code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import sys _snake_case = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = 1 for digit in s: product *= int(UpperCAmelCase_ ) return product def lowerCAmelCase_ ( snake_case_ = N ): _A : Tuple = -sys.maxsize - 1 _A : Optional[int] = n[:13] _A : Optional[int] = 13 while cur_index < len(UpperCAmelCase_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _A : int = substr[1:] + n[cur_index] cur_index += 1 else: _A : List[str] = max(UpperCAmelCase_,str_eval(UpperCAmelCase_ ) ) _A : int = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
353
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _snake_case = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
343
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase ( UpperCamelCase__ ): _a = "char" _a = "bpe" _a = "wp" _snake_case = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "char_tokenizer"] _a = "ViTImageProcessor" _a = "MgpstrTokenizer" def __init__( self , _a=None , _a=None , **_a ) -> Union[str, Any]: _A : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase_ , ) _A : int = kwargs.pop("""feature_extractor""" ) _A : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) _A : List[str] = tokenizer _A : List[Any] = AutoTokenizer.from_pretrained("""gpt2""" ) _A : List[Any] = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self , _a=None , _a=None , _a=None , **_a ) -> int: if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _A : Union[str, Any] = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None: _A : List[Any] = self.char_tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: _A : int = encodings["""input_ids"""] return inputs def a__ ( self , _a ) -> List[Any]: _A , _A , _A : Optional[int] = sequences _A : Dict = char_preds.size(0 ) _A , _A : Tuple = self._decode_helper(lowerCamelCase_ , """char""" ) _A , _A : Dict = self._decode_helper(lowerCamelCase_ , """bpe""" ) _A , _A : List[str] = self._decode_helper(lowerCamelCase_ , """wp""" ) _A : List[str] = [] _A : str = [] for i in range(lowerCamelCase_ ): _A : Optional[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] _A : int = [char_strs[i], bpe_strs[i], wp_strs[i]] _A : Dict = scores.index(max(lowerCamelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _A : Union[str, Any] = {} _A : int = final_strs _A : Union[str, Any] = final_scores _A : Optional[Any] = char_strs _A : Any = bpe_strs _A : List[Any] = wp_strs return out def a__ ( self , _a , _a ) -> List[str]: if format == DecodeType.CHARACTER: _A : Optional[int] = self.char_decode _A : Any = 1 _A : Optional[int] = """[s]""" elif format == DecodeType.BPE: _A : Optional[int] = self.bpe_decode _A : Any = 2 _A : str = """#""" elif format == DecodeType.WORDPIECE: _A : str = self.wp_decode _A : str = 102 _A : Dict = """[SEP]""" else: raise ValueError(F'''Format {format} is not supported.''' ) _A , _A : List[Any] = [], [] _A : Optional[Any] = pred_logits.size(0 ) _A : int = pred_logits.size(1 ) _A , _A : int = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase_ , sorted=lowerCamelCase_ ) _A : Union[str, Any] = preds_index.view(-1 , lowerCamelCase_ )[:, 1:] _A : Optional[Any] = decoder(lowerCamelCase_ ) _A , _A : List[Any] = torch.nn.functional.softmax(lowerCamelCase_ , dim=2 ).max(dim=2 ) _A : str = preds_max_prob[:, 1:] for index in range(lowerCamelCase_ ): _A : List[Any] = preds_str[index].find(lowerCamelCase_ ) _A : List[str] = preds_str[index][:pred_eos] _A : int = preds_index[index].cpu().tolist() _A : Optional[Any] = pred_index.index(lowerCamelCase_ ) if eos_token in pred_index else -1 _A : Union[str, Any] = preds_max_prob[index][: pred_eos_index + 1] _A : str = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase_ ) conf_scores.append(lowerCamelCase_ ) return dec_strs, conf_scores def a__ ( self , _a ) -> Any: _A : str = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase_ )] return decode_strs def a__ ( self , _a ) -> List[Any]: return self.bpe_tokenizer.batch_decode(lowerCamelCase_ ) def a__ ( self , _a ) -> List[Any]: _A : Optional[Any] = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase_ )] return decode_strs
355
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _A : Optional[Any] = parser.parse_args() return args.f class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> None: _A : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): _A : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: _A : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) _A : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) _A : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
343
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart _snake_case = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } _snake_case = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class lowercase ( _lowerCamelCase ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "attention_mask"] _a = BartTokenizer def __init__( self , _a=None , _a=None , _a=None , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , _a=True , **_a , ) -> Any: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , **lowercase_ , ) _A : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase_ ) != add_prefix_space: _A : Tuple = getattr(lowercase_ , pre_tok_state.pop("""type""" ) ) _A : List[Any] = add_prefix_space _A : List[Any] = pre_tok_class(**lowercase_ ) _A : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _A : Any = """post_processor""" _A : List[Any] = getattr(self.backend_tokenizer , lowercase_ , lowercase_ ) if tokenizer_component_instance: _A : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A : List[Any] = tuple(state["""sep"""] ) if "cls" in state: _A : Dict = tuple(state["""cls"""] ) _A : Union[str, Any] = False if state.get("""add_prefix_space""" , lowercase_ ) != add_prefix_space: _A : Any = add_prefix_space _A : Any = True if state.get("""trim_offsets""" , lowercase_ ) != trim_offsets: _A : Any = trim_offsets _A : List[Any] = True if changes_to_apply: _A : Optional[Any] = getattr(lowercase_ , state.pop("""type""" ) ) _A : Optional[Any] = component_class(**lowercase_ ) setattr(self.backend_tokenizer , lowercase_ , lowercase_ ) @property def a__ ( self ) -> List[Any]: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def a__ ( self , _a ) -> Dict: _A : Optional[int] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else value _A : Optional[Any] = value def a__ ( self , *_a , **_a ) -> Optional[Any]: _A : int = kwargs.get("""is_split_into_words""" , lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def a__ ( self , *_a , **_a ) -> Optional[int]: _A : Optional[int] = kwargs.get("""is_split_into_words""" , lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def a__ ( self , _a , _a = None ) -> Union[str, Any]: _A : List[str] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def a__ ( self , _a , _a=None ) -> List[str]: _A : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self , _a , _a = None ) -> List[Any]: _A : int = [self.sep_token_id] _A : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
356
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]: _A : Optional[int] = parent _A : Dict = batch_size _A : Any = image_size _A : Optional[int] = patch_size _A : Optional[int] = num_channels _A : List[Any] = is_training _A : Optional[Any] = use_labels _A : Any = hidden_size _A : Any = num_hidden_layers _A : List[Any] = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : Tuple = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[Any] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[str] = None if self.use_labels: _A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[str] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Union[str, Any] = self.type_sequence_label_size _A : Tuple = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Dict = 1 _A : str = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : Optional[int] = self.prepare_config_and_inputs() _A , _A , _A : Dict = config_and_inputs _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Tuple: _A : Tuple = ViTMSNModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def a__ ( self ) -> int: pass def a__ ( self ) -> Any: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> str: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> List[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Any: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: torch.manual_seed(2 ) _A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) _A : Tuple = self.default_image_processor _A : Dict = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : int = model(**_a ) # verify the logits _A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
343
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCAmelCase_ ( snake_case_ ): monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""",set() ) @pytest.fixture def lowerCAmelCase_ ( snake_case_ ): class lowercase : def __init__( self , _a ) -> Optional[Any]: _A : Tuple = metric_id class lowercase : _a = [MetricMock(A__ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def a__ ( self ) -> Tuple: return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""",HfhMock() ) @pytest.mark.parametrize( """func, args""",[(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): if "tmp_path" in args: _A : List[str] = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(lowercase_,match="""https://huggingface.co/docs/evaluate""" ): func(*lowercase_ )
357
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class lowercase ( a_ ): _a = "switch_transformers" _a = ["past_key_values"] _a = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _a=3_2128 , _a=768 , _a=64 , _a=2048 , _a=64 , _a=12 , _a=3 , _a=12 , _a=3 , _a=12 , _a=8 , _a=False , _a=0.01 , _a="float32" , _a=False , _a=32 , _a=128 , _a=0.1 , _a=1e-6 , _a=0.001 , _a=0.001 , _a=1.0 , _a="relu" , _a=True , _a=False , _a=True , _a=0 , _a=1 , **_a , ) -> List[Any]: _A : str = vocab_size _A : Dict = d_model _A : str = d_kv _A : Optional[int] = d_ff _A : str = num_sparse_encoder_layers _A : Optional[Any] = num_layers _A : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _A : Tuple = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _A : str = self.num_layers // self.num_sparse_encoder_layers else: _A : Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _A : Optional[int] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _A : Optional[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers _A : List[str] = num_heads _A : Union[str, Any] = num_experts _A : Dict = expert_capacity _A : str = router_bias _A : Tuple = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _A : Optional[int] = router_dtype _A : Optional[Any] = router_ignore_padding_tokens _A : List[Any] = relative_attention_num_buckets _A : Optional[int] = relative_attention_max_distance _A : int = dropout_rate _A : List[str] = layer_norm_epsilon _A : int = initializer_factor _A : Tuple = feed_forward_proj _A : List[Any] = use_cache _A : List[Any] = add_router_probs _A : Optional[int] = router_z_loss_coef _A : Union[str, Any] = router_aux_loss_coef _A : Optional[Any] = self.feed_forward_proj.split("""-""" ) _A : Optional[Any] = act_info[-1] _A : Optional[Any] = act_info[0] == '''gated''' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """\'gated-gelu\' or \'relu\'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _A : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ , )
358
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ): _A : Union[str, Any] = [] for k, v in d.items(): _A : List[Any] = parent_key + sep + k if parent_key else k if isinstance(_lowercase,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(_lowercase,_lowercase,sep=_lowercase ).items() ) else: items.append((new_key, v) ) return dict(_lowercase ) _A : int = argparse.Namespace() with open(_lowercase,"""r""" ) as yaml_file: try: _A : Optional[Any] = yaml.load(_lowercase,Loader=yaml.FullLoader ) _A : Dict = flatten_yaml_as_dict(_lowercase ) for k, v in flat_cfg.items(): setattr(_lowercase,_lowercase,_lowercase ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(_lowercase,str(_lowercase ) ) ) return config def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = MobileViTVaConfig() _A : Any = False # dataset if task_name.startswith("""imagenet1k_""" ): _A : Optional[Any] = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : Dict = 384 else: _A : List[str] = 256 _A : Dict = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _A : List[Any] = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : Tuple = 384 else: _A : Any = 256 _A : Any = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _A : int = 151 _A : Dict = 512 _A : Optional[int] = """ade20k-id2label.json""" _A : List[str] = True elif task_name.startswith("""voc_""" ): _A : Optional[Any] = 21 _A : str = 512 _A : int = """pascal-voc-id2label.json""" _A : Any = True # orig_config _A : Tuple = load_orig_config_file(_lowercase ) assert getattr(_lowercase,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model" _A : List[Any] = getattr(_lowercase,"""model.classification.mitv2.width_multiplier""",1.0 ) assert ( getattr(_lowercase,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _A : List[str] = getattr(_lowercase,"""model.classification.activation.name""","""swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _A : Any = getattr(_lowercase,"""model.segmentation.output_stride""",16 ) if "_deeplabv3" in task_name: _A : Dict = getattr(_lowercase,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] ) _A : Union[str, Any] = getattr(_lowercase,"""model.segmentation.deeplabv3.aspp_out_channels""",512 ) _A : str = getattr(_lowercase,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 ) # id2label _A : Optional[Any] = """huggingface/label-files""" _A : str = json.load(open(hf_hub_download(_lowercase,_lowercase,repo_type="""dataset""" ),"""r""" ) ) _A : List[str] = {int(_lowercase ): v for k, v in idalabel.items()} _A : Tuple = idalabel _A : Any = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Union[str, Any] = dct.pop(_lowercase ) _A : str = val def lowerCAmelCase_ ( snake_case_,snake_case_=False ): if base_model: _A : Optional[int] = """""" else: _A : Optional[int] = """mobilevitv2.""" _A : Union[str, Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": _A : str = k[8:] else: _A : List[Any] = k if ".block." in k: _A : str = k_new.replace(""".block.""",""".""" ) if ".conv." in k: _A : int = k_new.replace(""".conv.""",""".convolution.""" ) if ".norm." in k: _A : str = k_new.replace(""".norm.""",""".normalization.""" ) if "conv_1." in k: _A : Tuple = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: _A : Union[str, Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _A : Any = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" ) if ".red_1x1." in k: _A : List[Any] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: _A : List[str] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: _A : List[str] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: _A : Dict = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _A : List[str] = [0, 1] elif i == 4: _A : Optional[Any] = [0, 1, 2, 3] elif i == 5: _A : Optional[Any] = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: _A : List[str] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: _A : Optional[int] = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: _A : str = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _A : Tuple = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" ) if "pre_norm_attn.1." in k: _A : List[str] = k_new.replace("""pre_norm_attn.1.""","""attention.""" ) if "pre_norm_ffn.0." in k: _A : Union[str, Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" ) if "pre_norm_ffn.1." in k: _A : Optional[Any] = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _A : Dict = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" ) if "classifier.1." in k: _A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" ) if "seg_head." in k: _A : int = k_new.replace("""seg_head.""","""segmentation_head.""" ) if ".aspp_layer." in k: _A : Dict = k_new.replace(""".aspp_layer.""",""".""" ) if ".aspp_pool." in k: _A : Tuple = k_new.replace(""".aspp_pool.""",""".""" ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(_lowercase ) for k in keys_to_ignore: state_dict.pop(_lowercase,_lowercase ) def lowerCAmelCase_ ( ): _A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _A : Dict = Image.open(requests.get(_lowercase,stream=_lowercase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Optional[Any] = get_mobilevitva_config(_lowercase,_lowercase ) # load original state_dict _A : List[str] = torch.load(_lowercase,map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _A : Any = MobileViTVaForSemanticSegmentation(_lowercase ).eval() _A : Optional[Any] = False else: _A : Optional[int] = MobileViTVaForImageClassification(_lowercase ).eval() _A : Union[str, Any] = False # remove and rename some keys of load the original model _A : Tuple = checkpoint remove_unused_keys(_lowercase ) _A : List[Any] = create_rename_keys(_lowercase,base_model=_lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowercase,_lowercase,_lowercase ) # load modified state_dict model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor _A : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 ) _A : Any = image_processor(images=prepare_img(),return_tensors="""pt""" ) _A : Any = model(**_lowercase ) # verify classification model if task_name.startswith("""imagenet""" ): _A : Dict = outputs.logits _A : int = logits.argmax(-1 ).item() print("""Predicted class:""",model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _A : Union[str, Any] = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3],_lowercase,atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
343
0
"""simple docstring""" import baseaa def lowerCAmelCase_ ( snake_case_ ): return baseaa.aaaencode(string.encode("""utf-8""" ) ) def lowerCAmelCase_ ( snake_case_ ): return baseaa.aaadecode(snake_case_ ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
360
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase : _a = 42 # setable values _a = 42 _a = 42 _a = None @classmethod def a__ ( cls , _a , _a , _a ) -> Tuple: return cls(common=_a , init_noise_sigma=_a , timesteps=_a ) @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in FlaxKarrasDiffusionSchedulers] _a = 42 @property def a__ ( self ) -> Dict: return True @register_to_config def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple: _A : Tuple = dtype def a__ ( self , _a = None ) -> DDPMSchedulerState: if common is None: _A : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) _A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_a , init_noise_sigma=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray: return sample def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState: _A : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]: _A : Optional[Any] = state.common.alphas_cumprod[t] _A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _A : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _A : Optional[Any] = jnp.clip(_a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) ) elif variance_type == "fixed_large": _A : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _A : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _A : str = variance _A : Union[str, Any] = state.common.betas[t] _A : Tuple = (predicted_variance + 1) / 2 _A : List[str] = frac * max_log + (1 - frac) * min_log return variance def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: _A : Dict = timestep if key is None: _A : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 ) else: _A : int = None # 1. compute alphas, betas _A : int = state.common.alphas_cumprod[t] _A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _A : Union[str, Any] = 1 - alpha_prod_t _A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _A : Optional[int] = model_output elif self.config.prediction_type == "v_prediction": _A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _A : Union[str, Any] = jnp.clip(_a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _A : Tuple = jax.random.split(_a , num=1 ) _A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise _A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _A : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return add_noise_common(state.common , _a , _a , _a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return get_velocity_common(state.common , _a , _a , _a ) def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
343
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): def __init__( self , **_a ) -> int: requires_backends(self , ["""bs4"""] ) super().__init__(**lowerCamelCase_ ) def a__ ( self , _a ) -> Optional[Any]: _A : Dict = [] _A : List[Any] = [] _A : Tuple = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _A : List[str] = parent.find_all(child.name , recursive=lowerCamelCase_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(lowerCamelCase_ ) else next(i for i, s in enumerate(lowerCamelCase_ , 1 ) if s is child ) ) _A : Dict = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def a__ ( self , _a ) -> Optional[int]: _A : List[str] = BeautifulSoup(lowerCamelCase_ , """html.parser""" ) _A : Optional[Any] = [] _A : str = [] _A : Any = [] for element in html_code.descendants: if type(lowerCamelCase_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _A : Any = html.unescape(lowerCamelCase_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(lowerCamelCase_ ) _A , _A : str = self.xpath_soup(lowerCamelCase_ ) stringaxtag_seq.append(lowerCamelCase_ ) stringaxsubs_seq.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def a__ ( self , _a , _a ) -> Dict: _A : List[str] = """""" for tagname, subs in zip(lowerCamelCase_ , lowerCamelCase_ ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self , _a ) -> BatchFeature: _A : Any = False # Check that strings has a valid type if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _A : List[Any] = True elif isinstance(lowerCamelCase_ , (list, tuple) ): if len(lowerCamelCase_ ) == 0 or isinstance(html_strings[0] , lowerCamelCase_ ): _A : List[Any] = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F'''but is of type {type(lowerCamelCase_ )}.''' ) _A : List[Any] = bool(isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(html_strings[0] , lowerCamelCase_ )) ) if not is_batched: _A : List[Any] = [html_strings] # Get nodes + xpaths _A : Dict = [] _A : Any = [] for html_string in html_strings: _A , _A , _A : Optional[int] = self.get_three_from_single(lowerCamelCase_ ) nodes.append(lowerCamelCase_ ) _A : Optional[int] = [] for node, tag_list, sub_list in zip(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _A : List[Any] = self.construct_xpath(lowerCamelCase_ , lowerCamelCase_ ) xpath_strings.append(lowerCamelCase_ ) xpaths.append(lowerCamelCase_ ) # return as Dict _A : Union[str, Any] = {"""nodes""": nodes, """xpaths""": xpaths} _A : Optional[int] = BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ ) return encoded_inputs
361
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _snake_case = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase__ ) class lowercase : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _A : Optional[Any] = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _A : Dict = titles if not isinstance(_a , _a ) else [titles] _A : Tuple = texts if not isinstance(_a , _a ) else [texts] _A : Any = len(_a ) _A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' ) _A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A : str = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]: _A : Dict = reader_input["""input_ids"""] _A , _A , _A : Tuple = reader_output[:3] _A : List[str] = len(_a ) _A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _A : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A : Tuple = sequence_ids.index(self.pad_token_id ) else: _A : Tuple = len(_a ) _A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]: _A : Tuple = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a ) _A : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _A : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = READER_PRETRAINED_VOCAB_FILES_MAP _a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = READER_PRETRAINED_INIT_CONFIGURATION _a = ["input_ids", "attention_mask"]
343
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _A : Optional[int] = str(bin(_lowercase ) )[2:] # remove the leading "0b" _A : Optional[Any] = str(bin(_lowercase ) )[2:] # remove the leading "0b" _A : str = max(len(_lowercase ),len(_lowercase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_lowercase ),b_binary.zfill(_lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): # Initialise PyTorch model _A : List[str] = FunnelConfig.from_json_file(snake_case_ ) print(f'''Building PyTorch model from configuration: {config}''' ) _A : List[str] = FunnelBaseModel(snake_case_ ) if base_model else FunnelModel(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(snake_case_,snake_case_,snake_case_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(),snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
364
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,): if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _A : Optional[Any] = True create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ ) current_sequence.pop() _A : str = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
343
0
"""simple docstring""" from PIL import Image def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = (259 * (level + 255)) / (255 * (259 - level)) def contrast(snake_case_ ) -> int: return int(128 + factor * (c - 128) ) return img.point(snake_case__ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 _snake_case = change_contrast(img, 170) cont_img.save("image_data/lena_high_contrast.png", format="png")
365
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() ) _A : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case = logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if metric == "rouge2": _A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _A : Dict = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _A : List[str] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) _A : Optional[int] = ModelCheckpoint( dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,) return checkpoint_callback def lowerCAmelCase_ ( snake_case_,snake_case_ ): return EarlyStopping( monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,) class lowercase ( pl.Callback ): def a__ ( self , _a , _a ) -> Optional[Any]: _A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def a__ ( self , _a , _a , _a , _a=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _A : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _A : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": _A : List[Any] = od / """test_results.txt""" _A : List[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a , """a+""" ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue _A : List[Any] = metrics[key] if isinstance(_a , torch.Tensor ): _A : str = val.item() _A : str = F'''{key}: {val:.6f}\n''' writer.write(_a ) if not save_generations: return if "preds" in metrics: _A : List[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_a ) @rank_zero_only def a__ ( self , _a , _a ) -> str: try: _A : int = pl_module.model.model.num_parameters() except AttributeError: _A : str = pl_module.model.num_parameters() _A : Optional[int] = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def a__ ( self , _a , _a ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_a , _a , """test""" ) @rank_zero_only def a__ ( self , _a , _a ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
343
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _snake_case = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } _snake_case = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } _snake_case = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class lowercase ( _lowerCAmelCase ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ElectraTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) _A : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): _A : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop("""type""" ) ) _A : Union[str, Any] = do_lower_case _A : Dict = strip_accents _A : List[Any] = tokenize_chinese_chars _A : int = normalizer_class(**SCREAMING_SNAKE_CASE_ ) _A : Tuple = do_lower_case def a__ ( self , _a , _a=None ) -> Optional[Any]: _A : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self , _a , _a = None ) -> List[int]: _A : Optional[int] = [self.sep_token_id] _A : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: _A : Tuple = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
366
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A , _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
343
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowerCAmelCase_ ( snake_case_ ): _A : str = 384 if "tiny" in model_name: _A : Optional[int] = [3, 3, 9, 3] _A : str = [96, 192, 384, 768] if "small" in model_name: _A : Optional[Any] = [3, 3, 27, 3] _A : str = [96, 192, 384, 768] if "base" in model_name: _A : Tuple = [3, 3, 27, 3] _A : int = [128, 256, 512, 1024] _A : Union[str, Any] = 512 if "large" in model_name: _A : Tuple = [3, 3, 27, 3] _A : int = [192, 384, 768, 1536] _A : int = 768 if "xlarge" in model_name: _A : Optional[int] = [3, 3, 27, 3] _A : Union[str, Any] = [256, 512, 1024, 2048] _A : List[str] = 1024 # set label information _A : Any = 150 _A : Any = '''huggingface/label-files''' _A : List[Any] = '''ade20k-id2label.json''' _A : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,repo_type="""dataset""" ),"""r""" ) ) _A : Optional[int] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _A : int = {v: k for k, v in idalabel.items()} _A : Optional[int] = ConvNextConfig( depths=SCREAMING_SNAKE_CASE__,hidden_sizes=SCREAMING_SNAKE_CASE__,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _A : Dict = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE__,auxiliary_in_channels=SCREAMING_SNAKE_CASE__,num_labels=SCREAMING_SNAKE_CASE__,idalabel=SCREAMING_SNAKE_CASE__,labelaid=SCREAMING_SNAKE_CASE__,) return config def lowerCAmelCase_ ( snake_case_ ): _A : Any = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : List[Any] = dct.pop(SCREAMING_SNAKE_CASE__ ) _A : Optional[int] = val def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Optional[Any] = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } _A : int = model_name_to_url[model_name] _A : int = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__,map_location="""cpu""" )['''state_dict'''] _A : Optional[int] = get_upernet_config(SCREAMING_SNAKE_CASE__ ) _A : Dict = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _A : Any = state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "bn" in key: _A : Optional[int] = key.replace("""bn""","""batch_norm""" ) _A : int = val # rename keys _A : str = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify on image _A : str = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' _A : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__,stream=SCREAMING_SNAKE_CASE__ ).raw ).convert("""RGB""" ) _A : Union[str, Any] = SegformerImageProcessor() _A : Union[str, Any] = processor(SCREAMING_SNAKE_CASE__,return_tensors="""pt""" ).pixel_values with torch.no_grad(): _A : List[str] = model(SCREAMING_SNAKE_CASE__ ) if model_name == "upernet-convnext-tiny": _A : Optional[int] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": _A : List[str] = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": _A : Optional[int] = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": _A : Tuple = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": _A : int = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print("""Logits:""",outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3],SCREAMING_SNAKE_CASE__,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
367
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowerCAmelCase_ ( snake_case_ = "mumbai" ): _A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ): _A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
343
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.054571817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: _A : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _A : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _A : int = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
368
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
0
"""simple docstring""" from maths.prime_factors import prime_factors def lowerCAmelCase_ ( snake_case_ ): if not isinstance(__UpperCamelCase,__UpperCamelCase ): _A : str = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
369
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
343
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
370
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging _snake_case = logging.get_logger(__name__) _snake_case = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class lowercase ( _a ): """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> Any: raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class lowercase ( _a ): """simple docstring""" def __init__( self , _a , _a = None ) -> Dict: _A : List[str] = max_length _A : Dict = max_position_embeddings @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> str: _A : str = input_ids.shape[-1] _A : List[str] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' """exceptions, performance degradation, or nothing at all.""" ) return is_done class lowercase ( _a ): """simple docstring""" def __init__( self , _a , _a ) -> Optional[Any]: warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' """with `max_length = start_length + max_new_tokens` instead.""" , __lowerCAmelCase , ) _A : Union[str, Any] = start_length _A : Union[str, Any] = max_new_tokens _A : Optional[Any] = start_length + max_new_tokens @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> int: return input_ids.shape[-1] >= self.max_length class lowercase ( _a ): """simple docstring""" def __init__( self , _a , _a = None ) -> int: _A : Dict = max_time _A : List[Any] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> Optional[int]: return time.time() - self.initial_timestamp > self.max_time class lowercase ( _a ): """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> List[str]: return any(criteria(__lowerCAmelCase , __lowerCAmelCase ) for criteria in self ) @property def a__ ( self ) -> List[str]: for stopping_criterium in self: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return stopping_criterium.max_length elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return stopping_criterium.max_length return None def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = stopping_criteria.max_length _A : Optional[int] = deepcopy(a__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""",a__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=a__ ) ) return new_stopping_criteria
371
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
343
0
import math import flax.linen as nn import jax.numpy as jnp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 1,snake_case_ = 1,snake_case_ = 1.0e4,snake_case_ = False,snake_case_ = 1.0,): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' _A : Optional[Any] = float(embedding_dim // 2 ) _A : Optional[Any] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _A : Tuple = min_timescale * jnp.exp(jnp.arange(__a,dtype=jnp.floataa ) * -log_timescale_increment ) _A : Union[str, Any] = jnp.expand_dims(__a,1 ) * jnp.expand_dims(__a,0 ) # scale embeddings _A : Optional[int] = scale * emb if flip_sin_to_cos: _A : Any = jnp.concatenate([jnp.cos(__a ), jnp.sin(__a )],axis=1 ) else: _A : Union[str, Any] = jnp.concatenate([jnp.sin(__a ), jnp.cos(__a )],axis=1 ) _A : List[str] = jnp.reshape(__a,[jnp.shape(__a )[0], embedding_dim] ) return signal class lowercase ( nn.Module ): lowerCAmelCase = 3_2 lowerCAmelCase = jnp.floataa @nn.compact def __call__( self , _a ) -> Optional[int]: _A : Tuple = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(_A ) _A : Optional[Any] = nn.silu(_A ) _A : List[str] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(_A ) return temb class lowercase ( nn.Module ): lowerCAmelCase = 3_2 lowerCAmelCase = False lowerCAmelCase = 1 @nn.compact def __call__( self , _a ) -> int: return get_sinusoidal_embeddings( _A , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
350
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "resnet" _a = ["basic", "bottleneck"] def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int: super().__init__(**_a ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _A : Optional[Any] = num_channels _A : List[Any] = embedding_size _A : int = hidden_sizes _A : Union[str, Any] = depths _A : Optional[int] = layer_type _A : Any = hidden_act _A : List[Any] = downsample_in_first_stage _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A , _A : str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-3
343
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCAmelCase_ ( snake_case_ = True,*snake_case_,**snake_case_ ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) _A : List[str] = False if main_process_only: _A : Any = PartialState().local_process_index == 0 return _tqdm(*A__,**A__,disable=A__ )
351
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Load checkpoint _A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" ) _A : Any = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: _A : Tuple = v else: _A : Dict = v _A : Optional[Any] = chkpt["""params"""] _A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )} _A : str = chkpt["""dico_word2id"""] _A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()} # Save pytorch-model _A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME _A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(snake_case_,snake_case_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ = None,): _A : Optional[int] = {} if train_file is not None: _A : Dict = [train_file] if eval_file is not None: _A : int = [eval_file] if test_file is not None: _A : Any = [test_file] _A : Tuple = datasets.load_dataset("""csv""",data_files=lowerCAmelCase__ ) _A : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) _A : Any = features_name.pop(lowerCAmelCase__ ) _A : int = list(set(ds[list(files.keys() )[0]][label_name] ) ) _A : str = {label: i for i, label in enumerate(lowerCAmelCase__ )} _A : Tuple = tokenizer.model_input_names _A : Optional[Any] = {} if len(lowerCAmelCase__ ) == 1: for k in files.keys(): _A : Optional[Any] = ds[k].map( lambda snake_case_ : tokenizer.batch_encode_plus( example[features_name[0]],truncation=lowerCAmelCase__,max_length=lowerCAmelCase__,padding="""max_length""" ),batched=lowerCAmelCase__,) elif len(lowerCAmelCase__ ) == 2: for k in files.keys(): _A : str = ds[k].map( lambda snake_case_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]),truncation=lowerCAmelCase__,max_length=lowerCAmelCase__,padding="""max_length""",),batched=lowerCAmelCase__,) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _A : List[str] = {k: v for k, v in ex.items() if k in input_names} _A : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _A : Dict = {k: v for k, v in ex.items() if k in input_names} _A : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _A : List[Any] = {k: v for k, v in ex.items() if k in input_names} _A : Dict = labelaid[ex[label_name]] yield (d, label) _A : List[Any] = ( tf.data.Dataset.from_generator( lowerCAmelCase__,({k: tf.intaa for k in input_names}, tf.intaa),({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )),) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _A : Tuple = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _A : Tuple = ( tf.data.Dataset.from_generator( lowerCAmelCase__,({k: tf.intaa for k in input_names}, tf.intaa),({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )),) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _A : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _A : int = ( tf.data.Dataset.from_generator( lowerCAmelCase__,({k: tf.intaa for k in input_names}, tf.intaa),({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )),) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _A : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _snake_case = logging.getLogger(__name__) @dataclass class lowercase : _a = field(metadata={"help": "Which column contains the label"} ) _a = field(default=__lowercase,metadata={"help": "The path of the training file"} ) _a = field(default=__lowercase,metadata={"help": "The path of the development file"} ) _a = field(default=__lowercase,metadata={"help": "The path of the test file"} ) _a = field( default=1_2_8,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) },) _a = field( default=__lowercase,metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class lowercase : _a = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _a = field( default=__lowercase,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _a = field( default=__lowercase,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _a = field(default=__lowercase,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _a = field( default=__lowercase,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _A : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""",datefmt="""%m/%d/%Y %H:%M:%S""",level=logging.INFO,) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,cache_dir=model_args.cache_dir,) _A : List[str] = get_tfds( train_file=data_args.train_file,eval_file=data_args.dev_file,test_file=data_args.test_file,tokenizer=lowerCAmelCase__,label_column_id=data_args.label_column_id,max_seq_length=data_args.max_seq_length,) _A : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path,num_labels=len(lowerCAmelCase__ ),labelaid=lowerCAmelCase__,idalabel={id: label for label, id in labelaid.items()},finetuning_task="""text-classification""",cache_dir=model_args.cache_dir,) with training_args.strategy.scope(): _A : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path,from_pt=bool(""".bin""" in model_args.model_name_or_path ),config=lowerCAmelCase__,cache_dir=model_args.cache_dir,) def compute_metrics(snake_case_ ) -> Dict: _A : int = np.argmax(p.predictions,axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _A : Optional[Any] = TFTrainer( model=lowerCAmelCase__,args=lowerCAmelCase__,train_dataset=lowerCAmelCase__,eval_dataset=lowerCAmelCase__,compute_metrics=lowerCAmelCase__,) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _A : str = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _A : str = trainer.evaluate() _A : int = os.path.join(training_args.output_dir,"""eval_results.txt""" ) with open(lowerCAmelCase__,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase__ ) return results if __name__ == "__main__": main()
352
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TextToVideoSDPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _a = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def a__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _A : Dict = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _A : str = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) _A : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _A : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) _A : Any = CLIPTextModel(_a ) _A : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def a__ ( self , _a , _a=0 ) -> Dict: if str(_a ).startswith("""mps""" ): _A : Optional[int] = torch.manual_seed(_a ) else: _A : Tuple = torch.Generator(device=_a ).manual_seed(_a ) _A : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def a__ ( self ) -> List[str]: _A : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : str = self.get_dummy_components() _A : int = TextToVideoSDPipeline(**_a ) _A : str = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = self.get_dummy_inputs(_a ) _A : str = """np""" _A : Any = sd_pipe(**_a ).frames _A : List[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _A : str = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> List[str]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_a , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a__ ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_a , expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def a__ ( self ) -> str: pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def a__ ( self ) -> int: pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def a__ ( self ) -> Tuple: pass def a__ ( self ) -> Optional[Any]: return super().test_progress_bar() @slow @skip_mps class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: _A : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _A : List[Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _A : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _A : Optional[Any] = pipe.to("""cuda""" ) _A : int = """Spiderman is surfing""" _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A : List[Any] = pipe(_a , generator=_a , num_inference_steps=25 , output_type="""pt""" ).frames _A : str = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def a__ ( self ) -> str: _A : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _A : Union[str, Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _A : Optional[int] = pipe.to("""cuda""" ) _A : Any = """Spiderman is surfing""" _A : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A : List[str] = pipe(_a , generator=_a , num_inference_steps=2 , output_type="""pt""" ).frames _A : Tuple = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
353
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self , _a , _a=99 , _a=13 , _a=16 , _a=7 , _a=True , _a=True , _a=True , _a=False , _a=True , _a=2 , _a=32 , _a=4 , _a=4 , _a=30 , _a=0 , _a=1 , _a=2 , _a=None , ) -> Tuple: _A : str = parent _A : List[Any] = batch_size _A : List[str] = decoder_seq_length # For common tests _A : Optional[Any] = self.decoder_seq_length _A : Optional[Any] = is_training _A : List[Any] = use_attention_mask _A : Dict = use_labels _A : Optional[Any] = vocab_size _A : Union[str, Any] = d_model _A : Any = d_model _A : Dict = decoder_layers _A : str = decoder_layers _A : Any = decoder_ffn_dim _A : Union[str, Any] = decoder_attention_heads _A : List[str] = decoder_attention_heads _A : List[str] = eos_token_id _A : Any = bos_token_id _A : str = pad_token_id _A : Tuple = decoder_start_token_id _A : Union[str, Any] = use_cache _A : Tuple = max_position_embeddings _A : str = None _A : Any = decoder_seq_length _A : Optional[int] = 2 _A : Any = 1 def a__ ( self ) -> List[Any]: _A : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _A : Union[str, Any] = None if self.use_attention_mask: _A : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _A : List[Any] = None if self.use_labels: _A : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _A : Optional[Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def a__ ( self , _a , _a , _a , _a , ) -> Union[str, Any]: _A : Tuple = True _A : List[str] = TrOCRDecoder(config=a__ ).to(a__ ).eval() _A : Optional[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _A : Optional[Any] = model(a__ , use_cache=a__ ) _A : List[Any] = model(a__ ) _A : Optional[Any] = model(a__ , use_cache=a__ ) self.parent.assertTrue(len(a__ ) == len(a__ ) ) self.parent.assertTrue(len(a__ ) == len(a__ ) + 1 ) _A : Optional[Any] = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _A : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _A : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _A : Any = model(a__ )["""last_hidden_state"""] _A : Optional[Any] = model(a__ , past_key_values=a__ )["""last_hidden_state"""] # select random slice _A : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _A : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(a__ , a__ , atol=1e-3 ) def a__ ( self ) -> Tuple: _A : List[str] = self.prepare_config_and_inputs() _A , _A , _A , _A : List[Any] = config_and_inputs _A : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowercase ( lowercase_,lowercase_,lowercase_,unittest.TestCase ): _a = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _a = (TrOCRForCausalLM,) if is_torch_available() else () _a = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} _a = True _a = False def a__ ( self ) -> str: _A : List[str] = TrOCRStandaloneDecoderModelTester(self , is_training=a__ ) _A : Optional[int] = ConfigTester(self , config_class=a__ ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Union[str, Any]: pass def a__ ( self ) -> str: pass def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def a__ ( self ) -> Optional[int]: _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*a__ ) def a__ ( self ) -> List[Any]: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def a__ ( self ) -> str: pass
354
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
343
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class lowercase : def __init__( self , _a = None , _a = [] ) -> List[str]: _A : str = 0 _A : Any = choices _A : Union[str, Any] = prompt if sys.platform == "win32": _A : str = """*""" else: _A : Dict = """➔ """ def a__ ( self , _a , _a = "" ) -> Optional[int]: if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCamelCase_ ) else: forceWrite(self.choices[index] , UpperCamelCase_ ) def a__ ( self , _a ) -> Optional[Any]: if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(UpperCamelCase_ ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def a__ ( self , _a , _a = 1 ) -> int: _A : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase_ ) move_cursor(UpperCamelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def a__ ( self ) -> Tuple: self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def a__ ( self ) -> str: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def a__ ( self ) -> Union[str, Any]: move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def a__ ( self ) -> List[Any]: move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase_ )] for number in range(10 )] ) def a__ ( self ) -> Optional[int]: _A : List[Any] = int(chr(self.current_selection ) ) _A : Tuple = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase_ ) else: return else: return def a__ ( self , _a = 0 ) -> Union[str, Any]: if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _A : List[Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase_ ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _A : Dict = int(builtins.input() ) except ValueError: _A : Optional[int] = default_choice else: _A : Union[str, Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(UpperCamelCase_ , """\n""" ) return choice
355
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _A : Optional[Any] = parser.parse_args() return args.f class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> None: _A : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): _A : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: _A : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) _A : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) _A : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
343
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _snake_case = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]: _A : Optional[int] = parent _A : Dict = batch_size _A : Any = image_size _A : Optional[int] = patch_size _A : Optional[int] = num_channels _A : List[Any] = is_training _A : Optional[Any] = use_labels _A : Any = hidden_size _A : Any = num_hidden_layers _A : List[Any] = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : Tuple = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[Any] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[str] = None if self.use_labels: _A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[str] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Union[str, Any] = self.type_sequence_label_size _A : Tuple = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Dict = 1 _A : str = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : Optional[int] = self.prepare_config_and_inputs() _A , _A , _A : Dict = config_and_inputs _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Tuple: _A : Tuple = ViTMSNModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def a__ ( self ) -> int: pass def a__ ( self ) -> Any: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> str: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> List[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Any: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: torch.manual_seed(2 ) _A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) _A : Tuple = self.default_image_processor _A : Dict = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : int = model(**_a ) # verify the logits _A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
343
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): if isinstance(UpperCAmelCase_,(list, tuple) ) and isinstance(videos[0],(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCAmelCase_,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCAmelCase_ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowercase ( UpperCamelCase__ ): _a = ["""pixel_values"""] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = None , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_A ) _A : str = size if size is not None else {'shortest_edge': 224} _A : int = get_size_dict(_A , default_to_square=_A ) _A : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} _A : str = get_size_dict(_A , param_name="""crop_size""" ) _A : int = do_resize _A : List[str] = size _A : Dict = do_center_crop _A : Tuple = crop_size _A : Any = resample _A : List[Any] = do_rescale _A : Union[str, Any] = rescale_factor _A : str = do_normalize _A : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _A : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: _A : int = get_resize_output_image_size(_A , size["""shortest_edge"""] , default_to_square=_A ) elif "height" in size and "width" in size: _A : Union[str, Any] = (size['height'], size['width']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def a__ ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: _A : List[str] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A ) def a__ ( self , _a , _a , _a = None , **_a , ) -> Optional[Any]: return rescale(_A , scale=_A , data_format=_A , **_A ) def a__ ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def a__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _A : Union[str, Any] = to_numpy_array(_A ) if do_resize: _A : Optional[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: _A : Optional[Any] = self.center_crop(_A , size=_A ) if do_rescale: _A : Optional[Any] = self.rescale(image=_A , scale=_A ) if do_normalize: _A : Tuple = self.normalize(image=_A , mean=_A , std=_A ) _A : Optional[Any] = to_channel_dimension_format(_A , _A ) return image def a__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _A : List[str] = do_resize if do_resize is not None else self.do_resize _A : List[str] = resample if resample is not None else self.resample _A : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _A : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Dict = do_normalize if do_normalize is not None else self.do_normalize _A : List[str] = image_mean if image_mean is not None else self.image_mean _A : Tuple = image_std if image_std is not None else self.image_std _A : int = size if size is not None else self.size _A : str = get_size_dict(_A , default_to_square=_A ) _A : int = crop_size if crop_size is not None else self.crop_size _A : List[str] = get_size_dict(_A , param_name="""crop_size""" ) if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) _A : List[Any] = make_batched(_A ) _A : Tuple = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] _A : str = {'pixel_values': videos} return BatchFeature(data=_A , tensor_type=_A )
357
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
0
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): if height >= 1: move_tower(height - 1,_A,_A,_A ) move_disk(_A,_A ) move_tower(height - 1,_A,_A,_A ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): print("""moving disk from""",_A,"""to""",_A ) def lowerCAmelCase_ ( ): _A : List[Any] = int(input("""Height of hanoi: """ ).strip() ) move_tower(_A,"""A""","""B""","""C""" ) if __name__ == "__main__": main()
358
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
343
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__a ) class lowercase ( __a ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _a = field(default="summarization",metadata={"include_in_asdict_even_if_is_default": True} ) _a = Features({"text": Value("string" )} ) _a = Features({"summary": Value("string" )} ) _a = "text" _a = "summary" @property def a__ ( self ) -> int: return {self.text_column: "text", self.summary_column: "summary"}
360
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase : _a = 42 # setable values _a = 42 _a = 42 _a = None @classmethod def a__ ( cls , _a , _a , _a ) -> Tuple: return cls(common=_a , init_noise_sigma=_a , timesteps=_a ) @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in FlaxKarrasDiffusionSchedulers] _a = 42 @property def a__ ( self ) -> Dict: return True @register_to_config def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple: _A : Tuple = dtype def a__ ( self , _a = None ) -> DDPMSchedulerState: if common is None: _A : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) _A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_a , init_noise_sigma=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray: return sample def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState: _A : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]: _A : Optional[Any] = state.common.alphas_cumprod[t] _A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _A : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _A : Optional[Any] = jnp.clip(_a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) ) elif variance_type == "fixed_large": _A : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _A : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _A : str = variance _A : Union[str, Any] = state.common.betas[t] _A : Tuple = (predicted_variance + 1) / 2 _A : List[str] = frac * max_log + (1 - frac) * min_log return variance def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: _A : Dict = timestep if key is None: _A : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 ) else: _A : int = None # 1. compute alphas, betas _A : int = state.common.alphas_cumprod[t] _A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _A : Union[str, Any] = 1 - alpha_prod_t _A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _A : Optional[int] = model_output elif self.config.prediction_type == "v_prediction": _A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _A : Union[str, Any] = jnp.clip(_a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _A : Tuple = jax.random.split(_a , num=1 ) _A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise _A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _A : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return add_noise_common(state.common , _a , _a , _a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return get_velocity_common(state.common , _a , _a , _a ) def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
343
0
from string import ascii_lowercase, ascii_uppercase def lowerCAmelCase_ ( snake_case_ ): if not sentence: return "" _A : Tuple = dict(zip(snake_case_,snake_case_ ) ) return lower_to_upper.get(sentence[0],sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
361
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = state_dict.pop(__snake_case ) _A : List[str] = val def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _A : Optional[Any] = key.replace("""backbone.0.body""","""backbone.conv_encoder.model""" ) _A : Tuple = value else: _A : Any = value return new_state_dict def lowerCAmelCase_ ( snake_case_ ): _A : Any = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _A : int = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _A : List[str] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _A : Dict = in_proj_weight[:256, :] _A : int = in_proj_bias[:256] _A : List[Any] = in_proj_weight[256:512, :] _A : Optional[int] = in_proj_bias[256:512] _A : Tuple = in_proj_weight[-256:, :] _A : List[str] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _A : Tuple = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _A : str = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _A : Dict = in_proj_weight[:256, :] _A : Tuple = in_proj_bias[:256] _A : Tuple = in_proj_weight[256:512, :] _A : Union[str, Any] = in_proj_bias[256:512] _A : Optional[Any] = in_proj_weight[-256:, :] _A : Optional[int] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _A : Optional[int] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) _A : Tuple = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _A : Optional[int] = in_proj_weight_cross_attn[:256, :] _A : Optional[Any] = in_proj_bias_cross_attn[:256] _A : Tuple = in_proj_weight_cross_attn[256:512, :] _A : int = in_proj_bias_cross_attn[256:512] _A : Any = in_proj_weight_cross_attn[-256:, :] _A : List[str] = in_proj_bias_cross_attn[-256:] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A , _A : List[str] = image.size _A : Any = max(__snake_case,__snake_case ) _A : str = 800 if """detection""" in checkpoint_url else 1000 _A : Any = target_max_size / current_max_size _A : Optional[Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = F.to_tensor(__snake_case ) _A : Union[str, Any] = F.normalize(__snake_case,mean=[0.4_85, 0.4_56, 0.4_06],std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): logger.info("""Converting model...""" ) # load original state dict _A : Optional[int] = torch.hub.load_state_dict_from_url(__snake_case,map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(__snake_case,__snake_case,__snake_case ) _A : Tuple = rename_backbone_keys(__snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(__snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _A : Any = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _A : Any = state_dict.pop(__snake_case ) _A : Tuple = val # create HuggingFace model and load state dict _A : Any = TableTransformerConfig( backbone="""resnet18""",mask_loss_coefficient=1,dice_loss_coefficient=1,ce_loss_coefficient=1,bbox_loss_coefficient=5,giou_loss_coefficient=2,eos_coefficient=0.4,class_cost=1,bbox_cost=5,giou_cost=2,) if "detection" in checkpoint_url: _A : Any = 15 _A : List[Any] = 2 _A : List[Any] = {0: """table""", 1: """table rotated"""} _A : Any = idalabel _A : Dict = {v: k for k, v in idalabel.items()} else: _A : Union[str, Any] = 125 _A : List[Any] = 6 _A : Any = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } _A : Any = idalabel _A : List[Any] = {v: k for k, v in idalabel.items()} _A : int = DetrImageProcessor( format="""coco_detection""",max_size=800 if """detection""" in checkpoint_url else 1000 ) _A : int = TableTransformerForObjectDetection(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # verify our conversion _A : Optional[int] = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" _A : List[str] = hf_hub_download(repo_id="""nielsr/example-pdf""",repo_type="""dataset""",filename=__snake_case ) _A : List[Any] = Image.open(__snake_case ).convert("""RGB""" ) _A : int = normalize(resize(__snake_case,__snake_case ) ).unsqueeze(0 ) _A : Any = model(__snake_case ) if "detection" in checkpoint_url: _A : Tuple = (1, 15, 3) _A : List[str] = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) _A : int = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: _A : str = (1, 125, 7) _A : Union[str, Any] = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) _A : Optional[int] = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3],__snake_case,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3],__snake_case,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) _A : Tuple = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(__snake_case ) image_processor.push_to_hub(__snake_case ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
362
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase__ ) class lowercase : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _A : Optional[Any] = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _A : Dict = titles if not isinstance(_a , _a ) else [titles] _A : Tuple = texts if not isinstance(_a , _a ) else [texts] _A : Any = len(_a ) _A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' ) _A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A : str = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]: _A : Dict = reader_input["""input_ids"""] _A , _A , _A : Tuple = reader_output[:3] _A : List[str] = len(_a ) _A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _A : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A : Tuple = sequence_ids.index(self.pad_token_id ) else: _A : Tuple = len(_a ) _A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]: _A : Tuple = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a ) _A : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _A : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = READER_PRETRAINED_VOCAB_FILES_MAP _a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = READER_PRETRAINED_INIT_CONFIGURATION _a = ["input_ids", "attention_mask"]
343
0
class lowercase : def __init__( self ) -> None: _A : List[str] = {} # Mapping from char to TrieNode _A : List[str] = False def a__ ( self , _a ) -> None: for word in words: self.insert(UpperCamelCase__ ) def a__ ( self , _a ) -> None: _A : int = self for char in word: if char not in curr.nodes: _A : Dict = TrieNode() _A : Dict = curr.nodes[char] _A : Optional[Any] = True def a__ ( self , _a ) -> bool: _A : List[str] = self for char in word: if char not in curr.nodes: return False _A : Optional[Any] = curr.nodes[char] return curr.is_leaf def a__ ( self , _a ) -> None: def _delete(_a , _a , _a ) -> bool: if index == len(UpperCamelCase__ ): # If word does not exist if not curr.is_leaf: return False _A : Dict = False return len(curr.nodes ) == 0 _A : Union[str, Any] = word[index] _A : int = curr.nodes.get(UpperCamelCase__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _A : List[str] = _delete(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase__ , 0 ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if node.is_leaf: print(UpperCAmelCase__,end=""" """ ) for key, value in node.nodes.items(): print_words(UpperCAmelCase__,word + key ) def lowerCAmelCase_ ( ): _A : str = """banana bananas bandana band apple all beast""".split() _A : Optional[int] = TrieNode() root.insert_many(UpperCAmelCase__ ) # print_words(root, "") assert all(root.find(UpperCAmelCase__ ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowerCAmelCase_ ( snake_case_,snake_case_ ): print(str(UpperCAmelCase__ ),"""works!""" if passes else """doesn't work :(""" ) def lowerCAmelCase_ ( ): assert test_trie() def lowerCAmelCase_ ( ): print_results("""Testing trie functionality""",test_trie() ) if __name__ == "__main__": main()
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
0
from timeit import timeit _snake_case = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = 0 _A : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCAmelCase_ ( snake_case_ ): _A : int = len(SCREAMING_SNAKE_CASE_ ) // 2 _A : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase_ ( snake_case_ ): if len(SCREAMING_SNAKE_CASE_ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCAmelCase_ ( snake_case_ ): return s == s[::-1] def lowerCAmelCase_ ( snake_case_ ): _A : List[str] = f'''all({name}(key) is value for key, value in test_data.items())''' _A : Any = f'''from __main__ import test_data, {name}''' _A : str = 500000 _A : Dict = timeit(stmt=SCREAMING_SNAKE_CASE_,setup=SCREAMING_SNAKE_CASE_,number=SCREAMING_SNAKE_CASE_ ) print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
364
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,): if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _A : Optional[Any] = True create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ ) current_sequence.pop() _A : str = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
343
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = "▁" _snake_case = {"vocab_file": "sentencepiece.bpe.model"} _snake_case = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } _snake_case = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off _snake_case = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class lowercase ( a__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = PRETRAINED_VOCAB_FILES_MAP _a = ["input_ids", "attention_mask"] _a = [] _a = [] def __init__( self , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a = None , _a=None , **_a , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it _A : List[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token _A : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , src_lang=SCREAMING_SNAKE_CASE_ , tgt_lang=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) _A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) _A : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A : Any = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A : List[Any] = 1 _A : Optional[int] = len(self.sp_model ) _A : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE_ ) } _A : List[Any] = {v: k for k, v in self.lang_code_to_id.items()} _A : Tuple = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _A : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A : str = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _A : Union[str, Any] = src_lang if src_lang is not None else 'en_XX' _A : Union[str, Any] = self.lang_code_to_id[self._src_lang] _A : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> List[str]: _A : Union[str, Any] = self.__dict__.copy() _A : Tuple = None _A : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , _a ) -> Optional[int]: _A : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A : Optional[Any] = {} _A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def a__ ( self ) -> Optional[int]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__ ( self ) -> str: return self._src_lang @src_lang.setter def a__ ( self , _a ) -> None: _A : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) _A : Any = [1] * len(self.prefix_tokens ) _A : List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones def a__ ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ ( self , _a , _a = None ) -> List[int]: _A : List[str] = [self.sep_token_id] _A : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , _a , _a , _a , _a , **_a ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _A : Optional[Any] = src_lang _A : Any = self(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _A : Tuple = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) _A : Tuple = tgt_lang_id return inputs def a__ ( self ) -> Dict: _A : Union[str, Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self , _a ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a__ ( self , _a ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A : List[Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__ ( self , _a ) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__ ( self , _a ) -> Dict: _A : Optional[int] = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_ , """ """ ).strip() return out_string def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fi: _A : List[Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,) def a__ ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ) -> BatchEncoding: _A : Optional[Any] = src_lang _A : Any = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a__ ( self ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def a__ ( self ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ ( self , _a ) -> None: _A : Union[str, Any] = self.lang_code_to_id[src_lang] _A : Optional[Any] = [] _A : List[Any] = [self.eos_token_id, self.cur_lang_code] def a__ ( self , _a ) -> None: _A : Dict = self.lang_code_to_id[lang] _A : Optional[Any] = [] _A : Any = [self.eos_token_id, self.cur_lang_code]
365
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() ) _A : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case = logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if metric == "rouge2": _A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _A : Dict = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _A : List[str] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) _A : Optional[int] = ModelCheckpoint( dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,) return checkpoint_callback def lowerCAmelCase_ ( snake_case_,snake_case_ ): return EarlyStopping( monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,) class lowercase ( pl.Callback ): def a__ ( self , _a , _a ) -> Optional[Any]: _A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def a__ ( self , _a , _a , _a , _a=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _A : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _A : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": _A : List[Any] = od / """test_results.txt""" _A : List[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a , """a+""" ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue _A : List[Any] = metrics[key] if isinstance(_a , torch.Tensor ): _A : str = val.item() _A : str = F'''{key}: {val:.6f}\n''' writer.write(_a ) if not save_generations: return if "preds" in metrics: _A : List[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_a ) @rank_zero_only def a__ ( self , _a , _a ) -> str: try: _A : int = pl_module.model.model.num_parameters() except AttributeError: _A : str = pl_module.model.num_parameters() _A : Optional[int] = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def a__ ( self , _a , _a ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_a , _a , """test""" ) @rank_zero_only def a__ ( self , _a , _a ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
343
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowercase : @property def a__ ( self ) -> int: return self.get_dummy_input() @property def a__ ( self ) -> List[str]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def a__ ( self , _a=True , _a=False , _a=False , _a=False , ) -> Any: _A : List[Any] = 4 _A : List[Any] = 32 _A : Union[str, Any] = (32, 32) _A : int = torch.manual_seed(0 ) _A : Optional[Any] = torch.device(_a ) _A : int = (batch_size, num_channels) + sizes _A : Optional[Any] = randn_tensor(_a , generator=_a , device=_a ) _A : Optional[int] = {"""hidden_states""": hidden_states} if include_temb: _A : Optional[Any] = 128 _A : Union[str, Any] = randn_tensor((batch_size, temb_channels) , generator=_a , device=_a ) if include_res_hidden_states_tuple: _A : Any = torch.manual_seed(1 ) _A : Dict = (randn_tensor(_a , generator=_a , device=_a ),) if include_encoder_hidden_states: _A : Dict = floats_tensor((batch_size, 32, 32) ).to(_a ) if include_skip_sample: _A : str = randn_tensor(((batch_size, 3) + sizes) , generator=_a , device=_a ) return dummy_input def a__ ( self ) -> List[Any]: _A : Dict = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": _A : Tuple = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) _A : Dict = self.dummy_input return init_dict, inputs_dict def a__ ( self , _a ) -> Tuple: _A , _A : str = self.prepare_init_args_and_inputs_for_common() _A : Tuple = self.block_class(**_a ) unet_block.to(_a ) unet_block.eval() with torch.no_grad(): _A : int = unet_block(**_a ) if isinstance(_a , _a ): _A : List[str] = output[0] self.assertEqual(output.shape , self.output_shape ) _A : List[str] = output[0, -1, -3:, -3:] _A : Tuple = torch.tensor(_a ).to(_a ) assert torch_all_close(output_slice.flatten() , _a , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def a__ ( self ) -> Any: _A , _A : Tuple = self.prepare_init_args_and_inputs_for_common() _A : Union[str, Any] = self.block_class(**_a ) model.to(_a ) model.train() _A : Optional[Any] = model(**_a ) if isinstance(_a , _a ): _A : Any = output[0] _A : List[str] = torch.device(_a ) _A : str = randn_tensor(output.shape , device=_a ) _A : Any = torch.nn.functional.mse_loss(_a , _a ) loss.backward()
366
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A , _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
343
0
import sys _snake_case = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( snake_case_ ): _A : int = 1 for digit in s: product *= int(snake_case_ ) return product def lowerCAmelCase_ ( snake_case_ = N ): _A : List[Any] = -sys.maxsize - 1 _A : List[str] = n[:13] _A : Union[str, Any] = 13 while cur_index < len(snake_case_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _A : Any = substr[1:] + n[cur_index] cur_index += 1 else: _A : Optional[Any] = max(snake_case_,str_eval(snake_case_ ) ) _A : Tuple = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
367
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowerCAmelCase_ ( snake_case_ = "mumbai" ): _A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ): _A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
343
0
import os # Precomputes a list of the 100 first triangular numbers _snake_case = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase_ ( ): _A : List[str] = os.path.dirname(os.path.realpath(snake_case_ ) ) _A : List[Any] = os.path.join(snake_case_,"""words.txt""" ) _A : Optional[Any] = """""" with open(snake_case_ ) as f: _A : Any = f.readline() _A : Dict = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _A : Dict = [ word for word in [sum(ord(snake_case_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case_ ) if __name__ == "__main__": print(solution())
368
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowercase ( _UpperCamelCase ): _a = 'data2vec-text' def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> int: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A : Optional[int] = vocab_size _A : Optional[int] = hidden_size _A : Dict = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : List[str] = hidden_act _A : int = intermediate_size _A : List[str] = hidden_dropout_prob _A : Union[str, Any] = attention_probs_dropout_prob _A : List[str] = max_position_embeddings _A : Dict = type_vocab_size _A : int = initializer_range _A : Any = layer_norm_eps _A : Dict = position_embedding_type _A : List[Any] = use_cache _A : Dict = classifier_dropout class lowercase ( _UpperCamelCase ): @property def a__ ( self ) -> str: if self.task == "multiple-choice": _A : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
369
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
343
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : str = mock.Mock() _A : Union[str, Any] = 500 _A : List[Any] = {} _A : Optional[Any] = HTTPError _A : Dict = {} # Download this model to make sure it's in the cache. _A : Optional[int] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase__ ) as mock_head: _A : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def a__ ( self ) -> Tuple: _A : int = mock.Mock() _A : List[str] = 500 _A : Any = {} _A : Optional[int] = HTTPError _A : Optional[int] = {} # Download this model to make sure it's in the cache. _A : int = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase__ ) as mock_head: _A : List[str] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def a__ ( self ) -> List[Any]: try: _A : List[Any] = tempfile.mktemp() with open(UpperCamelCase__ , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , UpperCamelCase__ ) _A : Optional[Any] = AlbertTokenizer.from_pretrained(UpperCamelCase__ ) finally: os.remove(UpperCamelCase__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , UpperCamelCase__ ) _A : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class lowercase ( unittest.TestCase ): _a = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def a__ ( cls ) -> Union[str, Any]: _A : str = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def a__ ( cls ) -> Dict: try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = os.path.join(UpperCamelCase__ , """vocab.txt""" ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _A : List[str] = BertTokenizer(UpperCamelCase__ ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) _A : Optional[int] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ , repo_id="""test-tokenizer""" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) _A : Dict = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = os.path.join(UpperCamelCase__ , """vocab.txt""" ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _A : Any = BertTokenizer(UpperCamelCase__ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) _A : Optional[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase__ , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) _A : Optional[int] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def a__ ( self ) -> Dict: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _A : str = os.path.join(UpperCamelCase__ , """vocab.txt""" ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _A : Any = CustomTokenizer(UpperCamelCase__ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) _A : Optional[int] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _A : Tuple = os.path.join(UpperCamelCase__ , """vocab.txt""" ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _A : Dict = BertTokenizerFast.from_pretrained(UpperCamelCase__ ) bert_tokenizer.save_pretrained(UpperCamelCase__ ) _A : Tuple = CustomTokenizerFast.from_pretrained(UpperCamelCase__ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) _A : Union[str, Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) _A : int = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class lowercase ( unittest.TestCase ): def a__ ( self ) -> str: _A : Optional[Any] = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def a__ ( self ) -> Optional[int]: _A : Tuple = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def a__ ( self ) -> Any: _A : str = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def a__ ( self ) -> List[Any]: _A : Optional[int] = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def a__ ( self ) -> Optional[Any]: _A : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def a__ ( self ) -> Optional[Any]: _A : List[str] = Trie() _A : Optional[Any] = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase__ , ["""AB""", """C"""] )
370
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" @property def a__ ( self ) -> Any: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> Optional[int]: _A : str = ort.SessionOptions() _A : List[str] = False return options def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : Union[str, Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) _A : Tuple = """A red cat sitting on a park bench""" _A : List[str] = np.random.RandomState(0 ) _A : str = pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__snake_case , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
371
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
343
0
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): _A : Any = np.shape(snake_case_ ) if rows != columns: _A : Optional[Any] = ( """'table' has to be of square shaped array but got a """ f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(snake_case_ ) _A : List[Any] = np.zeros((rows, columns) ) _A : Optional[int] = np.zeros((rows, columns) ) for i in range(snake_case_ ): for j in range(snake_case_ ): _A : Tuple = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) _A : Tuple = (table[i][j] - total) / upper[j][j] _A : Optional[int] = 1 for j in range(snake_case_,snake_case_ ): _A : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) ) _A : Optional[Any] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
350
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "resnet" _a = ["basic", "bottleneck"] def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int: super().__init__(**_a ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _A : Optional[Any] = num_channels _A : List[Any] = embedding_size _A : int = hidden_sizes _A : Union[str, Any] = depths _A : Optional[int] = layer_type _A : Any = hidden_act _A : List[Any] = downsample_in_first_stage _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A , _A : str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-3
343
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = checkpoints.load_tax_checkpoint(snake_case_ ) _A : Any = flatten_dict(snake_case_ ) return flax_params def lowerCAmelCase_ ( snake_case_ ): _A : Dict = {} _A : Union[str, Any] = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } _A : str = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _A : Union[str, Any] = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _A : Tuple = new_key.replace(snake_case_,snake_case_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _A : Union[str, Any] = new_key.replace(snake_case_,snake_case_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _A : Dict = re.sub(r"""layers_(\d+)""",r"""layer.\1""",snake_case_ ) _A : Union[str, Any] = new_key.replace("""encoder""","""encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _A : Tuple = re.sub(r"""layers_(\d+)""",r"""layer.\1""",snake_case_ ) _A : Dict = flax_dict[key] _A : List[Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _A : Optional[int] = torch.from_numpy(converted_dict[key].T ) else: _A : str = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=False,snake_case_=False ): _A : List[str] = get_flax_param(snake_case_ ) if not use_large: _A : List[Any] = PixaStructVisionConfig() _A : str = PixaStructTextConfig() else: _A : str = PixaStructVisionConfig( hidden_size=1536,d_ff=3968,num_attention_heads=24,num_hidden_layers=18 ) _A : Tuple = PixaStructTextConfig(hidden_size=1536,d_ff=3968,num_heads=24,num_layers=18 ) _A : Any = PixaStructConfig( vision_config=encoder_config.to_dict(),text_config=decoder_config.to_dict(),is_vqa=snake_case_ ) _A : Optional[Any] = PixaStructForConditionalGeneration(snake_case_ ) _A : Dict = rename_and_convert_flax_params(snake_case_ ) model.load_state_dict(snake_case_ ) _A : int = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) _A : List[str] = PixaStructImageProcessor() _A : int = PixaStructProcessor(image_processor=snake_case_,tokenizer=snake_case_ ) if use_large: _A : Dict = 4096 _A : List[str] = True # mkdir if needed os.makedirs(snake_case_,exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) print("""Model saved in {}""".format(snake_case_ ) ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _snake_case = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
351
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Load checkpoint _A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" ) _A : Any = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: _A : Tuple = v else: _A : Dict = v _A : Optional[Any] = chkpt["""params"""] _A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )} _A : str = chkpt["""dico_word2id"""] _A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()} # Save pytorch-model _A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME _A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(snake_case_,snake_case_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowerCAmelCase_ ( snake_case_ = "mumbai" ): _A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ): _A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
352
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) set_seed(770) _snake_case = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } _snake_case = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } _snake_case = os.path.dirname(os.path.abspath(__file__)) _snake_case = os.path.join(os.path.expanduser("~"), ".cache") _snake_case = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def lowerCAmelCase_ ( snake_case_,snake_case_=False ): _A : List[Any] = model_type if use_small: key += "_small" return os.path.join(snake_case_,REMOTE_MODEL_PATHS[key]["""file_name"""] ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): os.makedirs(snake_case_,exist_ok=snake_case_ ) hf_hub_download(repo_id=snake_case_,filename=snake_case_,local_dir=snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=False,snake_case_="text" ): if model_type == "text": _A : Union[str, Any] = BarkSemanticModel _A : Any = BarkSemanticConfig _A : str = BarkSemanticGenerationConfig elif model_type == "coarse": _A : Any = BarkCoarseModel _A : List[Any] = BarkCoarseConfig _A : Dict = BarkCoarseGenerationConfig elif model_type == "fine": _A : str = BarkFineModel _A : List[Any] = BarkFineConfig _A : List[str] = BarkFineGenerationConfig else: raise NotImplementedError() _A : Union[str, Any] = f'''{model_type}_small''' if use_small else model_type _A : Union[str, Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(snake_case_ ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""],model_info["""file_name"""] ) _A : Optional[Any] = torch.load(snake_case_,map_location=snake_case_ ) # this is a hack _A : Optional[int] = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: _A : Optional[Any] = model_args["""vocab_size"""] _A : Tuple = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _A : Optional[Any] = model_args.pop("""n_head""" ) _A : Optional[Any] = model_args.pop("""n_embd""" ) _A : int = model_args.pop("""n_layer""" ) _A : List[str] = ConfigClass(**checkpoint["""model_args"""] ) _A : str = ModelClass(config=snake_case_ ) _A : Optional[Any] = GenerationConfigClass() _A : Union[str, Any] = model_generation_config _A : Dict = checkpoint["""model"""] # fixup checkpoint _A : Any = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(snake_case_ ): # replace part of the key with corresponding layer name in HF implementation _A : List[Any] = k[len(snake_case_ ) :] for old_layer_name in new_layer_name_dict: _A : int = new_k.replace(snake_case_,new_layer_name_dict[old_layer_name] ) _A : List[str] = state_dict.pop(snake_case_ ) _A : str = set(state_dict.keys() ) - set(model.state_dict().keys() ) _A : Tuple = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} _A : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) _A : Dict = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(snake_case_ ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(snake_case_ ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(snake_case_,strict=snake_case_ ) _A : Any = model.num_parameters(exclude_embeddings=snake_case_ ) _A : Tuple = checkpoint["""best_val_loss"""].item() logger.info(f'''model loaded: {round(n_params/1e6,1 )}M params, {round(snake_case_,3 )} loss''' ) model.eval() model.to(snake_case_ ) del checkpoint, state_dict return model def lowerCAmelCase_ ( snake_case_,snake_case_=False,snake_case_="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _A : List[str] = """cpu""" # do conversion on cpu _A : Optional[Any] = _get_ckpt_path(snake_case_,use_small=snake_case_ ) _A : List[str] = _load_model(snake_case_,snake_case_,model_type=snake_case_,use_small=snake_case_ ) # load bark initial model _A : Optional[int] = _bark_load_model(snake_case_,"""cpu""",model_type=snake_case_,use_small=snake_case_ ) if model_type == "text": _A : Optional[Any] = bark_model["""model"""] if model.num_parameters(exclude_embeddings=snake_case_ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model _A : Tuple = 5 _A : Dict = 10 if model_type in ["text", "coarse"]: _A : Dict = torch.randint(256,(batch_size, sequence_length),dtype=torch.int ) _A : Tuple = bark_model(snake_case_ )[0] _A : int = model(snake_case_ ) # take last logits _A : Dict = output_new_model_total.logits[:, [-1], :] else: _A : Dict = 3 _A : List[Any] = 8 _A : List[Any] = torch.randint(256,(batch_size, sequence_length, n_codes_total),dtype=torch.int ) _A : Tuple = model(snake_case_,snake_case_ ) _A : Optional[int] = bark_model(snake_case_,snake_case_ ) _A : str = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,): _A : Optional[Any] = os.path.join(snake_case_,snake_case_ ) _A : Tuple = BarkSemanticConfig.from_pretrained(os.path.join(snake_case_,"""config.json""" ) ) _A : Dict = BarkCoarseConfig.from_pretrained(os.path.join(snake_case_,"""config.json""" ) ) _A : List[Any] = BarkFineConfig.from_pretrained(os.path.join(snake_case_,"""config.json""" ) ) _A : Tuple = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) _A : str = BarkSemanticModel.from_pretrained(snake_case_ ) _A : Any = BarkCoarseModel.from_pretrained(snake_case_ ) _A : List[Any] = BarkFineModel.from_pretrained(snake_case_ ) _A : int = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) _A : str = BarkConfig.from_sub_model_configs( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Any = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config,coarseAcoustic.generation_config,fineAcoustic.generation_config ) _A : int = BarkModel(snake_case_ ) _A : Any = semantic _A : Any = coarseAcoustic _A : Optional[int] = fineAcoustic _A : Any = codec _A : Optional[Any] = bark_generation_config Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) bark.save_pretrained(snake_case_,repo_id=snake_case_,push_to_hub=snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") _snake_case = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
353
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
343
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "xlnet" _a = ["mems"] _a = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _a=3_2000 , _a=1024 , _a=24 , _a=16 , _a=4096 , _a="gelu" , _a=True , _a="bi" , _a=0.02 , _a=1e-12 , _a=0.1 , _a=512 , _a=None , _a=True , _a=False , _a=False , _a=-1 , _a=False , _a="last" , _a=True , _a="tanh" , _a=0.1 , _a=5 , _a=5 , _a=5 , _a=1 , _a=2 , **_a , ) -> Union[str, Any]: _A : str = vocab_size _A : List[Any] = d_model _A : Union[str, Any] = n_layer _A : List[Any] = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A : List[Any] = d_model // n_head _A : str = ff_activation _A : Any = d_inner _A : List[Any] = untie_r _A : str = attn_type _A : Any = initializer_range _A : Optional[Any] = layer_norm_eps _A : Dict = dropout _A : int = mem_len _A : Optional[Any] = reuse_len _A : Tuple = bi_data _A : List[Any] = clamp_len _A : Tuple = same_length _A : str = summary_type _A : int = summary_use_proj _A : Optional[int] = summary_activation _A : List[str] = summary_last_dropout _A : Optional[int] = start_n_top _A : int = end_n_top _A : Optional[int] = bos_token_id _A : Optional[int] = pad_token_id _A : int = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , _a , ) _A : Dict = kwargs["""use_cache"""] _A : List[str] = use_mems_eval _A : str = use_mems_train super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) @property def a__ ( self ) -> int: logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def a__ ( self , _a ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
355
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _A : Optional[Any] = parser.parse_args() return args.f class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> None: _A : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): _A : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: _A : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) _A : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) _A : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
343
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
356
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]: _A : Optional[int] = parent _A : Dict = batch_size _A : Any = image_size _A : Optional[int] = patch_size _A : Optional[int] = num_channels _A : List[Any] = is_training _A : Optional[Any] = use_labels _A : Any = hidden_size _A : Any = num_hidden_layers _A : List[Any] = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : Tuple = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[Any] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[str] = None if self.use_labels: _A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[str] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Union[str, Any] = self.type_sequence_label_size _A : Tuple = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Dict = 1 _A : str = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : Optional[int] = self.prepare_config_and_inputs() _A , _A , _A : Dict = config_and_inputs _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Tuple: _A : Tuple = ViTMSNModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def a__ ( self ) -> int: pass def a__ ( self ) -> Any: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> str: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> List[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Any: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: torch.manual_seed(2 ) _A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) _A : Tuple = self.default_image_processor _A : Dict = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : int = model(**_a ) # verify the logits _A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
343
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCAmelCase_ ( snake_case_ ): _A : Any = int(snake_case_ ) _A : Union[str, Any] = t // 3600, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_=300 ): # docstyle-ignore return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def lowerCAmelCase_ ( snake_case_ ): _A : Any = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _A : Optional[int] = f'''{elt:.6f}''' if isinstance(snake_case_,snake_case_ ) else str(snake_case_ ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowercase : _a = 5 _a = 0.2 def __init__( self , _a , _a = None , _a = True , _a = None , _a = 300 , ) -> List[str]: _A : str = total _A : Optional[int] = """""" if prefix is None else prefix _A : Tuple = leave _A : List[str] = parent _A : Optional[Any] = width _A : Union[str, Any] = None _A : List[str] = None _A : List[Any] = None def a__ ( self , _a , _a = False , _a = None ) -> Optional[Any]: _A : Dict = value if comment is not None: _A : int = comment if self.last_value is None: _A : Tuple = time.time() _A : str = value _A : Union[str, Any] = None _A : Optional[Any] = self.warmup _A : List[Any] = 1 self.update_bar(_a ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _A : Dict = time.time() _A : Any = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _A : str = self.elapsed_time / (value - self.start_value) else: _A : Dict = None if value >= self.total: _A : int = self.total _A : Union[str, Any] = None if not self.leave: self.close() elif self.average_time_per_item is not None: _A : List[str] = self.average_time_per_item * (self.total - value) self.update_bar(_a ) _A : Union[str, Any] = value _A : Union[str, Any] = current_time if self.average_time_per_item is None: _A : str = 1 else: _A : Any = max(int(self.update_every / self.average_time_per_item ) , 1 ) def a__ ( self , _a , _a=None ) -> Optional[Any]: _A : List[Any] = """ """ * (len(str(self.total ) ) - len(str(_a ) )) + str(_a ) if self.elapsed_time is None: _A : str = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: _A : str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: _A : Optional[Any] = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def a__ ( self ) -> List[str]: _A : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _A : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=_a ) else: self.output.update(disp.HTML(self.html_code ) ) def a__ ( self ) -> List[str]: if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a=None ) -> Tuple: super().__init__(_a ) _A : Any = None if column_names is None else [column_names] _A : str = None def a__ ( self ) -> int: _A : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _A : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=_a ) else: self.output.update(disp.HTML(self.html_code ) ) def a__ ( self , _a ) -> List[Any]: if self.inner_table is None: _A : List[str] = [list(values.keys() ), list(values.values() )] else: _A : Union[str, Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_a ) _A : Dict = columns self.inner_table.append([values[c] for c in columns] ) def a__ ( self , _a , _a=None , _a=300 ) -> Union[str, Any]: _A : List[str] = NotebookProgressBar(_a , prefix=_a , parent=self , width=_a ) return self.child_bar def a__ ( self ) -> Dict: _A : List[Any] = None self.display() class lowercase ( UpperCamelCase__ ): def __init__( self ) -> List[Any]: _A : int = None _A : Dict = None _A : List[Any] = False def a__ ( self , _a , _a , _a , **_a ) -> Optional[Any]: _A : int = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" _A : Any = 0 _A : Optional[int] = 0 _A : int = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) _A : int = NotebookTrainingTracker(state.max_steps , _a ) def a__ ( self , _a , _a , _a , **_a ) -> Union[str, Any]: _A : List[str] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) _A : List[str] = False def a__ ( self , _a , _a , _a , _a=None , **_a ) -> Tuple: if not has_length(_a ): return if self.prediction_bar is None: if self.training_tracker is not None: _A : int = self.training_tracker.add_child(len(_a ) ) else: _A : List[Any] = NotebookProgressBar(len(_a ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def a__ ( self , _a , _a , _a , **_a ) -> Dict: if self.prediction_bar is not None: self.prediction_bar.close() _A : int = None def a__ ( self , _a , _a , _a , _a=None , **_a ) -> Optional[int]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _A : int = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy _A : List[Any] = state.global_step self.training_tracker.write_line(_a ) def a__ ( self , _a , _a , _a , _a=None , **_a ) -> Optional[int]: if self.training_tracker is not None: _A : Any = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: _A : int = log["""loss"""] break if self.first_column == "Epoch": _A : List[str] = int(state.epoch ) else: _A : Any = state.global_step _A : Dict = """eval""" for k in metrics: if k.endswith("""_loss""" ): _A : int = re.sub(R"""\_loss$""" , """""" , _a ) _A : Any = metrics.pop("""total_flos""" , _a ) _A : List[str] = metrics.pop("""epoch""" , _a ) _A : Optional[Any] = metrics.pop(F'''{metric_key_prefix}_runtime''' , _a ) _A : Optional[int] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , _a ) _A : Optional[int] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , _a ) _A : List[Any] = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , _a ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': _A : Any = v else: _A : str = k.split("""_""" ) _A : Optional[Any] = """ """.join([part.capitalize() for part in splits[1:]] ) _A : List[Any] = v self.training_tracker.write_line(_a ) self.training_tracker.remove_child() _A : Dict = None # Evaluation takes a long time so we should force the next update. _A : Tuple = True def a__ ( self , _a , _a , _a , **_a ) -> Any: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=_a ) _A : Tuple = None
357
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
0
def lowerCAmelCase_ ( snake_case_ ): if not isinstance(snake_case_,snake_case_ ): _A : List[str] = f'''Input value of [number={number}] must be an integer''' raise TypeError(snake_case_ ) if number < 1: _A : Dict = f'''Input value of [number={number}] must be > 0''' raise ValueError(snake_case_ ) _A : List[str] = 1 for i in range(1,snake_case_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
358
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( UpperCamelCase__ ): _a = "sew-d" def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3072 , _a=2 , _a=512 , _a=256 , _a=True , _a=True , _a=("p2c", "c2p") , _a="layer_norm" , _a="gelu_python" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=0.02 , _a=1e-7 , _a=1e-5 , _a="group" , _a="gelu" , _a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _a=False , _a=128 , _a=16 , _a=True , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a="mean" , _a=False , _a=False , _a=256 , _a=0 , _a=1 , _a=2 , **_a , ) -> Any: super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) _A : List[str] = hidden_size _A : Any = feat_extract_norm _A : int = feat_extract_activation _A : Dict = list(_a ) _A : Tuple = list(_a ) _A : int = list(_a ) _A : Optional[int] = conv_bias _A : Tuple = num_conv_pos_embeddings _A : Optional[Any] = num_conv_pos_embedding_groups _A : Optional[Any] = len(self.conv_dim ) _A : Optional[int] = num_hidden_layers _A : List[Any] = intermediate_size _A : Optional[int] = squeeze_factor _A : Dict = max_position_embeddings _A : Tuple = position_buckets _A : Optional[int] = share_att_key _A : str = relative_attention _A : int = norm_rel_ebd _A : List[Any] = list(_a ) _A : List[Any] = hidden_act _A : Union[str, Any] = num_attention_heads _A : int = hidden_dropout _A : List[Any] = attention_dropout _A : List[str] = activation_dropout _A : str = feat_proj_dropout _A : Any = final_dropout _A : str = layer_norm_eps _A : Optional[int] = feature_layer_norm_eps _A : Any = initializer_range _A : List[str] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A : str = apply_spec_augment _A : Dict = mask_time_prob _A : Union[str, Any] = mask_time_length _A : Tuple = mask_time_min_masks _A : str = mask_feature_prob _A : Union[str, Any] = mask_feature_length _A : str = mask_feature_min_masks # ctc loss _A : Any = ctc_loss_reduction _A : Optional[Any] = ctc_zero_infinity # sequence classification _A : Optional[int] = use_weighted_layer_sum _A : int = classifier_proj_size @property def a__ ( self ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
343
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model"} _snake_case = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } _snake_case = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) _snake_case = 0 _snake_case = 1 _snake_case = 2 _snake_case = 3 _snake_case = 4 class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = "left" def __init__( self , _a , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , _a = None , **_a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _A : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _A : Tuple = 3 _A : Tuple = do_lower_case _A : Union[str, Any] = remove_space _A : Union[str, Any] = keep_accents _A : Optional[int] = vocab_file _A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def a__ ( self ) -> str: return len(self.sp_model ) def a__ ( self ) -> List[Any]: _A : int = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: _A : Union[str, Any] = self.__dict__.copy() _A : Tuple = None return state def __setstate__( self , _a ) -> Dict: _A : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A : List[Any] = {} _A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self , _a ) -> Optional[Any]: if self.remove_space: _A : Tuple = """ """.join(inputs.strip().split() ) else: _A : List[str] = inputs _A : Dict = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _A : Optional[Any] = unicodedata.normalize("""NFKD""" , _a ) _A : int = """""".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: _A : Union[str, Any] = outputs.lower() return outputs def a__ ( self , _a ) -> List[str]: _A : Optional[int] = self.preprocess_text(_a ) _A : Union[str, Any] = self.sp_model.encode(_a , out_type=_a ) _A : int = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _A : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A : List[Any] = cur_pieces[1:] else: _A : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def a__ ( self , _a ) -> Dict: return self.sp_model.PieceToId(_a ) def a__ ( self , _a ) -> int: return self.sp_model.IdToPiece(_a ) def a__ ( self , _a ) -> Optional[int]: _A : List[Any] = """""".join(_a ).replace(_a , """ """ ).strip() return out_string def a__ ( self , _a , _a = False , _a = None , _a = True , **_a , ) -> str: _A : Any = kwargs.pop("""use_source_tokenizer""" , _a ) _A : Tuple = self.convert_ids_to_tokens(_a , skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _A : int = [] _A : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) _A : Dict = [] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _A : Tuple = """""".join(_a ) _A : List[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _A : Tuple = self.clean_up_tokenization(_a ) return clean_text else: return text def a__ ( self , _a , _a = None ) -> List[int]: _A : Tuple = [self.sep_token_id] _A : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a__ ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1] return ([0] * len(_a )) + [1, 1] def a__ ( self , _a , _a = None ) -> List[int]: _A : Union[str, Any] = [self.sep_token_id] _A : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : List[Any] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: _A : str = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
360
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase : _a = 42 # setable values _a = 42 _a = 42 _a = None @classmethod def a__ ( cls , _a , _a , _a ) -> Tuple: return cls(common=_a , init_noise_sigma=_a , timesteps=_a ) @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in FlaxKarrasDiffusionSchedulers] _a = 42 @property def a__ ( self ) -> Dict: return True @register_to_config def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple: _A : Tuple = dtype def a__ ( self , _a = None ) -> DDPMSchedulerState: if common is None: _A : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) _A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_a , init_noise_sigma=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray: return sample def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState: _A : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]: _A : Optional[Any] = state.common.alphas_cumprod[t] _A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _A : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _A : Optional[Any] = jnp.clip(_a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) ) elif variance_type == "fixed_large": _A : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _A : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _A : str = variance _A : Union[str, Any] = state.common.betas[t] _A : Tuple = (predicted_variance + 1) / 2 _A : List[str] = frac * max_log + (1 - frac) * min_log return variance def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: _A : Dict = timestep if key is None: _A : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 ) else: _A : int = None # 1. compute alphas, betas _A : int = state.common.alphas_cumprod[t] _A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _A : Union[str, Any] = 1 - alpha_prod_t _A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _A : Optional[int] = model_output elif self.config.prediction_type == "v_prediction": _A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _A : Union[str, Any] = jnp.clip(_a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _A : Tuple = jax.random.split(_a , num=1 ) _A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise _A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _A : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return add_noise_common(state.common , _a , _a , _a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return get_velocity_common(state.common , _a , _a , _a ) def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
343
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
0
from collections.abc import Callable class lowercase : def __init__( self , _a = None ) -> None: # Stores actual heap items. _A : list = [] # Stores indexes of each item for supporting updates and deletion. _A : dict = {} # Stores current size of heap. _A : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _A : Tuple = key or (lambda _a : x) def a__ ( self , _a ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def a__ ( self , _a ) -> int | None: _A : Optional[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def a__ ( self , _a ) -> int | None: _A : int = int(2 * i + 2 ) return right if 0 < right < self.size else None def a__ ( self , _a , _a ) -> None: _A : Dict = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _A : Optional[int] = self.arr[j], self.arr[i] def a__ ( self , _a , _a ) -> bool: return self.arr[i][1] < self.arr[j][1] def a__ ( self , _a ) -> int: _A : List[Any] = self._left(_a ) _A : List[Any] = self._right(_a ) _A : Optional[int] = i if left is not None and not self._cmp(_a , _a ): _A : str = left if right is not None and not self._cmp(_a , _a ): _A : Optional[int] = right return valid_parent def a__ ( self , _a ) -> None: _A : int = self._parent(_a ) while parent is not None and not self._cmp(_a , _a ): self._swap(_a , _a ) _A : Dict = parent, self._parent(_a ) def a__ ( self , _a ) -> None: _A : Any = self._get_valid_parent(_a ) while valid_parent != index: self._swap(_a , _a ) _A : Optional[int] = valid_parent, self._get_valid_parent(_a ) def a__ ( self , _a , _a ) -> None: if item not in self.pos_map: return _A : Dict = self.pos_map[item] _A : List[Any] = [item, self.key(_a )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_a ) self._heapify_down(_a ) def a__ ( self , _a ) -> None: if item not in self.pos_map: return _A : List[str] = self.pos_map[item] del self.pos_map[item] _A : Tuple = self.arr[self.size - 1] _A : Union[str, Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_a ) self._heapify_down(_a ) def a__ ( self , _a , _a ) -> None: _A : List[Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_a )] ) else: _A : int = [item, self.key(_a )] _A : List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def a__ ( self ) -> tuple | None: return self.arr[0] if self.size else None def a__ ( self ) -> tuple | None: _A : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCAmelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
362
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase__ ) class lowercase : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _A : Optional[Any] = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _A : Dict = titles if not isinstance(_a , _a ) else [titles] _A : Tuple = texts if not isinstance(_a , _a ) else [texts] _A : Any = len(_a ) _A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' ) _A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A : str = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]: _A : Dict = reader_input["""input_ids"""] _A , _A , _A : Tuple = reader_output[:3] _A : List[str] = len(_a ) _A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _A : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A : Tuple = sequence_ids.index(self.pad_token_id ) else: _A : Tuple = len(_a ) _A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]: _A : Tuple = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a ) _A : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _A : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = READER_PRETRAINED_VOCAB_FILES_MAP _a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = READER_PRETRAINED_INIT_CONFIGURATION _a = ["input_ids", "attention_mask"]
343
0
def lowerCAmelCase_ ( snake_case_ ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _snake_case = pd.read_csv("sample_data.csv", header=None) _snake_case = df.shape[:1][0] # If you're using some other dataset input the target column _snake_case = df.iloc[:, 1:2] _snake_case = actual_data.values.reshape(len_data, 1) _snake_case = MinMaxScaler().fit_transform(actual_data) _snake_case = 10 _snake_case = 5 _snake_case = 20 _snake_case = len_data - periods * look_back _snake_case = actual_data[:division] _snake_case = actual_data[division - look_back :] _snake_case , _snake_case = [], [] _snake_case , _snake_case = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _snake_case = np.array(train_x) _snake_case = np.array(test_x) _snake_case = np.array([list(i.ravel()) for i in train_y]) _snake_case = np.array([list(i.ravel()) for i in test_y]) _snake_case = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") _snake_case = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _snake_case = model.predict(x_test)
364
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,): if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _A : Optional[Any] = True create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ ) current_sequence.pop() _A : str = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
343
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): if len(snake_case_ ) == 0: return array _A : Optional[Any] = min(snake_case_ ), max(snake_case_ ) # Compute the variables _A : str = _max - _min + 1 _A : List[str] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _A : str = i - _min _A : int = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _A : List[str] = 0 for i in range(snake_case_ ): while holes_repeat[i] > 0: _A : str = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _snake_case = input("Enter numbers separated by comma:\n") _snake_case = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
365
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() ) _A : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case = logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if metric == "rouge2": _A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _A : Dict = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _A : List[str] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) _A : Optional[int] = ModelCheckpoint( dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,) return checkpoint_callback def lowerCAmelCase_ ( snake_case_,snake_case_ ): return EarlyStopping( monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,) class lowercase ( pl.Callback ): def a__ ( self , _a , _a ) -> Optional[Any]: _A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def a__ ( self , _a , _a , _a , _a=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _A : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _A : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": _A : List[Any] = od / """test_results.txt""" _A : List[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a , """a+""" ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue _A : List[Any] = metrics[key] if isinstance(_a , torch.Tensor ): _A : str = val.item() _A : str = F'''{key}: {val:.6f}\n''' writer.write(_a ) if not save_generations: return if "preds" in metrics: _A : List[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_a ) @rank_zero_only def a__ ( self , _a , _a ) -> str: try: _A : int = pl_module.model.model.num_parameters() except AttributeError: _A : str = pl_module.model.num_parameters() _A : Optional[int] = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def a__ ( self , _a , _a ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_a , _a , """test""" ) @rank_zero_only def a__ ( self , _a , _a ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
343
0
def lowerCAmelCase_ ( snake_case_ ): if num <= 0: raise ValueError("""Input must be a positive integer""" ) _A : Union[str, Any] = [True] * (num + 1) _A : Optional[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p,num + 1,snake_case_ ): _A : str = False p += 1 return [prime for prime in range(2,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
366
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A , _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
343
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _snake_case = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class lowercase : def __init__( self , _a = 14 ) -> None: if group not in primes: raise ValueError("""Unsupported Group""" ) _A : List[str] = primes[group]["""prime"""] _A : Optional[int] = primes[group]["""generator"""] _A : Any = int(hexlify(urandom(32 ) ) , base=16 ) def a__ ( self ) -> str: return hex(self.__private_key )[2:] def a__ ( self ) -> str: _A : Optional[int] = pow(self.generator , self.__private_key , self.prime ) return hex(_a )[2:] def a__ ( self , _a ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_a , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ ( self , _a ) -> str: _A : Union[str, Any] = int(_a , base=16 ) if not self.is_valid_public_key(_a ): raise ValueError("""Invalid public key""" ) _A : List[str] = pow(_a , self.__private_key , self.prime ) return shaaaa(str(_a ).encode() ).hexdigest() @staticmethod def a__ ( _a , _a ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_a , (prime - 1) // 2 , _a ) == 1 ) @staticmethod def a__ ( _a , _a , _a = 14 ) -> str: _A : Any = int(_a , base=16 ) _A : Dict = int(_a , base=16 ) _A : Union[str, Any] = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_a , _a ): raise ValueError("""Invalid public key""" ) _A : str = pow(_a , _a , _a ) return shaaaa(str(_a ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
367
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowerCAmelCase_ ( snake_case_ = "mumbai" ): _A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ): _A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
343
0
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 4_2 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
368
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
0
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): def a__ ( self ) -> Dict: _A : List[Any] = 0 @slow def a__ ( self ) -> List[str]: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _A : Tuple = AutoTokenizer.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_a ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _A : Union[str, Any] = AutoTokenizer.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_a ) , 0 ) def a__ ( self ) -> List[str]: _A : str = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def a__ ( self ) -> Optional[int]: _A : Optional[int] = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def a__ ( self ) -> Dict: _A : Optional[Any] = AutoConfig.from_pretrained(_a ) self.assertIsInstance(_a , _a ) # Check that tokenizer_type ≠ model_type _A : Tuple = AutoTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def a__ ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_a , """vocab.txt""" ) ) _A : Optional[int] = AutoTokenizer.from_pretrained(_a , tokenizer_type="""bert""" , use_fast=_a ) self.assertIsInstance(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_a , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_a , """merges.txt""" ) ) _A : List[str] = AutoTokenizer.from_pretrained(_a , tokenizer_type="""gpt2""" , use_fast=_a ) self.assertIsInstance(_a , _a ) @require_tokenizers def a__ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_a , """vocab.txt""" ) ) _A : Optional[Any] = AutoTokenizer.from_pretrained(_a , tokenizer_type="""bert""" ) self.assertIsInstance(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_a , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_a , """merges.txt""" ) ) _A : str = AutoTokenizer.from_pretrained(_a , tokenizer_type="""gpt2""" ) self.assertIsInstance(_a , _a ) def a__ ( self ) -> str: with pytest.raises(_a ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def a__ ( self ) -> Dict: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _A : List[str] = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) if isinstance(_a , _a ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _a ) else: self.assertEqual(tokenizer.do_lower_case , _a ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def a__ ( self ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _a , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): _A : Optional[Any] = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def a__ ( self ) -> Union[str, Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai _A : Tuple = TOKENIZER_MAPPING.values() _A : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_a ) @require_tokenizers def a__ ( self ) -> Dict: self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_a ) , _a ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , _a ) @require_tokenizers def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=_a ) _A : Dict = """Hello, world. How are you?""" _A : List[Any] = tokenizer.tokenize(_a ) self.assertEqual("""[UNK]""" , tokens[0] ) _A : Tuple = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=_a ) _A : str = tokenizer.tokenize(_a ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def a__ ( self ) -> Union[str, Any]: _A : Optional[Any] = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(_a ) , _a ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def a__ ( self ) -> Any: _A : Union[str, Any] = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) _A : List[str] = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def a__ ( self ) -> Optional[Any]: _A : Dict = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_a , _a ) def a__ ( self ) -> Optional[Any]: # Check we can load the tokenizer config of an online model. _A : List[str] = get_tokenizer_config("""bert-base-cased""" ) _A : Union[str, Any] = config.pop("""_commit_hash""" , _a ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_a , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. _A : Dict = get_tokenizer_config(_a ) self.assertDictEqual(_a , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _A : Tuple = AutoTokenizer.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) _A : int = get_tokenizer_config(_a ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def a__ ( self ) -> List[str]: try: AutoConfig.register("""custom""" , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoTokenizer.register(_a , slow_tokenizer_class=_a ) _A : Dict = CustomTokenizer.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) _A : Any = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def a__ ( self ) -> List[Any]: try: AutoConfig.register("""custom""" , _a ) # Can register in two steps AutoTokenizer.register(_a , slow_tokenizer_class=_a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_a , fast_tokenizer_class=_a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _a , slow_tokenizer_class=_a , fast_tokenizer_class=_a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoTokenizer.register(_a , fast_tokenizer_class=_a ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _A : int = BertTokenizerFast.from_pretrained(_a ) bert_tokenizer.save_pretrained(_a ) _A : List[Any] = CustomTokenizerFast.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) _A : List[str] = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _A : str = AutoTokenizer.from_pretrained(_a , use_fast=_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _A : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _A : Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_a ) _A : str = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_a ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) _A : Tuple = AutoTokenizer.from_pretrained(_a , trust_remote_code=_a ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _A : int = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_a , use_fast=_a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) _A : Optional[Any] = AutoTokenizer.from_pretrained(_a , trust_remote_code=_a , use_fast=_a ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def a__ ( self ) -> Union[str, Any]: class lowercase ( UpperCamelCase__ ): _a = False class lowercase ( UpperCamelCase__ ): _a = NewTokenizer _a = False try: AutoConfig.register("""custom""" , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) AutoTokenizer.register(_a , fast_tokenizer_class=_a ) # If remote code is not set, the default is to use local _A : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) _A : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=_a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. _A : Any = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) _A : List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_a , use_fast=_a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub _A : Union[str, Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) _A : str = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_a , use_fast=_a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> Union[str, Any]: _A : Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_a ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _A : Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_a , use_fast=_a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def a__ ( self ) -> str: with self.assertRaisesRegex( _a , """bert-base is not a local folder and is not a valid model identifier""" ): _A : int = AutoTokenizer.from_pretrained("""bert-base""" ) def a__ ( self ) -> Union[str, Any]: with self.assertRaisesRegex( _a , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _A : int = AutoTokenizer.from_pretrained(_a , revision="""aaaaaa""" ) def a__ ( self ) -> Any: # Make sure we have cached the tokenizer. _A : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: _A : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
369
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
343
0
from collections.abc import Callable def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : float = a _A : float = b if function(snake_case_ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case_ ) == 0: return b elif ( function(snake_case_ ) * function(snake_case_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: _A : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(snake_case_ ) == 0: return mid elif function(snake_case_ ) * function(snake_case_ ) < 0: _A : List[str] = mid else: _A : str = mid _A : Dict = start + (end - start) / 2.0 return mid def lowerCAmelCase_ ( snake_case_ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
370
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
0
def lowerCAmelCase_ ( snake_case_ ): _A : str = [0] * len(snake_case_ ) _A : Optional[int] = [] _A : List[Any] = [] _A : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case_ ) ): if indegree[i] == 0: queue.append(snake_case_ ) while queue: _A : Union[str, Any] = queue.pop(0 ) cnt += 1 topo.append(snake_case_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(snake_case_ ) if cnt != len(snake_case_ ): print("""Cycle exists""" ) else: print(snake_case_ ) # Adjacency List of Graph _snake_case = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
371
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
343
0
def lowerCAmelCase_ ( snake_case_ ): return sum(i for i in range(1,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") _snake_case = int(input("Enter number: ").strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
350
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "resnet" _a = ["basic", "bottleneck"] def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int: super().__init__(**_a ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _A : Optional[Any] = num_channels _A : List[Any] = embedding_size _A : int = hidden_sizes _A : Union[str, Any] = depths _A : Optional[int] = layer_type _A : Any = hidden_act _A : List[Any] = downsample_in_first_stage _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A , _A : str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-3
343
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): assert x is not None assert y is not None _A : Tuple = len(snake_case_ ) _A : int = len(snake_case_ ) # declaring the array for storing the dp values _A : Union[str, Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1,m + 1 ): for j in range(1,n + 1 ): _A : Any = 1 if x[i - 1] == y[j - 1] else 0 _A : Union[str, Any] = max(l[i - 1][j],l[i][j - 1],l[i - 1][j - 1] + match ) _A : Optional[Any] = """""" _A : Any = m, n while i > 0 and j > 0: _A : Union[str, Any] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _A : Optional[Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _snake_case = "AGGTAB" _snake_case = "GXTXAYB" _snake_case = 4 _snake_case = "GTAB" _snake_case , _snake_case = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
351
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Load checkpoint _A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" ) _A : Any = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: _A : Tuple = v else: _A : Dict = v _A : Optional[Any] = chkpt["""params"""] _A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )} _A : str = chkpt["""dico_word2id"""] _A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()} # Save pytorch-model _A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME _A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(snake_case_,snake_case_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase : def __init__( self , _a , _a=2 , _a=3 , _a=4 , _a=2 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=36 , _a=3 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=6 , _a=6 , _a=3 , _a=4 , _a=None , _a=1000 , ): _A : Optional[Any] = parent _A : List[Any] = batch_size _A : Optional[int] = num_channels _A : int = image_size _A : str = patch_size _A : Tuple = text_seq_length _A : List[Any] = is_training _A : Any = use_input_mask _A : List[Any] = use_token_type_ids _A : List[str] = use_labels _A : Optional[Any] = vocab_size _A : str = hidden_size _A : Union[str, Any] = num_hidden_layers _A : Union[str, Any] = num_attention_heads _A : Tuple = intermediate_size _A : Optional[int] = hidden_act _A : List[str] = hidden_dropout_prob _A : Dict = attention_probs_dropout_prob _A : Optional[int] = max_position_embeddings _A : Optional[int] = type_vocab_size _A : Optional[int] = type_sequence_label_size _A : Optional[Any] = initializer_range _A : Optional[int] = coordinate_size _A : Optional[int] = shape_size _A : Optional[Any] = num_labels _A : List[Any] = num_choices _A : Union[str, Any] = scope _A : Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _A : List[Any] = text_seq_length _A : List[Any] = (image_size // patch_size) ** 2 + 1 _A : List[str] = self.text_seq_length + self.image_seq_length def a__ ( self ): _A : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _A : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _A : int = bbox[i, j, 3] _A : Tuple = bbox[i, j, 1] _A : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: _A : List[str] = bbox[i, j, 2] _A : Tuple = bbox[i, j, 0] _A : Dict = t _A : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : Optional[Any] = None if self.use_input_mask: _A : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) _A : str = None if self.use_token_type_ids: _A : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _A : List[Any] = None _A : Any = None if self.use_labels: _A : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _A : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): _A : Dict = LayoutLMvaModel(config=_a ) model.to(_a ) model.eval() # text + image _A : List[Any] = model(_a , pixel_values=_a ) _A : int = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a ) _A : Optional[Any] = model(_a , bbox=_a , pixel_values=_a , token_type_ids=_a ) _A : List[Any] = model(_a , bbox=_a , pixel_values=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _A : int = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _A : int = model(pixel_values=_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): _A : Optional[int] = self.num_labels _A : Union[str, Any] = LayoutLMvaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : List[str] = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): _A : int = self.num_labels _A : str = LayoutLMvaForTokenClassification(config=_a ) model.to(_a ) model.eval() _A : str = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): _A : Union[str, Any] = LayoutLMvaForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _A : Union[str, Any] = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self ): _A : List[str] = self.prepare_config_and_inputs() ( _A ) : Tuple = config_and_inputs _A : List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = False _a = False _a = False _a = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _a = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def a__ ( self , _a , _a , _a , _a , _a ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def a__ ( self ): _A : Any = LayoutLMvaModelTester(self ) _A : Dict = ConfigTester(self , config_class=_a , hidden_size=37 ) def a__ ( self , _a , _a , _a=False ): _A : Dict = copy.deepcopy(_a ) if model_class in get_values(_a ): _A : str = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_a , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_a ): _A : Union[str, Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_a ) elif model_class in get_values(_a ): _A : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) _A : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) elif model_class in [ *get_values(_a ), ]: _A : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) elif model_class in [ *get_values(_a ), ]: _A : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_a , ) return inputs_dict def a__ ( self ): self.config_tester.run_common_tests() def a__ ( self ): _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ): _A : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Union[str, Any] = type self.model_tester.create_and_check_model(*_a ) def a__ ( self ): _A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def a__ ( self ): _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def a__ ( self ): _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def a__ ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : List[Any] = LayoutLMvaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ): return LayoutLMvaImageProcessor(apply_ocr=_a ) if is_vision_available() else None @slow def a__ ( self ): _A : str = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(_a ) _A : int = self.default_image_processor _A : Optional[int] = prepare_img() _A : int = image_processor(images=_a , return_tensors="""pt""" ).pixel_values.to(_a ) _A : Dict = torch.tensor([[1, 2]] ) _A : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _A : Optional[Any] = model( input_ids=input_ids.to(_a ) , bbox=bbox.to(_a ) , pixel_values=pixel_values.to(_a ) , ) # verify the logits _A : Dict = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , _a ) _A : Dict = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1e-4 ) )
352
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=24 , _a=2 , _a=6 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=None , _a=1000 , ) -> Optional[int]: _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : Union[str, Any] = seq_length _A : str = is_training _A : Optional[Any] = use_input_mask _A : str = use_token_type_ids _A : int = use_labels _A : Any = vocab_size _A : Optional[Any] = hidden_size _A : Tuple = num_hidden_layers _A : List[Any] = num_attention_heads _A : Optional[Any] = intermediate_size _A : List[Any] = hidden_act _A : List[Any] = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : Any = max_position_embeddings _A : Union[str, Any] = type_vocab_size _A : Optional[Any] = type_sequence_label_size _A : Optional[Any] = initializer_range _A : Optional[Any] = num_labels _A : Any = scope _A : List[str] = range_bbox def a__ ( self ) -> int: _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _A : Optional[Any] = bbox[i, j, 3] _A : Dict = bbox[i, j, 1] _A : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: _A : List[Any] = bbox[i, j, 2] _A : int = bbox[i, j, 0] _A : List[Any] = t _A : Dict = None if self.use_input_mask: _A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _A : Any = None if self.use_token_type_ids: _A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Union[str, Any] = None _A : int = None if self.use_labels: _A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a__ ( self ) -> Union[str, Any]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]: _A : Any = LiltModel(config=_a ) model.to(_a ) model.eval() _A : Union[str, Any] = model(_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) _A : Optional[int] = model(_a , bbox=_a , token_type_ids=_a ) _A : str = model(_a , bbox=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]: _A : List[str] = self.num_labels _A : Optional[Any] = LiltForTokenClassification(config=_a ) model.to(_a ) model.eval() _A : List[str] = model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , ) -> Tuple: _A : Optional[Any] = LiltForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _A : List[Any] = model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self ) -> Tuple: _A : Optional[Any] = self.prepare_config_and_inputs() ( _A ) : Optional[Any] = config_and_inputs _A : Dict = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _a = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def a__ ( self , _a , _a , _a , _a , _a ) -> Dict: return True def a__ ( self ) -> Optional[Any]: _A : int = LiltModelTester(self ) _A : Union[str, Any] = ConfigTester(self , config_class=_a , hidden_size=37 ) def a__ ( self ) -> Dict: self.config_tester.run_common_tests() def a__ ( self ) -> Any: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> int: _A : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Union[str, Any] = type self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def a__ ( self ) -> Optional[int]: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def a__ ( self ) -> Union[str, Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = LiltModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @slow class lowercase ( unittest.TestCase ): def a__ ( self ) -> Any: _A : Optional[int] = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(_a ) _A : Optional[int] = torch.tensor([[1, 2]] , device=_a ) _A : Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_a ) # forward pass with torch.no_grad(): _A : List[Any] = model(input_ids=_a , bbox=_a ) _A : Tuple = torch.Size([1, 2, 768] ) _A : Any = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_a , ) self.assertTrue(outputs.last_hidden_state.shape , _a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _a , atol=1e-3 ) )
353
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
0
from math import ceil def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(range(0,snake_case_ ) ) _A : int = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _A : Tuple = [] for i in device_map_blocks: if device_map_blocks.count(snake_case_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case_ ) # Missing blocks _A : Tuple = [i for i in blocks if i not in device_map_blocks] _A : Union[str, Any] = [i for i in device_map_blocks if i not in blocks] if len(snake_case_ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = list(range(snake_case_ ) ) _A : List[str] = int(ceil(n_layers / len(snake_case_ ) ) ) _A : Tuple = [layers[i : i + n_blocks] for i in range(0,snake_case_,snake_case_ )] return dict(zip(snake_case_,snake_case_ ) )
354
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
343
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") _snake_case = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCAmelCase_ ( snake_case_ ): with open(snake_case_,"""rb""" ) as f: _A : Tuple = Image.open(snake_case_ ) return im.convert("""RGB""" ) @dataclass class lowercase : _a = field( default=UpperCamelCase__,metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." },) _a = field( default=UpperCamelCase__,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _a = field(default=UpperCamelCase__,metadata={"help": "A folder containing the training data."} ) _a = field(default=UpperCamelCase__,metadata={"help": "A folder containing the validation data."} ) _a = field( default=0.15,metadata={"help": "Percent to split off of train for validation."} ) _a = field( default=UpperCamelCase__,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) },) _a = field( default=UpperCamelCase__,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) },) def a__ ( self ) -> List[Any]: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class lowercase : _a = field( default="google/vit-base-patch16-224-in21k",metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},) _a = field( default=UpperCamelCase__,metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase__ )},) _a = field( default=UpperCamelCase__,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _a = field( default=UpperCamelCase__,metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) _a = field( default="main",metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},) _a = field(default=UpperCamelCase__,metadata={"help": "Name or path of preprocessor config."} ) _a = field( default=UpperCamelCase__,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) },) _a = field( default=UpperCamelCase__,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},) def lowerCAmelCase_ ( snake_case_ ): _A : str = torch.stack([example["""pixel_values"""] for example in examples] ) _A : str = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""",snake_case_,snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""",datefmt="""%m/%d/%Y %H:%M:%S""",handlers=[logging.StreamHandler(sys.stdout )],) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A : List[Any] = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _A : Optional[int] = load_dataset( data_args.dataset_name,data_args.dataset_config_name,cache_dir=model_args.cache_dir,task="""image-classification""",use_auth_token=True if model_args.use_auth_token else None,) else: _A : Tuple = {} if data_args.train_dir is not None: _A : Any = os.path.join(data_args.train_dir,"""**""" ) if data_args.validation_dir is not None: _A : str = os.path.join(data_args.validation_dir,"""**""" ) _A : List[str] = load_dataset( """imagefolder""",data_files=snake_case_,cache_dir=model_args.cache_dir,task="""image-classification""",) # If we don't have a validation split, split off a percentage of train as validation. _A : Tuple = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split,snake_case_ ) and data_args.train_val_split > 0.0: _A : Union[str, Any] = dataset["""train"""].train_test_split(data_args.train_val_split ) _A : List[Any] = split["""train"""] _A : Optional[Any] = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _A : Any = dataset["""train"""].features["""labels"""].names _A : Dict = {}, {} for i, label in enumerate(snake_case_ ): _A : List[str] = str(snake_case_ ) _A : Dict = label # Load the accuracy metric from the datasets package _A : Tuple = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case_ ): return metric.compute(predictions=np.argmax(p.predictions,axis=1 ),references=p.label_ids ) _A : Any = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path,num_labels=len(snake_case_ ),labelaid=snake_case_,idalabel=snake_case_,finetuning_task="""image-classification""",cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,) _A : Union[str, Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ),config=snake_case_,cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,) _A : Union[str, Any] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path,cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _A : Optional[int] = image_processor.size["""shortest_edge"""] else: _A : List[str] = (image_processor.size["""height"""], image_processor.size["""width"""]) _A : Optional[Any] = Normalize(mean=image_processor.image_mean,std=image_processor.image_std ) _A : int = Compose( [ RandomResizedCrop(snake_case_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _A : Union[str, Any] = Compose( [ Resize(snake_case_ ), CenterCrop(snake_case_ ), ToTensor(), normalize, ] ) def train_transforms(snake_case_ ): _A : List[Any] = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(snake_case_ ): _A : Tuple = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: _A : str = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: _A : Optional[int] = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(snake_case_ ) # Initalize our trainer _A : Optional[int] = Trainer( model=snake_case_,args=snake_case_,train_dataset=dataset["""train"""] if training_args.do_train else None,eval_dataset=dataset["""validation"""] if training_args.do_eval else None,compute_metrics=snake_case_,tokenizer=snake_case_,data_collator=snake_case_,) # Training if training_args.do_train: _A : List[str] = None if training_args.resume_from_checkpoint is not None: _A : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A : Optional[Any] = last_checkpoint _A : Any = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics("""train""",train_result.metrics ) trainer.save_metrics("""train""",train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A : Optional[int] = trainer.evaluate() trainer.log_metrics("""eval""",snake_case_ ) trainer.save_metrics("""eval""",snake_case_ ) # Write model card and (optionally) push to hub _A : Any = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) if __name__ == "__main__": main()
355
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _A : Optional[Any] = parser.parse_args() return args.f class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> None: _A : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): _A : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: _A : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) _A : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) _A : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
343
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
356
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]: _A : Optional[int] = parent _A : Dict = batch_size _A : Any = image_size _A : Optional[int] = patch_size _A : Optional[int] = num_channels _A : List[Any] = is_training _A : Optional[Any] = use_labels _A : Any = hidden_size _A : Any = num_hidden_layers _A : List[Any] = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : Tuple = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[Any] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[str] = None if self.use_labels: _A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[str] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Union[str, Any] = self.type_sequence_label_size _A : Tuple = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Dict = 1 _A : str = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : Optional[int] = self.prepare_config_and_inputs() _A , _A , _A : Dict = config_and_inputs _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Tuple: _A : Tuple = ViTMSNModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def a__ ( self ) -> int: pass def a__ ( self ) -> Any: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> str: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> List[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Any: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: torch.manual_seed(2 ) _A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) _A : Tuple = self.default_image_processor _A : Dict = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : int = model(**_a ) # verify the logits _A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
343
0
from math import isclose, sqrt def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = point_y / 4 / point_x _A : Optional[Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _A : Tuple = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _A : List[str] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _A : Any = outgoing_gradient**2 + 4 _A : int = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _A : Tuple = (point_y - outgoing_gradient * point_x) ** 2 - 100 _A : Dict = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _A : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _A : Optional[int] = x_minus if isclose(snake_case_,snake_case_ ) else x_plus _A : str = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCAmelCase_ ( snake_case_ = 1.4,snake_case_ = -9.6 ): _A : int = 0 _A : float = first_x_coord _A : float = first_y_coord _A : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _A : Dict = next_point(snake_case_,snake_case_,snake_case_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
357
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
358
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : Any = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Any: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> Union[str, Any]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : Optional[Any] = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Any: _A : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Any: _A : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : int = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Dict = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : int = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : int = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Any = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: _A : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> Any: _A : Dict = ["""This is going to be way too long.""" * 150, """short example"""] _A : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : List[Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : List[Any] = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[int]: # fmt: off _A : Optional[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Dict = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Tuple: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> Optional[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> Tuple: _A : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[Any] = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : Any = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Any = ["""not super long but more than 5 tokens""", """tiny"""] _A : Optional[Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Dict = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Optional[int]: _A : Dict = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Dict = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
343
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=3 , _a=32 , _a=3 , _a=10 , _a=[10, 20, 30, 40] , _a=[1, 1, 2, 1] , _a=True , _a=True , _a="relu" , _a=3 , _a=None , ) -> List[Any]: _A : List[str] = parent _A : Optional[Any] = batch_size _A : Dict = image_size _A : Tuple = num_channels _A : str = embeddings_size _A : List[Any] = hidden_sizes _A : Optional[Any] = depths _A : Union[str, Any] = is_training _A : List[Any] = use_labels _A : str = hidden_act _A : List[str] = num_labels _A : Any = scope _A : Any = len(_a ) def a__ ( self ) -> List[str]: _A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : int = None if self.use_labels: _A : str = ids_tensor([self.batch_size] , self.num_labels ) _A : Tuple = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Optional[Any]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__ ( self , _a , _a , _a ) -> int: _A : Dict = TFResNetModel(config=_a ) _A : List[Any] = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> Any: _A : Any = self.num_labels _A : List[str] = TFResNetForImageClassification(_a ) _A : Any = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self ) -> Union[str, Any]: _A : Tuple = self.prepare_config_and_inputs() _A : Tuple = config_and_inputs _A : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _a = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _a = False _a = False _a = False _a = False _a = False def a__ ( self ) -> str: _A : Tuple = TFResNetModelTester(self ) _A : List[str] = ConfigTester(self , config_class=_a , has_text_modality=_a ) def a__ ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> Any: return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def a__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def a__ ( self ) -> Any: pass def a__ ( self ) -> List[str]: _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Dict = model_class(_a ) _A : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Any = [*signature.parameters.keys()] _A : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Optional[Any]: _A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) _A : Optional[Any] = model(**self._prepare_for_class(_a , _a ) ) _A : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : int = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A : Any = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: _A : Any = layer_type _A : Tuple = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> Optional[int]: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[Any]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = TFResNetModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> Any: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__ ( self ) -> Optional[int]: _A : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _A : Tuple = self.default_image_processor _A : Tuple = prepare_img() _A : Any = image_processor(images=_a , return_tensors="""tf""" ) # forward pass _A : Optional[Any] = model(**_a ) # verify the logits _A : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[Any] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _a , atol=1e-4 ) )
360
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase : _a = 42 # setable values _a = 42 _a = 42 _a = None @classmethod def a__ ( cls , _a , _a , _a ) -> Tuple: return cls(common=_a , init_noise_sigma=_a , timesteps=_a ) @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in FlaxKarrasDiffusionSchedulers] _a = 42 @property def a__ ( self ) -> Dict: return True @register_to_config def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple: _A : Tuple = dtype def a__ ( self , _a = None ) -> DDPMSchedulerState: if common is None: _A : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) _A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_a , init_noise_sigma=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray: return sample def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState: _A : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]: _A : Optional[Any] = state.common.alphas_cumprod[t] _A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _A : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _A : Optional[Any] = jnp.clip(_a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) ) elif variance_type == "fixed_large": _A : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _A : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _A : str = variance _A : Union[str, Any] = state.common.betas[t] _A : Tuple = (predicted_variance + 1) / 2 _A : List[str] = frac * max_log + (1 - frac) * min_log return variance def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: _A : Dict = timestep if key is None: _A : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 ) else: _A : int = None # 1. compute alphas, betas _A : int = state.common.alphas_cumprod[t] _A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _A : Union[str, Any] = 1 - alpha_prod_t _A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _A : Optional[int] = model_output elif self.config.prediction_type == "v_prediction": _A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _A : Union[str, Any] = jnp.clip(_a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _A : Tuple = jax.random.split(_a , num=1 ) _A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise _A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _A : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return add_noise_common(state.common , _a , _a , _a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return get_velocity_common(state.common , _a , _a , _a ) def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
343
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def a__ ( *_a , **_a ) -> List[str]: pass @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): _a = MODEL_FOR_OBJECT_DETECTION_MAPPING def a__ ( self , _a , _a , _a ) -> Dict: _A : int = ObjectDetectionPipeline(model=_a , image_processor=_a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def a__ ( self , _a , _a ) -> Optional[Any]: _A : List[str] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { """score""": ANY(_a ), """label""": ANY(_a ), """box""": {"""xmin""": ANY(_a ), """ymin""": ANY(_a ), """xmax""": ANY(_a ), """ymax""": ANY(_a )}, } , ) import datasets _A : Tuple = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) _A : int = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] _A : Tuple = object_detector(_a , threshold=0.0 ) self.assertEqual(len(_a ) , len(_a ) ) for outputs in batch_outputs: self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { """score""": ANY(_a ), """label""": ANY(_a ), """box""": {"""xmin""": ANY(_a ), """ymin""": ANY(_a ), """xmax""": ANY(_a ), """ymax""": ANY(_a )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def a__ ( self ) -> Optional[int]: pass @require_torch def a__ ( self ) -> List[Any]: _A : Optional[Any] = """hf-internal-testing/tiny-detr-mobilenetsv3""" _A : Dict = AutoModelForObjectDetection.from_pretrained(_a ) _A : List[str] = AutoFeatureExtractor.from_pretrained(_a ) _A : Optional[int] = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) _A : List[str] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) _A : int = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def a__ ( self ) -> str: _A : Dict = """facebook/detr-resnet-50""" _A : Optional[Any] = AutoModelForObjectDetection.from_pretrained(_a ) _A : List[str] = AutoFeatureExtractor.from_pretrained(_a ) _A : Optional[Any] = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) _A : int = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) _A : Any = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def a__ ( self ) -> Optional[Any]: _A : Tuple = """facebook/detr-resnet-50""" _A : List[Any] = pipeline("""object-detection""" , model=_a ) _A : Any = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) _A : Optional[int] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def a__ ( self ) -> Optional[int]: _A : str = 0.9985 _A : List[Any] = """facebook/detr-resnet-50""" _A : Optional[Any] = pipeline("""object-detection""" , model=_a ) _A : List[str] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=_a ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def a__ ( self ) -> Optional[int]: _A : Any = """Narsil/layoutlmv3-finetuned-funsd""" _A : Any = 0.9993 _A : Union[str, Any] = pipeline("""object-detection""" , model=_a , threshold=_a ) _A : int = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
361
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( UpperCamelCase__ ): _a = (UniPCMultistepScheduler,) _a = (("num_inference_steps", 2_5),) def a__ ( self , **_a ) -> List[str]: _A : List[str] = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**_a ) return config def a__ ( self , _a=0 , **_a ) -> Dict: _A : Any = dict(self.forward_default_kwargs ) _A : Union[str, Any] = kwargs.pop("""num_inference_steps""" , _a ) _A : Dict = self.dummy_sample _A : Optional[Any] = 0.1 * sample _A : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _A : int = self.get_scheduler_config(**_a ) _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals _A : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _A : Optional[Any] = scheduler_class.from_pretrained(_a ) new_scheduler.set_timesteps(_a ) # copy over dummy past residuals _A : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] _A : Dict = sample, sample for t in range(_a , time_step + scheduler.config.solver_order + 1 ): _A : str = scheduler.step(_a , _a , _a , **_a ).prev_sample _A : Union[str, Any] = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self , _a=0 , **_a ) -> Dict: _A : Union[str, Any] = dict(self.forward_default_kwargs ) _A : Tuple = kwargs.pop("""num_inference_steps""" , _a ) _A : int = self.dummy_sample _A : int = 0.1 * sample _A : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _A : str = self.get_scheduler_config() _A : str = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals (must be after setting timesteps) _A : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _A : Union[str, Any] = scheduler_class.from_pretrained(_a ) # copy over dummy past residuals new_scheduler.set_timesteps(_a ) # copy over dummy past residual (must be after setting timesteps) _A : int = dummy_past_residuals[: new_scheduler.config.solver_order] _A : Optional[int] = scheduler.step(_a , _a , _a , **_a ).prev_sample _A : Optional[int] = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self , _a=None , **_a ) -> Dict: if scheduler is None: _A : Union[str, Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config(**_a ) _A : str = scheduler_class(**_a ) _A : List[Any] = self.scheduler_classes[0] _A : Dict = self.get_scheduler_config(**_a ) _A : Any = scheduler_class(**_a ) _A : List[str] = 10 _A : List[str] = self.dummy_model() _A : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ).prev_sample return sample def a__ ( self ) -> Union[str, Any]: _A : Optional[Any] = dict(self.forward_default_kwargs ) _A : List[Any] = kwargs.pop("""num_inference_steps""" , _a ) for scheduler_class in self.scheduler_classes: _A : Tuple = self.get_scheduler_config() _A : str = scheduler_class(**_a ) _A : Optional[Any] = self.dummy_sample _A : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_a , """set_timesteps""" ): scheduler.set_timesteps(_a ) elif num_inference_steps is not None and not hasattr(_a , """set_timesteps""" ): _A : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] _A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] _A : Optional[Any] = scheduler.timesteps[5] _A : Any = scheduler.timesteps[6] _A : Any = scheduler.step(_a , _a , _a , **_a ).prev_sample _A : List[Any] = scheduler.step(_a , _a , _a , **_a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a__ ( self ) -> Tuple: # make sure that iterating over schedulers with same config names gives same results # for defaults _A : Dict = UniPCMultistepScheduler(**self.get_scheduler_config() ) _A : Tuple = self.full_loop(scheduler=_a ) _A : Optional[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _A : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _A : int = DEISMultistepScheduler.from_config(scheduler.config ) _A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _A : str = UniPCMultistepScheduler.from_config(scheduler.config ) _A : List[Any] = self.full_loop(scheduler=_a ) _A : Dict = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def a__ ( self ) -> int: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Tuple: self.check_over_configs(thresholding=_a ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , solver_order=_a , solver_type=_a , ) def a__ ( self ) -> List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> List[Any]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_a , solver_type=_a , prediction_type=_a , ) _A : Any = self.full_loop( solver_order=_a , solver_type=_a , prediction_type=_a , ) assert not torch.isnan(_a ).any(), "Samples have nan numbers" def a__ ( self ) -> Dict: self.check_over_configs(lower_order_final=_a ) self.check_over_configs(lower_order_final=_a ) def a__ ( self ) -> str: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_a , time_step=0 ) def a__ ( self ) -> int: _A : Optional[int] = self.full_loop() _A : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def a__ ( self ) -> Any: _A : Optional[int] = self.full_loop(prediction_type="""v_prediction""" ) _A : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def a__ ( self ) -> Dict: _A : Optional[Any] = self.scheduler_classes[0] _A : Union[str, Any] = self.get_scheduler_config(thresholding=_a , dynamic_thresholding_ratio=0 ) _A : str = scheduler_class(**_a ) _A : int = 10 _A : Optional[int] = self.dummy_model() _A : int = self.dummy_sample_deter.half() scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Dict = model(_a , _a ) _A : int = scheduler.step(_a , _a , _a ).prev_sample assert sample.dtype == torch.floataa def a__ ( self , **_a ) -> str: for scheduler_class in self.scheduler_classes: _A : int = self.get_scheduler_config(**_a ) _A : Tuple = scheduler_class(**_a ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
362
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase__ ) class lowercase : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _A : Optional[Any] = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _A : Dict = titles if not isinstance(_a , _a ) else [titles] _A : Tuple = texts if not isinstance(_a , _a ) else [texts] _A : Any = len(_a ) _A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' ) _A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A : str = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]: _A : Dict = reader_input["""input_ids"""] _A , _A , _A : Tuple = reader_output[:3] _A : List[str] = len(_a ) _A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _A : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A : Tuple = sequence_ids.index(self.pad_token_id ) else: _A : Tuple = len(_a ) _A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]: _A : Tuple = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a ) _A : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _A : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = READER_PRETRAINED_VOCAB_FILES_MAP _a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = READER_PRETRAINED_INIT_CONFIGURATION _a = ["input_ids", "attention_mask"]
343
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = RobertaPreLayerNormConfig.from_pretrained( snake_case_,architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict _A : int = torch.load(hf_hub_download(repo_id=snake_case_,filename="""pytorch_model.bin""" ) ) _A : Dict = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): _A : List[str] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue _A : int = tensor_value _A : int = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case_,config=snake_case_,state_dict=snake_case_ ) model.save_pretrained(snake_case_ ) # convert tokenizer _A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) tokenizer.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
0
def lowerCAmelCase_ ( snake_case_ ): _A : List[str] = [0] * len(snake_case_ ) for i in range(1,len(snake_case_ ) ): # use last results for better performance - dynamic programming _A : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _A : Union[str, Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _A : int = j return prefix_result def lowerCAmelCase_ ( snake_case_ ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
364
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,): if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _A : Optional[Any] = True create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ ) current_sequence.pop() _A : str = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
343
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowercase ( UpperCamelCase__ ): _a = "gpt_neox" def __init__( self , _a=5_0432 , _a=6144 , _a=44 , _a=64 , _a=2_4576 , _a="gelu" , _a=0.25 , _a=1_0000 , _a=0.0 , _a=0.0 , _a=0.1 , _a=2048 , _a=0.02 , _a=1e-5 , _a=True , _a=0 , _a=2 , _a=False , _a=True , _a=None , **_a , ) -> List[str]: super().__init__(bos_token_id=_a , eos_token_id=_a , **_a ) _A : Tuple = vocab_size _A : Any = max_position_embeddings _A : Union[str, Any] = hidden_size _A : str = num_hidden_layers _A : Any = num_attention_heads _A : List[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Tuple = rotary_pct _A : Optional[int] = rotary_emb_base _A : List[Any] = attention_dropout _A : Union[str, Any] = hidden_dropout _A : Any = classifier_dropout _A : List[str] = initializer_range _A : List[Any] = layer_norm_eps _A : Optional[Any] = use_cache _A : Optional[int] = tie_word_embeddings _A : Union[str, Any] = use_parallel_residual _A : Tuple = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def a__ ( self ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _a ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''' ) _A : Dict = self.rope_scaling.get("""type""" , _a ) _A : Dict = self.rope_scaling.get("""factor""" , _a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_a , _a ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
365
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() ) _A : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case = logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if metric == "rouge2": _A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _A : Dict = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _A : List[str] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) _A : Optional[int] = ModelCheckpoint( dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,) return checkpoint_callback def lowerCAmelCase_ ( snake_case_,snake_case_ ): return EarlyStopping( monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,) class lowercase ( pl.Callback ): def a__ ( self , _a , _a ) -> Optional[Any]: _A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def a__ ( self , _a , _a , _a , _a=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _A : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _A : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": _A : List[Any] = od / """test_results.txt""" _A : List[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a , """a+""" ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue _A : List[Any] = metrics[key] if isinstance(_a , torch.Tensor ): _A : str = val.item() _A : str = F'''{key}: {val:.6f}\n''' writer.write(_a ) if not save_generations: return if "preds" in metrics: _A : List[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_a ) @rank_zero_only def a__ ( self , _a , _a ) -> str: try: _A : int = pl_module.model.model.num_parameters() except AttributeError: _A : str = pl_module.model.num_parameters() _A : Optional[int] = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def a__ ( self , _a , _a ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_a , _a , """test""" ) @rank_zero_only def a__ ( self , _a , _a ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
343
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _snake_case = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a=None , _a=1 ) -> List[Any]: _A : str = tokenizer _A : str = dataset _A : str = len(_a ) if n_tasks is None else n_tasks _A : List[str] = n_copies def __iter__( self ) -> Optional[Any]: _A : Any = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) _A : List[Any] = self.tokenizer(_a , padding=_a , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a ) -> Optional[int]: _A : List[str] = start_length _A : Dict = eof_strings _A : Optional[int] = tokenizer def __call__( self , _a , _a , **_a ) -> Optional[Any]: _A : List[str] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _A : Union[str, Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_a ) def lowerCAmelCase_ ( snake_case_ ): _A : int = re.split("""(%s)""" % """|""".join(snake_case_ ),snake_case_ ) # last string should be "" return "".join(string_list[:-2] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_=20,**snake_case_ ): _A : Any = defaultdict(snake_case_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(snake_case_ ) ): with torch.no_grad(): _A : Optional[int] = batch["""ids"""].shape[-1] _A : Optional[int] = accelerator.unwrap_model(snake_case_ ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]],num_return_sequences=snake_case_,**snake_case_ ) # each task is generated batch_size times _A : Any = batch["""task_id"""].repeat(snake_case_ ) _A : Optional[int] = accelerator.pad_across_processes( snake_case_,dim=1,pad_index=tokenizer.pad_token_id ) _A : Optional[Any] = accelerator.gather((generated_tokens, generated_tasks) ) _A : Optional[Any] = generated_tokens.cpu().numpy() _A : str = generated_tasks.cpu().numpy() for task, generated_tokens in zip(snake_case_,snake_case_ ): gen_token_dict[task].append(snake_case_ ) _A : str = [[] for _ in range(snake_case_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _A : str = tokenizer.decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ ) code_gens[task].append(remove_last_block(snake_case_ ) ) return code_gens def lowerCAmelCase_ ( ): # Setup configuration _A : Union[str, Any] = HfArgumentParser(snake_case_ ) _A : int = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _A : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _A : int = """false""" if args.num_workers is None: _A : int = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _A : Dict = Accelerator() set_seed(args.seed,device_specific=snake_case_ ) # Load model and tokenizer _A : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) _A : int = tokenizer.eos_token _A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _A : Any = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0,snake_case_,snake_case_ )] ), } # Load evaluation dataset and metric _A : List[str] = load_dataset("""openai_humaneval""" ) _A : Dict = load_metric("""code_eval""" ) _A : Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) _A : Union[str, Any] = args.n_samples // args.batch_size _A : Any = TokenizedDataset(snake_case_,human_eval["""test"""],n_copies=snake_case_,n_tasks=snake_case_ ) # do not confuse args.batch_size, which is actually the num_return_sequences _A : Optional[Any] = DataLoader(snake_case_,batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _A : Dict = code_eval_metric.compute(references=[""""""],predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception _A : List[Any] = accelerator.prepare(snake_case_,snake_case_ ) _A : List[str] = complete_code( snake_case_,snake_case_,snake_case_,snake_case_,n_tasks=snake_case_,batch_size=args.batch_size,**snake_case_,) if accelerator.is_main_process: _A : Union[str, Any] = [] for task in tqdm(range(snake_case_ ) ): _A : Optional[int] = human_eval["""test"""][task]["""test"""] _A : Any = f'''check({human_eval["test"][task]["entry_point"]})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric _A : List[str] = code_eval_metric.compute( references=snake_case_,predictions=snake_case_,num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file,"""w""" ) as fp: json.dump(snake_case_,snake_case_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
366
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A , _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
343
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=224 , _a=1000 , _a=[3, 3, 6, 4] , _a=[48, 56, 112, 220] , ) -> Optional[int]: _A : Tuple = parent _A : Optional[Any] = batch_size _A : str = num_channels _A : Optional[Any] = is_training _A : List[Any] = use_labels _A : Dict = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Dict = num_labels _A : Tuple = image_size _A : Dict = layer_depths _A : Union[str, Any] = embed_dims def a__ ( self ) -> List[str]: _A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : Any = None if self.use_labels: _A : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _A : Optional[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Dict: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def a__ ( self , _a , _a , _a ) -> Optional[Any]: _A : str = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _A : Optional[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[Any] = self.num_labels _A : Tuple = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _A : str = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _A : str = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self ) -> int: (_A) : Union[str, Any] = self.prepare_config_and_inputs() _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : Tuple = SwiftFormerModelTester(self ) _A : Union[str, Any] = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def a__ ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> int: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> List[str]: _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(_a ) _A : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Tuple = [*signature.parameters.keys()] _A : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Union[str, Any] = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Dict: def check_hidden_states_output(_a , _a , _a ): _A : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Union[str, Any] = outputs.hidden_states _A : Optional[Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Dict = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> Tuple: def _config_zero_init(_a ): _A : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-10 ) if isinstance(getattr(_a , _a , _a ) , _a ): _A : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _A : str = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a__ ( self ) -> str: pass def lowerCAmelCase_ ( ): _A : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def a__ ( self ) -> Any: _A : Dict = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_a ) _A : Optional[int] = self.default_image_processor _A : str = prepare_img() _A : Optional[int] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Union[str, Any] = model(**_a ) # verify the logits _A : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Union[str, Any] = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
367
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowerCAmelCase_ ( snake_case_ = "mumbai" ): _A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ): _A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
343
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # Initialise PyTorch model _A : str = BertConfig.from_json_file(snake_case_ ) print(f'''Building PyTorch model from configuration: {config}''' ) _A : Optional[int] = BertForPreTraining(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(snake_case_,snake_case_,snake_case_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(),snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
368
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
0
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.054571817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: _A : Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _A : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _A : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
369
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
343
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = torch.load(snake_case_,map_location="""cpu""" ) if "model" in sd.keys(): _A : List[str] = torch.load(snake_case_,map_location="""cpu""" )["""model"""] # pop unnecessary weights _A : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(snake_case_ ) _A : List[Any] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _A : Optional[int] = sd.pop(snake_case_ ) _A : str = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _A : Tuple = sd[key] # We split QKV in separate Q,K,V _A : Dict = key.replace(""".qkv_proj.""",""".q_proj.""" ) _A : Optional[int] = key.replace(""".qkv_proj.""",""".k_proj.""" ) _A : Union[str, Any] = key.replace(""".qkv_proj.""",""".v_proj.""" ) _A : int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _A : Any = torch.split(snake_case_,depth // 3,dim=0 ) _A : Any = q _A : Any = k _A : Any = v del sd[key] return sd @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=None ): _A : int = load_checkpoint(snake_case_ ) if config is not None: _A : Any = OPTConfig.from_pretrained(snake_case_ ) else: _A : List[Any] = OPTConfig() _A : Optional[Any] = OPTModel(snake_case_ ).half().eval() model.load_state_dict(snake_case_ ) # Check results Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") _snake_case = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
370
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): """simple docstring""" _a = KandinskyVaaControlnetPipeline _a = ["image_embeds", "negative_image_embeds", "hint"] _a = ["image_embeds", "negative_image_embeds", "hint"] _a = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> Dict: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Optional[int]: torch.manual_seed(0 ) _A : List[str] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Dict = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> Optional[Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ ( self ) -> int: torch.manual_seed(0 ) _A : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> List[str]: _A : int = self.dummy_unet _A : Optional[Any] = self.dummy_movq _A : Optional[int] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_a , ) _A : Any = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create hint _A : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): _A : int = torch.manual_seed(_a ) else: _A : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) _A : Dict = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def a__ ( self ) -> List[Any]: _A : Any = """cpu""" _A : Any = self.get_dummy_components() _A : List[str] = self.pipeline_class(**_a ) _A : Optional[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : str = output.images _A : Optional[int] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Optional[Any] = image[0, -3:, -3:, -1] _A : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> Optional[Any]: _A : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) _A : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) _A : List[str] = torch.from_numpy(np.array(_a ) ).float() / 255.0 _A : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _A : Any = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) _A : Optional[int] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : List[str] = """A robot, 4k photo""" _A : Dict = torch.Generator(device="""cuda""" ).manual_seed(0 ) _A : str = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : Tuple = torch.Generator(device="""cuda""" ).manual_seed(0 ) _A : Tuple = pipeline( image_embeds=_a , negative_image_embeds=_a , hint=_a , generator=_a , num_inference_steps=100 , output_type="""np""" , ) _A : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a , _a )
371
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
343
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): lowerCAmelCase = "resnet" lowerCAmelCase = ["basic", "bottleneck"] def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int: super().__init__(**_a ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _A : Optional[Any] = num_channels _A : List[Any] = embedding_size _A : int = hidden_sizes _A : Union[str, Any] = depths _A : Optional[int] = layer_type _A : Any = hidden_act _A : List[Any] = downsample_in_first_stage _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A : str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): lowerCAmelCase = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-3
350
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "resnet" _a = ["basic", "bottleneck"] def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int: super().__init__(**_a ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _A : Optional[Any] = num_channels _A : List[Any] = embedding_size _A : int = hidden_sizes _A : Union[str, Any] = depths _A : Optional[int] = layer_type _A : Any = hidden_act _A : List[Any] = downsample_in_first_stage _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A , _A : str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-3
343
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Union[str, Any] = state_dict.pop(snake_case_ ) _A : Dict = val def lowerCAmelCase_ ( snake_case_ ): _A : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _A : List[str] = key.replace("""backbone.0.body""","""backbone.conv_encoder.model""" ) _A : Optional[int] = value else: _A : Any = value return new_state_dict def lowerCAmelCase_ ( snake_case_,snake_case_=False ): _A : Dict = """""" if is_panoptic: _A : List[Any] = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _A : Tuple = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _A : List[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _A : Optional[Any] = in_proj_weight[:256, :] _A : List[str] = in_proj_bias[:256] _A : Optional[Any] = in_proj_weight[256:512, :] _A : Tuple = in_proj_bias[256:512] _A : Dict = in_proj_weight[-256:, :] _A : Optional[Any] = in_proj_bias[-256:] def lowerCAmelCase_ ( ): _A : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _A : Tuple = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _A : Union[str, Any] = """resnet101""" if "dc5" in model_name: _A : Optional[int] = True _A : Union[str, Any] = """panoptic""" in model_name if is_panoptic: _A : Tuple = 250 else: _A : Optional[Any] = 91 _A : List[str] = """huggingface/label-files""" _A : Union[str, Any] = """coco-detection-id2label.json""" _A : Optional[int] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : List[str] = {int(snake_case_ ): v for k, v in idalabel.items()} _A : Tuple = idalabel _A : Tuple = {v: k for k, v in idalabel.items()} # load image processor _A : Optional[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" _A : int = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image _A : Any = prepare_img() _A : List[Any] = image_processor(images=snake_case_,return_tensors="""pt""" ) _A : List[str] = encoding["""pixel_values"""] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub _A : Dict = torch.hub.load("""DeppMeng/ConditionalDETR""",snake_case_,pretrained=snake_case_ ).eval() _A : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _A : Dict = """conditional_detr.""" + src rename_key(snake_case_,snake_case_,snake_case_ ) _A : Dict = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_,is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _A : str = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _A : str = state_dict.pop(snake_case_ ) _A : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _A : Union[str, Any] = state_dict.pop(snake_case_ ) _A : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _A : str = state_dict.pop(snake_case_ ) _A : Optional[int] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _A : Union[str, Any] = state_dict.pop(snake_case_ ) _A : int = val # finally, create HuggingFace model and load state dict _A : Dict = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_,organization="""DepuMeng""",commit_message="""Add model""" ) # verify our conversion _A : Tuple = conditional_detr(snake_case_ ) _A : Tuple = model(snake_case_ ) assert torch.allclose(outputs.logits,original_outputs["""pred_logits"""],atol=1e-4 ) assert torch.allclose(outputs.pred_boxes,original_outputs["""pred_boxes"""],atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks,original_outputs["""pred_masks"""],atol=1e-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _snake_case = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
351
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Load checkpoint _A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" ) _A : Any = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: _A : Tuple = v else: _A : Dict = v _A : Optional[Any] = chkpt["""params"""] _A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )} _A : str = chkpt["""dico_word2id"""] _A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()} # Save pytorch-model _A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME _A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(snake_case_,snake_case_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _snake_case = getLogger(__name__) _snake_case = "cuda" if torch.cuda.is_available() else "cpu" def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = DEFAULT_DEVICE,snake_case_=False,snake_case_="summarization",snake_case_=None,**snake_case_,): _A : Tuple = Path(snake_case_ ).open("""w""",encoding="""utf-8""" ) _A : Optional[int] = str(snake_case_ ) _A : Tuple = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).to(snake_case_ ) if fpaa: _A : Optional[Any] = model.half() _A : Any = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. _A : Tuple = time.time() # update config with task specific params use_task_specific_params(snake_case_,snake_case_ ) if prefix is None: _A : Dict = prefix or getattr(model.config,"""prefix""","""""" ) or """""" for examples_chunk in tqdm(list(chunks(snake_case_,snake_case_ ) ) ): _A : List[Any] = [prefix + text for text in examples_chunk] _A : Optional[Any] = tokenizer(snake_case_,return_tensors="""pt""",truncation=snake_case_,padding="""longest""" ).to(snake_case_ ) _A : List[str] = model.generate( input_ids=batch.input_ids,attention_mask=batch.attention_mask,**snake_case_,) _A : Optional[Any] = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() _A : Any = int(time.time() - start_time ) # seconds _A : List[Any] = len(snake_case_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs,4 )} def lowerCAmelCase_ ( ): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowerCAmelCase_ ( snake_case_=True ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""",type=snake_case_,help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""",type=snake_case_,help="""where to save summaries""" ) parser.add_argument("""--reference_path""",type=snake_case_,required=snake_case_,help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""",type=snake_case_,required=snake_case_,default="""metrics.json""",help="""where to save metrics""" ) parser.add_argument("""--device""",type=snake_case_,required=snake_case_,default=snake_case_,help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" ) parser.add_argument( """--n_obs""",type=snake_case_,default=-1,required=snake_case_,help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""",action="""store_true""" ) parser.add_argument("""--dump-args""",action="""store_true""",help="""print the custom hparams with the results""" ) parser.add_argument( """--info""",nargs="""?""",type=snake_case_,const=datetime_now(),help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ),) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A : Optional[int] = parser.parse_known_args() _A : Dict = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if parsed_args and verbose: print(f'''parsed the following generate kwargs: {parsed_args}''' ) _A : Dict = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A : Tuple = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) _A : int = generate_summaries_or_translations( snake_case_,args.save_path,args.model_name,batch_size=args.bs,device=args.device,fpaa=args.fpaa,task=args.task,prefix=args.prefix,**snake_case_,) if args.reference_path is None: return {} # Compute scores _A : Any = calculate_bleu if """translation""" in args.task else calculate_rouge _A : str = [x.rstrip() for x in open(args.save_path ).readlines()] _A : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case_ )] _A : dict = score_fn(snake_case_,snake_case_ ) scores.update(snake_case_ ) if args.dump_args: scores.update(snake_case_ ) if args.info: _A : Dict = args.info if verbose: print(snake_case_ ) if args.score_path is not None: json.dump(snake_case_,open(args.score_path,"""w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
352
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
0
import requests _snake_case = "" # <-- Put your OpenWeatherMap appid here! _snake_case = "https://api.openweathermap.org/data/2.5/" def lowerCAmelCase_ ( snake_case_ = "Chicago",snake_case_ = APPID ): return requests.get(URL_BASE + """weather""",params=locals() ).json() def lowerCAmelCase_ ( snake_case_ = "Kolkata, India",snake_case_ = APPID ): return requests.get(URL_BASE + """forecast""",params=locals() ).json() def lowerCAmelCase_ ( snake_case_ = 55.68,snake_case_ = 12.57,snake_case_ = APPID ): return requests.get(URL_BASE + """onecall""",params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _snake_case = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
353
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
0
from jiwer import compute_measures import datasets _snake_case = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _snake_case = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" _snake_case = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a__ ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def a__ ( self , _a=None , _a=None , _a=False ) -> Tuple: if concatenate_texts: return compute_measures(_a , _a )["wer"] else: _A : Tuple = 0 _A : int = 0 for prediction, reference in zip(_a , _a ): _A : List[str] = compute_measures(_a , _a ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
354
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
343
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _A : Optional[Any] = parser.parse_args() return args.f class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> None: _A : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): _A : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: _A : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) _A : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) _A : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
343
0
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[Any] = [] _A : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _A : Dict = result + left + right return input_list def lowerCAmelCase_ ( snake_case_ ): if len(snake_case_ ) <= 1: return input_list _A : Tuple = list(snake_case_ ) # iteration for two-way merging _A : int = 2 while p <= len(snake_case_ ): # getting low, high and middle value for merge-sort of single list for i in range(0,len(snake_case_ ),snake_case_ ): _A : List[str] = i _A : Tuple = i + p - 1 _A : Dict = (low + high + 1) // 2 _A : Tuple = merge(snake_case_,snake_case_,snake_case_,snake_case_ ) # final merge of last two parts if p * 2 >= len(snake_case_ ): _A : Any = i _A : List[Any] = merge(snake_case_,0,snake_case_,len(snake_case_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() if user_input == "": _snake_case = [] else: _snake_case = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
356
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]: _A : Optional[int] = parent _A : Dict = batch_size _A : Any = image_size _A : Optional[int] = patch_size _A : Optional[int] = num_channels _A : List[Any] = is_training _A : Optional[Any] = use_labels _A : Any = hidden_size _A : Any = num_hidden_layers _A : List[Any] = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : Tuple = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[Any] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[str] = None if self.use_labels: _A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[str] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Union[str, Any] = self.type_sequence_label_size _A : Tuple = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Dict = 1 _A : str = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : Optional[int] = self.prepare_config_and_inputs() _A , _A , _A : Dict = config_and_inputs _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Tuple: _A : Tuple = ViTMSNModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def a__ ( self ) -> int: pass def a__ ( self ) -> Any: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> str: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> List[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Any: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: torch.manual_seed(2 ) _A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) _A : Tuple = self.default_image_processor _A : Dict = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : int = model(**_a ) # verify the logits _A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
343
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> int: _A : List[str] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_a ).to(_a ) _A : Tuple = AutoTokenizer.from_pretrained("""google/mt5-small""" ) _A : Union[str, Any] = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids _A : List[str] = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids _A : List[str] = model(input_ids.to(_a ) , labels=labels.to(_a ) ).loss _A : Optional[int] = -(labels.shape[-1] * loss.item()) _A : Any = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
357
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _snake_case = ["text", "image", "audio"] def lowerCAmelCase_ ( snake_case_ ): _A : int = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(snake_case_,snake_case_ ): inputs.append(create_inputs(snake_case_ ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def lowerCAmelCase_ ( snake_case_ ): _A : Dict = [] for output in outputs: if isinstance(snake_case_,(str, AgentText) ): output_types.append("""text""" ) elif isinstance(snake_case_,(Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(snake_case_,(torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class lowercase : def a__ ( self ) -> Optional[int]: self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) _A : List[str] = self.tool.inputs for _input in inputs: if isinstance(_input , _a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _A : Optional[int] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def a__ ( self ) -> Union[str, Any]: _A : Optional[Any] = create_inputs(self.tool.inputs ) _A : List[Any] = self.tool(*_a ) # There is a single output if len(self.tool.outputs ) == 1: _A : Optional[int] = [outputs] self.assertListEqual(output_types(_a ) , self.tool.outputs ) def a__ ( self ) -> int: self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def a__ ( self ) -> List[str]: _A : Dict = create_inputs(self.tool.inputs ) _A : Optional[Any] = self.tool(*_a ) if not isinstance(_a , _a ): _A : str = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) ) for output, output_type in zip(_a , self.tool.outputs ): _A : str = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_a , _a ) ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = create_inputs(self.tool.inputs ) _A : List[str] = [] for _input, input_type in zip(_a , self.tool.inputs ): if isinstance(_a , _a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _A : Any = self.tool(*_a ) if not isinstance(_a , _a ): _A : Optional[int] = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) )
358
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
0
from typing import Any import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.array_equal(snake_case_,matrix.conjugate().T ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Tuple = v.conjugate().T _A : int = v_star.dot(snake_case_ ) assert isinstance(snake_case_,np.ndarray ) return (v_star_dot.dot(snake_case_ )) / (v_star.dot(snake_case_ )) def lowerCAmelCase_ ( ): _A : int = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) _A : Dict = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case_ ), f'''{a} is not hermitian.''' print(rayleigh_quotient(snake_case_,snake_case_ ) ) _A : Optional[int] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case_ ), f'''{a} is not hermitian.''' assert rayleigh_quotient(snake_case_,snake_case_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
343
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase__ ) class lowercase : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _A : Optional[Any] = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _A : Dict = titles if not isinstance(_a , _a ) else [titles] _A : Tuple = texts if not isinstance(_a , _a ) else [texts] _A : Any = len(_a ) _A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' ) _A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A : str = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]: _A : Dict = reader_input["""input_ids"""] _A : Tuple = reader_output[:3] _A : List[str] = len(_a ) _A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _A : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A : Tuple = sequence_ids.index(self.pad_token_id ) else: _A : Tuple = len(_a ) _A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]: _A : Tuple = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a ) _A : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _A : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = READER_PRETRAINED_VOCAB_FILES_MAP _a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = READER_PRETRAINED_INIT_CONFIGURATION _a = ["input_ids", "attention_mask"]
360
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase : _a = 42 # setable values _a = 42 _a = 42 _a = None @classmethod def a__ ( cls , _a , _a , _a ) -> Tuple: return cls(common=_a , init_noise_sigma=_a , timesteps=_a ) @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in FlaxKarrasDiffusionSchedulers] _a = 42 @property def a__ ( self ) -> Dict: return True @register_to_config def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple: _A : Tuple = dtype def a__ ( self , _a = None ) -> DDPMSchedulerState: if common is None: _A : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) _A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_a , init_noise_sigma=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray: return sample def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState: _A : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]: _A : Optional[Any] = state.common.alphas_cumprod[t] _A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _A : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _A : Optional[Any] = jnp.clip(_a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) ) elif variance_type == "fixed_large": _A : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _A : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _A : str = variance _A : Union[str, Any] = state.common.betas[t] _A : Tuple = (predicted_variance + 1) / 2 _A : List[str] = frac * max_log + (1 - frac) * min_log return variance def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: _A : Dict = timestep if key is None: _A : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 ) else: _A : int = None # 1. compute alphas, betas _A : int = state.common.alphas_cumprod[t] _A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _A : Union[str, Any] = 1 - alpha_prod_t _A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _A : Optional[int] = model_output elif self.config.prediction_type == "v_prediction": _A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _A : Union[str, Any] = jnp.clip(_a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _A : Tuple = jax.random.split(_a , num=1 ) _A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise _A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _A : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return add_noise_common(state.common , _a , _a , _a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return get_velocity_common(state.common , _a , _a , _a ) def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
343
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase_ ( snake_case_,snake_case_=10 ): _A : Dict = [] for _ in range(snake_case_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase_ ( snake_case_,snake_case_=10 ): _A : Dict = [] for step in range(snake_case_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = os.path.join(snake_case_,"""schedule.bin""" ) torch.save(scheduler.state_dict(),snake_case_ ) _A : Tuple = torch.load(snake_case_ ) scheduler.load_state_dict(snake_case_ ) return lrs @require_torch class lowercase ( unittest.TestCase ): def a__ ( self , _a , _a , _a ) -> Any: self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def a__ ( self ) -> Optional[Any]: _A : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a ) _A : Optional[int] = torch.tensor([0.4, 0.2, -0.5] ) _A : Tuple = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A : Optional[int] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _A : int = criterion(_a , _a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a ) _A : List[str] = torch.tensor([0.4, 0.2, -0.5] ) _A : Dict = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A : str = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_a , weight_decay=0.0 , relative_step=_a , scale_parameter=_a , warmup_init=_a , ) for _ in range(1000 ): _A : Dict = criterion(_a , _a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class lowercase ( unittest.TestCase ): _a = nn.Linear(5_0,5_0 ) if is_torch_available() else None _a = AdamW(m.parameters(),lr=10.0 ) if is_torch_available() else None _a = 1_0 def a__ ( self , _a , _a , _a , _a=None ) -> str: self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a , msg=_a ) def a__ ( self ) -> List[str]: _A : List[str] = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A : Union[str, Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A : Optional[int] = data _A : Tuple = scheduler_func(self.optimizer , **_a ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A : str = unwrap_schedule(_a , self.num_steps ) self.assertListAlmostEqual( _a , _a , tol=1e-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _A : str = scheduler_func(self.optimizer , **_a ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_a ) # wrap to test picklability of the schedule _A : List[str] = unwrap_and_save_reload_schedule(_a , self.num_steps ) self.assertListEqual(_a , _a , msg=F'''failed for {scheduler_func} in save and reload''' ) class lowercase : def __init__( self , _a ) -> Optional[Any]: _A : Tuple = fn def __call__( self , *_a , **_a ) -> Optional[Any]: return self.fn(*_a , **_a ) @classmethod def a__ ( self , _a ) -> int: _A : Optional[Any] = list(map(self , scheduler.lr_lambdas ) )
361
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER","False" ) ) is not True,reason="Skipping test because should only be run when releasing minor transformers version",) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=_a , ) assert hasattr(self , """env""" ) def a__ ( self , _a=1 ) -> Dict: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-single''' , instance_count=_a , instance_type=self.instance_type , debugger_hook_config=_a , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def a__ ( self , _a ) -> Any: TrainingJobAnalytics(_a ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) def a__ ( self ) -> str: # create estimator _A : str = self.create_estimator() # run training estimator.fit() # result dataframe _A : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _A : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _A : str = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , _a )
362
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase__ ) class lowercase : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _A : Optional[Any] = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _A : Dict = titles if not isinstance(_a , _a ) else [titles] _A : Tuple = texts if not isinstance(_a , _a ) else [texts] _A : Any = len(_a ) _A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' ) _A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A : str = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]: _A : Dict = reader_input["""input_ids"""] _A , _A , _A : Tuple = reader_output[:3] _A : List[str] = len(_a ) _A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _A : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A : Tuple = sequence_ids.index(self.pad_token_id ) else: _A : Tuple = len(_a ) _A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]: _A : Tuple = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a ) _A : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _A : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = READER_PRETRAINED_VOCAB_FILES_MAP _a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = READER_PRETRAINED_INIT_CONFIGURATION _a = ["input_ids", "attention_mask"]
343
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = MgpstrTokenizer _a = False _a = {} _a = False def a__ ( self ) -> int: super().setUp() # fmt: off _A : List[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _A : int = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) def a__ ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: _A : List[Any] = """tester""" _A : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def a__ ( self ) -> Any: pass def a__ ( self ) -> Optional[int]: _A : Any = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A : List[str] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) _A : int = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _A : Any = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A : Optional[int] = self.get_input_output_texts(_a ) _A : int = tokenizer.tokenize(_a ) _A : Tuple = tokenizer.convert_tokens_to_ids(_a ) _A : Dict = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _A : List[Any] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _A : Optional[int] = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(""" """ , """""" ) , _a ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def a__ ( self ) -> int: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def a__ ( self ) -> Optional[int]: pass
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _snake_case = logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_=2,snake_case_=3,snake_case_=16,snake_case_ = 10,snake_case_ = 2 ): def get_dataset(snake_case_ ): _A : int = torch.randn(batch_size * n_batches,1 ) return TensorDataset(snake_case_,a * x + b + 0.1 * torch.randn(batch_size * n_batches,1 ) ) _A : int = get_dataset(snake_case_ ) _A : Union[str, Any] = get_dataset(snake_case_ ) _A : int = DataLoader(snake_case_,shuffle=snake_case_,batch_size=snake_case_,num_workers=4 ) _A : int = DataLoader(snake_case_,shuffle=snake_case_,batch_size=snake_case_,num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_=None ): _A : Dict = [] for epoch in range(snake_case_ ): # Train quickly model.train() for batch in dataloader: _A : Any = batch _A : Optional[int] = model(snake_case_ ) _A : str = torch.nn.functional.mse_loss(snake_case_,snake_case_ ) accelerator.backward(snake_case_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowercase ( nn.Module ): def __init__( self ) -> Optional[int]: super().__init__() _A : List[str] = nn.Parameter(torch.randn(1 ) ) _A : Union[str, Any] = nn.Parameter(torch.randn(1 ) ) def a__ ( self , _a ) -> List[str]: return x * self.a + self.b class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A : List[Any] = DummyModel() _A : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _A : Union[str, Any] = dummy_dataloaders() _A : str = ProjectConfiguration(total_limit=1 , project_dir=_a , automatic_checkpoint_naming=_a ) # Train baseline _A : Union[str, Any] = Accelerator(project_config=_a ) _A : str = accelerator.prepare( _a , _a , _a , _a ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def a__ ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A : str = DummyModel() _A : Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _A : Dict = dummy_dataloaders() # Train baseline _A : Tuple = Accelerator() _A : Union[str, Any] = accelerator.prepare( _a , _a , _a , _a ) # Save initial _A : Any = os.path.join(_a , """initial""" ) accelerator.save_state(_a ) (_A) : List[Any] = model.a.item(), model.b.item() _A : int = optimizer.state_dict() _A : int = train(3 , _a , _a , _a , _a ) (_A) : str = model.a.item(), model.b.item() _A : Tuple = optimizer.state_dict() # Train partially set_seed(42 ) _A : Optional[Any] = DummyModel() _A : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _A : List[Any] = dummy_dataloaders() _A : Tuple = Accelerator() _A : str = accelerator.prepare( _a , _a , _a , _a ) accelerator.load_state(_a ) (_A) : str = model.a.item(), model.b.item() _A : str = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) _A : int = train(2 , _a , _a , _a , _a ) # Save everything _A : Tuple = os.path.join(_a , """checkpoint""" ) accelerator.save_state(_a ) # Load everything back in and make sure all states work accelerator.load_state(_a ) test_rands += train(1 , _a , _a , _a , _a ) (_A) : Dict = model.a.item(), model.b.item() _A : Tuple = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A : Optional[Any] = DummyModel() _A : List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _A : int = dummy_dataloaders() _A : str = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline _A : str = Accelerator(project_dir=_a , project_config=_a ) _A : Union[str, Any] = accelerator.prepare( _a , _a , _a , _a ) # Save initial accelerator.save_state() (_A) : str = model.a.item(), model.b.item() _A : Tuple = optimizer.state_dict() _A : Any = train(3 , _a , _a , _a , _a ) (_A) : Optional[int] = model.a.item(), model.b.item() _A : Any = optimizer.state_dict() # Train partially set_seed(42 ) _A : List[str] = DummyModel() _A : Any = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _A : Optional[int] = dummy_dataloaders() _A : int = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_a ) _A : Tuple = Accelerator(project_dir=_a , project_config=_a ) _A : int = accelerator.prepare( _a , _a , _a , _a ) accelerator.load_state(os.path.join(_a , """checkpoints""" , """checkpoint_0""" ) ) (_A) : Tuple = model.a.item(), model.b.item() _A : Optional[Any] = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) _A : Union[str, Any] = train(2 , _a , _a , _a , _a ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , _a , _a , _a , _a ) (_A) : Tuple = model.a.item(), model.b.item() _A : Union[str, Any] = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) def a__ ( self ) -> List[Any]: _A : Tuple = torch.tensor([1, 2, 3] ) _A : List[Any] = torch.tensor([2, 3, 4] ) _A : Any = DummyModel() _A : str = torch.optim.Adam(net.parameters() ) _A : Optional[Any] = Accelerator() with self.assertRaises(_a ) as ve: accelerator.register_for_checkpointing(_a , _a , _a , _a ) _A : List[str] = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A : Dict = DummyModel() _A : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _A : List[str] = torch.optim.lr_scheduler.StepLR(_a , step_size=1 , gamma=0.99 ) _A : Union[str, Any] = dummy_dataloaders() _A : Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline _A : Optional[Any] = Accelerator(project_dir=_a , project_config=_a ) _A : str = accelerator.prepare( _a , _a , _a , _a , _a ) # Save initial accelerator.save_state() _A : Union[str, Any] = scheduler.state_dict() train(3 , _a , _a , _a , _a , _a ) self.assertNotEqual(_a , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(_a , scheduler.state_dict() ) def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _A : List[Any] = DummyModel() _A : Dict = ProjectConfiguration(automatic_checkpoint_naming=_a , total_limit=2 ) # Train baseline _A : List[Any] = Accelerator(project_dir=_a , project_config=_a ) _A : str = accelerator.prepare(_a ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_a , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def a__ ( self ) -> Any: _A : Union[str, Any] = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": _snake_case = "/tmp/accelerate/state_checkpointing" _snake_case = DummyModel() _snake_case = torch.optim.Adam(params=model.parameters(), lr=1e-3) _snake_case = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) _snake_case , _snake_case = dummy_dataloaders() _snake_case = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _snake_case = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _snake_case , _snake_case = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _snake_case = group["params"][0].device break assert param_device.type == accelerator.device.type _snake_case = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: _snake_case = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: _snake_case = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
364
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,): if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _A : Optional[Any] = True create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ ) current_sequence.pop() _A : str = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
343
0