional[int]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__lowerCamelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Any ) -> Union[str, Any]: __UpperCAmelCase : Tuple = UperNetForSemanticSegmentation(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCamelCase ( self: List[str] ) -> Optional[int]: __UpperCAmelCase : Dict = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Tuple = config_and_inputs __UpperCAmelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: List[str] = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCamelCase__: Any = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCamelCase__: str = False lowerCamelCase__: List[str] = False lowerCamelCase__: List[Any] = False lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Optional[int] = False lowerCamelCase__: Dict = False def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Optional[Any] = UperNetModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: Tuple ) -> Dict: return def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(__lowerCamelCase ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> Dict: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def _lowerCamelCase ( self: List[str] ) -> Optional[int]: pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass @unittest.skip(reason="UperNet does not have a base model" ) def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[Any]: pass @unittest.skip(reason="UperNet does not have a base model" ) def _lowerCamelCase ( self: Tuple ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _lowerCamelCase ( self: Dict ) -> Any: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCamelCase ( self: int ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[Any]: def check_hidden_states_output(__lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] ): __UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Any = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = _config_zero_init(__lowerCamelCase ) __UpperCAmelCase : str = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def _lowerCamelCase ( self: Tuple ) -> int: pass @slow def _lowerCamelCase ( self: int ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = UperNetForSemanticSegmentation.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> int: __UpperCAmelCase : Tuple = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k", repo_type="dataset", filename="ADE_val_00000001.jpg" ) __UpperCAmelCase : Union[str, Any] = Image.open(snake_case__ ).convert("RGB" ) return image @require_torch @require_vision @slow class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) __UpperCAmelCase : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) with torch.no_grad(): __UpperCAmelCase : Tuple = model(**__lowerCamelCase ) __UpperCAmelCase : Optional[int] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : int = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) __UpperCAmelCase : int = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__lowerCamelCase ) __UpperCAmelCase : Any = prepare_img() __UpperCAmelCase : int = processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__lowerCamelCase ) __UpperCAmelCase : Any = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : Tuple = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
342
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _snake_case = '''hf-internal-testing/tiny-random-bert''' _snake_case = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') _snake_case = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: int ) -> str: __UpperCAmelCase : Dict = cached_file(__lowerCamelCase , __lowerCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__lowerCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__lowerCamelCase , __lowerCamelCase ) ) ) with open(os.path.join(__lowerCamelCase , "refs" , "main" ) ) as f: __UpperCAmelCase : Optional[int] = f.read() self.assertEqual(__lowerCamelCase , os.path.join(__lowerCamelCase , "snapshots" , __lowerCamelCase , __lowerCamelCase ) ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) # File is cached at the same place the second time. __UpperCAmelCase : Tuple = cached_file(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) # Using a specific revision to test the full commit hash. __UpperCAmelCase : Optional[Any] = cached_file(__lowerCamelCase , __lowerCamelCase , revision="9b8c223" ) self.assertEqual(__lowerCamelCase , os.path.join(__lowerCamelCase , "snapshots" , __lowerCamelCase , __lowerCamelCase ) ) def _lowerCamelCase ( self: Union[str, Any] ) -> Any: with self.assertRaisesRegex(__lowerCamelCase , "is not a valid model identifier" ): __UpperCAmelCase : Optional[Any] = cached_file("tiny-random-bert" , __lowerCamelCase ) with self.assertRaisesRegex(__lowerCamelCase , "is not a valid git identifier" ): __UpperCAmelCase : str = cached_file(__lowerCamelCase , __lowerCamelCase , revision="aaaa" ) with self.assertRaisesRegex(__lowerCamelCase , "does not appear to have a file named" ): __UpperCAmelCase : List[Any] = cached_file(__lowerCamelCase , "conf" ) def _lowerCamelCase ( self: str ) -> Optional[int]: with self.assertRaisesRegex(__lowerCamelCase , "does not appear to have a file named" ): __UpperCAmelCase : int = cached_file(__lowerCamelCase , "conf" ) with open(os.path.join(__lowerCamelCase , "refs" , "main" ) ) as f: __UpperCAmelCase : Optional[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , ".no_exist" , __lowerCamelCase , "conf" ) ) ) __UpperCAmelCase : List[str] = cached_file(__lowerCamelCase , "conf" , _raise_exceptions_for_missing_entries=__lowerCamelCase ) self.assertIsNone(__lowerCamelCase ) __UpperCAmelCase : Tuple = cached_file(__lowerCamelCase , "conf" , local_files_only=__lowerCamelCase , _raise_exceptions_for_missing_entries=__lowerCamelCase ) self.assertIsNone(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = mock.Mock() __UpperCAmelCase : Union[str, Any] = 5_00 __UpperCAmelCase : Dict = {} __UpperCAmelCase : str = HTTPError __UpperCAmelCase : Tuple = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__lowerCamelCase ) as mock_head: __UpperCAmelCase : Dict = cached_file(__lowerCamelCase , "conf" , _raise_exceptions_for_connection_errors=__lowerCamelCase ) self.assertIsNone(__lowerCamelCase ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self: Dict ) -> Optional[Any]: self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , __lowerCamelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , __lowerCamelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , __lowerCamelCase ) ) def _lowerCamelCase ( self: Tuple ) -> Dict: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__lowerCamelCase , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , __lowerCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__lowerCamelCase , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , __lowerCamelCase , revision="ahaha" ) __UpperCAmelCase : Optional[int] = get_file_from_repo("bert-base-cased" , __lowerCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. __UpperCAmelCase : Tuple = json.loads(open(__lowerCamelCase , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_68 ) def _lowerCamelCase ( self: Optional[int] ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : List[str] = Path(__lowerCamelCase ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(__lowerCamelCase , "a.txt" ) , str(__lowerCamelCase ) ) self.assertIsNone(get_file_from_repo(__lowerCamelCase , "b.txt" ) )
342
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple=13 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: Union[str, Any]=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: Union[str, Any]=[2, 2, 3, 2] , __lowerCamelCase: Dict=True , __lowerCamelCase: Dict=True , __lowerCamelCase: int=37 , __lowerCamelCase: str="gelu" , __lowerCamelCase: Optional[int]=10 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: Any=["stage2", "stage3", "stage4"] , __lowerCamelCase: int=[2, 3, 4] , __lowerCamelCase: List[str]=None , ) -> List[Any]: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : str = num_stages __UpperCAmelCase : Optional[Any] = hidden_sizes __UpperCAmelCase : Optional[Any] = depths __UpperCAmelCase : str = is_training __UpperCAmelCase : Any = use_labels __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = out_features __UpperCAmelCase : int = out_indices __UpperCAmelCase : Optional[int] = scope def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] ) -> str: __UpperCAmelCase : Union[str, Any] = ConvNextModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: str ) -> int: __UpperCAmelCase : Optional[int] = ConvNextForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Any = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : str = None __UpperCAmelCase : List[str] = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> Tuple: __UpperCAmelCase : Dict = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = config_and_inputs __UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Optional[int] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCamelCase__: Dict = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Union[str, Any] = True lowerCamelCase__: str = False lowerCamelCase__: Optional[Any] = False lowerCamelCase__: Dict = False lowerCamelCase__: Optional[Any] = False def _lowerCamelCase ( self: Dict ) -> Tuple: __UpperCAmelCase : Dict = ConvNextModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: Any ) -> Union[str, Any]: return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def _lowerCamelCase ( self: Tuple ) -> List[str]: pass def _lowerCamelCase ( self: str ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> int: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: def check_hidden_states_output(__lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] ): __UpperCAmelCase : List[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : List[Any] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[str] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> str: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: List[str] ) -> str: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = ConvNextModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[str]: __UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: List[str] ) -> Optional[int]: return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(__lowerCamelCase ) __UpperCAmelCase : int = self.default_image_processor __UpperCAmelCase : Union[str, Any] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Tuple = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : Dict = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class _snake_case ( unittest.TestCase , _lowercase ): lowerCamelCase__: Optional[int] = (ConvNextBackbone,) if is_torch_available() else () lowerCamelCase__: Optional[Any] = ConvNextConfig lowerCamelCase__: Optional[Any] = False def _lowerCamelCase ( self: Tuple ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = ConvNextModelTester(self )
342
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _snake_case ( _lowercase ): lowerCamelCase__: Dict = ["image_processor", "tokenizer"] lowerCamelCase__: int = "OwlViTImageProcessor" lowerCamelCase__: str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self: Tuple , __lowerCamelCase: Any=None , __lowerCamelCase: int=None , **__lowerCamelCase: Optional[int] ) -> str: __UpperCAmelCase : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) __UpperCAmelCase : Any = kwargs.pop("feature_extractor" ) __UpperCAmelCase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self: Dict , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Tuple=None , __lowerCamelCase: Dict=None , __lowerCamelCase: Any="max_length" , __lowerCamelCase: List[Any]="np" , **__lowerCamelCase: Tuple ) -> Dict: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase ) or (isinstance(__lowerCamelCase , __lowerCamelCase ) and not isinstance(text[0] , __lowerCamelCase )): __UpperCAmelCase : int = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )] elif isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(text[0] , __lowerCamelCase ): __UpperCAmelCase : str = [] # Maximum number of queries across batch __UpperCAmelCase : Optional[int] = max([len(__lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase ) != max_num_queries: __UpperCAmelCase : Union[str, Any] = t + [" "] * (max_num_queries - len(__lowerCamelCase )) __UpperCAmelCase : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) encodings.append(__lowerCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __UpperCAmelCase : Union[str, Any] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCAmelCase : Optional[int] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCAmelCase : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCAmelCase : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __UpperCAmelCase : Optional[Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCAmelCase : int = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCAmelCase : List[str] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __UpperCAmelCase : Dict = BatchEncoding() __UpperCAmelCase : Optional[int] = input_ids __UpperCAmelCase : int = attention_mask if query_images is not None: __UpperCAmelCase : int = BatchEncoding() __UpperCAmelCase : Optional[int] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ).pixel_values __UpperCAmelCase : Union[str, Any] = query_pixel_values if images is not None: __UpperCAmelCase : str = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: __UpperCAmelCase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCAmelCase : List[str] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Tuple ) -> Dict: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: int , *__lowerCamelCase: str , **__lowerCamelCase: Optional[int] ) -> List[Any]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str , *__lowerCamelCase: Tuple , **__lowerCamelCase: Optional[Any] ) -> Union[str, Any]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: str ) -> Any: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Any ) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Optional[int] ) -> Any: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self: Union[str, Any] ) -> Any: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
342
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
1
_snake_case = [0, 2, 4, 6, 8] _snake_case = [1, 3, 5, 7, 9] def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __UpperCAmelCase : Optional[int] = 0 for digit in range(10 ): __UpperCAmelCase : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, snake_case__, snake_case__ ) return result __UpperCAmelCase : Tuple = 0 for digita in range(10 ): __UpperCAmelCase : Union[str, Any] = digita if (remainder + digita) % 2 == 0: __UpperCAmelCase : List[str] = ODD_DIGITS else: __UpperCAmelCase : Any = EVEN_DIGITS for digita in other_parity_digits: __UpperCAmelCase : List[Any] = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, snake_case__, snake_case__, ) return result def _UpperCamelCase ( snake_case__ = 9 ) -> int: __UpperCAmelCase : Union[str, Any] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(snake_case__, 0, [0] * length, snake_case__ ) return result if __name__ == "__main__": print(F'{solution() = }')
342
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
1
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _snake_case = logging.getLogger(__name__) _snake_case = '''Hello world! cécé herlolip''' _snake_case = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: __UpperCAmelCase : List[Any] = BertAbsConfig( temp_dir=".", finetune_bert=snake_case__, large=snake_case__, share_emb=snake_case__, use_bert_emb=snake_case__, encoder="bert", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, ) __UpperCAmelCase : str = torch.load(snake_case__, lambda snake_case__, snake_case__ : storage ) __UpperCAmelCase : str = AbsSummarizer(snake_case__, torch.device("cpu" ), snake_case__ ) original.eval() __UpperCAmelCase : Optional[Any] = BertAbsSummarizer(snake_case__, torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) __UpperCAmelCase : Any = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs __UpperCAmelCase : int = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case__ )) ) __UpperCAmelCase : str = torch.tensor(snake_case__ ).unsqueeze(0 ) __UpperCAmelCase : Optional[int] = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case__ )) ) __UpperCAmelCase : Any = torch.tensor(snake_case__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase : str = encoder_input_ids __UpperCAmelCase : Dict = decoder_input_ids __UpperCAmelCase : List[str] = None __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = None __UpperCAmelCase : List[str] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase : Optional[int] = original(snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ )[0] __UpperCAmelCase : str = original.generator(snake_case__ ) __UpperCAmelCase : Dict = new_model( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ )[0] __UpperCAmelCase : Any = new_model.generator(snake_case__ ) __UpperCAmelCase : int = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(snake_case__ ) ) __UpperCAmelCase : List[Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(snake_case__ ) ) __UpperCAmelCase : Union[str, Any] = torch.allclose(snake_case__, snake_case__, atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) _snake_case = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
342
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
1
import os # Precomputes a list of the 100 first triangular numbers _snake_case = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _UpperCamelCase ( ) -> Union[str, Any]: __UpperCAmelCase : Dict = os.path.dirname(os.path.realpath(snake_case__ ) ) __UpperCAmelCase : Dict = os.path.join(snake_case__, "words.txt" ) __UpperCAmelCase : List[Any] = "" with open(snake_case__ ) as f: __UpperCAmelCase : str = f.readline() __UpperCAmelCase : Optional[Any] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] __UpperCAmelCase : Optional[Any] = [ word for word in [sum(ord(snake_case__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
342
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _snake_case : def __init__( self: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any]=13 , __lowerCamelCase: str=7 , __lowerCamelCase: str=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Any=True , __lowerCamelCase: int=True , __lowerCamelCase: Dict=99 , __lowerCamelCase: Any=32 , __lowerCamelCase: str=2 , __lowerCamelCase: int=4 , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Dict="gelu" , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Optional[int]=5_12 , __lowerCamelCase: List[Any]=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Dict=0.02 , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Union[str, Any]="None" , __lowerCamelCase: Optional[int]=3 , __lowerCamelCase: int=4 , __lowerCamelCase: int=None , ) -> List[Any]: __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Any = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : Tuple = num_choices __UpperCAmelCase : Optional[Any] = relative_attention __UpperCAmelCase : int = position_biased_input __UpperCAmelCase : List[str] = pos_att_type __UpperCAmelCase : str = scope def _lowerCamelCase ( self: int ) -> int: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Tuple = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: Dict ) -> List[str]: __UpperCAmelCase : Tuple = TFDebertaVaModel(config=__lowerCamelCase ) __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : str = model(__lowerCamelCase ) __UpperCAmelCase : List[str] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] ) -> List[str]: __UpperCAmelCase : int = TFDebertaVaForMaskedLM(config=__lowerCamelCase ) __UpperCAmelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = self.num_labels __UpperCAmelCase : List[str] = TFDebertaVaForSequenceClassification(config=__lowerCamelCase ) __UpperCAmelCase : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: Any ) -> Dict: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : List[str] = TFDebertaVaForTokenClassification(config=__lowerCamelCase ) __UpperCAmelCase : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: int , __lowerCamelCase: str ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = TFDebertaVaForQuestionAnswering(config=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[str] = config_and_inputs __UpperCAmelCase : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Optional[int] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__: int = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__: Any = False lowerCamelCase__: Dict = False def _lowerCamelCase ( self: int ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = TFDebertaVaModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: List[Any] ) -> Dict: self.config_tester.run_common_tests() def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Tuple: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : Dict = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _snake_case ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def _lowerCamelCase ( self: str ) -> Tuple: pass @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Tuple = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __UpperCAmelCase : Optional[Any] = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __UpperCAmelCase : str = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 )
342
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
1
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _snake_case = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: __UpperCAmelCase : Dict = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) __UpperCAmelCase : Dict = self.diffusers_dir shutil.copy( os.path.join(__lowerCamelCase , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: str=None ) -> str: __UpperCAmelCase : Tuple = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __UpperCAmelCase : Any = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __UpperCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) __UpperCAmelCase : Any = black.format_str(__lowerCamelCase , mode=__lowerCamelCase ) __UpperCAmelCase : Tuple = os.path.join(self.diffusers_dir , "new_code.py" ) with open(__lowerCamelCase , "w" , newline="\n" ) as f: f.write(__lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__lowerCamelCase ) with open(__lowerCamelCase , "r" ) as f: self.assertTrue(f.read() , __lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Optional[int]: __UpperCAmelCase : List[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Tuple: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , __lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , __lowerCamelCase ) , ) # Copy consistency with a really long name __UpperCAmelCase : Optional[Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , __lowerCamelCase , __lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , __lowerCamelCase , overwrite_result=re.sub("DDPM" , "Test" , __lowerCamelCase ) , )
342
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _snake_case = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } _snake_case = { '''gpt2''': 1024, '''gpt2-medium''': 1024, '''gpt2-large''': 1024, '''gpt2-xl''': 1024, '''distilgpt2''': 1024, } class _snake_case ( _lowercase ): lowerCamelCase__: int = VOCAB_FILES_NAMES lowerCamelCase__: Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Any = ["input_ids", "attention_mask"] lowerCamelCase__: List[str] = GPTaTokenizer def __init__( self: Tuple , __lowerCamelCase: int=None , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: List[str]=None , __lowerCamelCase: Optional[int]="<|endoftext|>" , __lowerCamelCase: Tuple="<|endoftext|>" , __lowerCamelCase: Any="<|endoftext|>" , __lowerCamelCase: str=False , **__lowerCamelCase: Optional[Any] , ) -> Dict: super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = kwargs.pop("add_bos_token" , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space: __UpperCAmelCase : Any = getattr(__lowerCamelCase , pre_tok_state.pop("type" ) ) __UpperCAmelCase : str = add_prefix_space __UpperCAmelCase : Optional[int] = pre_tok_class(**__lowerCamelCase ) __UpperCAmelCase : int = add_prefix_space def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Dict ) -> BatchEncoding: __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Any , *__lowerCamelCase: str , **__lowerCamelCase: Any ) -> BatchEncoding: __UpperCAmelCase : Dict = kwargs.get("is_split_into_words" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase : Dict = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def _lowerCamelCase ( self: int , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : str = input_ids[-self.model_max_length :] return input_ids
342
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: List[Any]=2 , __lowerCamelCase: Tuple=3 , __lowerCamelCase: str=16 , __lowerCamelCase: Union[str, Any]=[32, 64, 1_28] , __lowerCamelCase: List[Any]=[1, 2, 1] , __lowerCamelCase: Dict=[2, 2, 4] , __lowerCamelCase: Dict=2 , __lowerCamelCase: Any=2.0 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: str=0.0 , __lowerCamelCase: Any=0.0 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Any=False , __lowerCamelCase: str=True , __lowerCamelCase: int=0.02 , __lowerCamelCase: Optional[Any]=1e-5 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Optional[Any]=10 , __lowerCamelCase: Optional[int]=8 , __lowerCamelCase: Optional[int]=["stage1", "stage2"] , __lowerCamelCase: List[str]=[1, 2] , ) -> List[str]: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Optional[int] = patch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : Dict = embed_dim __UpperCAmelCase : Tuple = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Tuple = num_heads __UpperCAmelCase : List[Any] = window_size __UpperCAmelCase : Tuple = mlp_ratio __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : int = drop_path_rate __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Dict = use_absolute_embeddings __UpperCAmelCase : Tuple = patch_norm __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : int = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Any = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : str = encoder_stride __UpperCAmelCase : Any = out_features __UpperCAmelCase : Any = out_indices def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : int = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple ) -> Any: __UpperCAmelCase : Optional[int] = FocalNetModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) __UpperCAmelCase : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowerCamelCase ( self: int , __lowerCamelCase: int , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] ) -> str: __UpperCAmelCase : str = FocalNetBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Dict = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __UpperCAmelCase : Any = None __UpperCAmelCase : Optional[Any] = FocalNetBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] ) -> Tuple: __UpperCAmelCase : int = FocalNetForMaskedImageModeling(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : str = 1 __UpperCAmelCase : Optional[int] = FocalNetForMaskedImageModeling(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : List[str] = FocalNetForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Any = FocalNetForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = config_and_inputs __UpperCAmelCase : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase__: List[str] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: List[str] = False lowerCamelCase__: Any = False lowerCamelCase__: Dict = False lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: List[str] = False def _lowerCamelCase ( self: Tuple ) -> Dict: __UpperCAmelCase : List[str] = FocalNetModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=37 , has_text_modality=__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> Any: return def _lowerCamelCase ( self: Optional[Any] ) -> str: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Dict: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> Any: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[int] ) -> List[str]: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def _lowerCamelCase ( self: Dict ) -> Tuple: pass def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Any = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Any = model_class(__lowerCamelCase ) __UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Tuple ) -> Any: __UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = outputs.hidden_states __UpperCAmelCase : Tuple = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # FocalNet has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = reshaped_hidden_states[0].shape __UpperCAmelCase : int = ( reshaped_hidden_states[0].view(__lowerCamelCase , __lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self: Tuple ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Dict = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : int = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width) ) @slow def _lowerCamelCase ( self: Optional[int] ) -> int: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = FocalNetModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: Optional[int] ) -> str: __UpperCAmelCase : List[Any] = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__lowerCamelCase ) __UpperCAmelCase : List[Any] = self.default_image_processor __UpperCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __UpperCAmelCase : Optional[Any] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : Dict = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Optional[int] = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase__: Dict = FocalNetConfig lowerCamelCase__: List[str] = False def _lowerCamelCase ( self: Optional[int] ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = FocalNetModelTester(self )
342
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _snake_case = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
1