code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
1
class a_ : def __init__( self :str) -> List[Any]: UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = {} def __a ( self :Tuple , _lowercase :Tuple) -> Optional[int]: if vertex not in self.adjacency: UpperCAmelCase_ = {} self.num_vertices += 1 def __a ( self :List[Any] , _lowercase :Optional[int] , _lowercase :List[str] , _lowercase :Union[str, Any]) -> Any: self.add_vertex(_lowercase) self.add_vertex(_lowercase) if head == tail: return UpperCAmelCase_ = weight UpperCAmelCase_ = weight def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_edges() for edge in edges: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = edge edges.remove((tail, head, weight)) for i in range(len(_lowercase)): UpperCAmelCase_ = list(edges[i]) edges.sort(key=lambda _lowercase: e[2]) for i in range(len(_lowercase) - 1): if edges[i][2] >= edges[i + 1][2]: UpperCAmelCase_ = edges[i][2] + 1 for edge in edges: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = edge UpperCAmelCase_ = weight UpperCAmelCase_ = weight def __str__( self :int) -> List[Any]: UpperCAmelCase_ = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: UpperCAmelCase_ = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''') def __a ( self :int) -> str: UpperCAmelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def __a ( self :Union[str, Any]) -> List[str]: return self.adjacency.keys() @staticmethod def __a ( _lowercase :Union[str, Any]=None , _lowercase :int=None) -> str: UpperCAmelCase_ = Graph() if vertices is None: UpperCAmelCase_ = [] if edges is None: UpperCAmelCase_ = [] for vertex in vertices: g.add_vertex(_lowercase) for edge in edges: g.add_edge(*_lowercase) return g class a_ : def __init__( self :List[str]) -> Union[str, Any]: UpperCAmelCase_ = {} UpperCAmelCase_ = {} def __len__( self :str) -> Union[str, Any]: return len(self.parent) def __a ( self :List[Any] , _lowercase :Dict) -> List[str]: if item in self.parent: return self.find(_lowercase) UpperCAmelCase_ = item UpperCAmelCase_ = 0 return item def __a ( self :Optional[int] , _lowercase :Optional[int]) -> Tuple: if item not in self.parent: return self.make_set(_lowercase) if item != self.parent[item]: UpperCAmelCase_ = self.find(self.parent[item]) return self.parent[item] def __a ( self :List[str] , _lowercase :Optional[int] , _lowercase :str) -> Dict: UpperCAmelCase_ = self.find(_lowercase) UpperCAmelCase_ = self.find(_lowercase) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: UpperCAmelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: UpperCAmelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 UpperCAmelCase_ = roota return roota return None @staticmethod def __a ( _lowercase :Union[str, Any]) -> int: UpperCAmelCase_ = graph.num_vertices UpperCAmelCase_ = Graph.UnionFind() UpperCAmelCase_ = [] while num_components > 1: UpperCAmelCase_ = {} for vertex in graph.get_vertices(): UpperCAmelCase_ = -1 UpperCAmelCase_ = graph.get_edges() for edge in edges: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = edge edges.remove((tail, head, weight)) for edge in edges: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = edge UpperCAmelCase_ = union_find.find(_lowercase) UpperCAmelCase_ = union_find.find(_lowercase) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCAmelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCAmelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = cheap_edge[vertex] if union_find.find(_lowercase) != union_find.find(_lowercase): union_find.union(_lowercase , _lowercase) mst_edges.append(cheap_edge[vertex]) UpperCAmelCase_ = num_components - 1 UpperCAmelCase_ = Graph.build(edges=_lowercase) return mst
344
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
1
UpperCamelCase_ = {} def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase_ = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase_ = _calculate(days - 1 , __UpperCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase_ = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase_ = _calculate(days - 1 , __UpperCAmelCase , 0 ) UpperCAmelCase_ = state_late + state_absent + state_ontime UpperCAmelCase_ = prizestrings return prizestrings def A ( __UpperCAmelCase = 30 ) -> int: '''simple docstring''' return _calculate(__UpperCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
344
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a_ ( nn.Module ): def __init__( self :str , _lowercase :int , _lowercase :int , _lowercase :int , _lowercase :Optional[int]=0.0 , _lowercase :Optional[int] = None , _lowercase :str = "geglu" , _lowercase :Optional[int] = None , _lowercase :bool = False , _lowercase :bool = False , _lowercase :bool = False , _lowercase :bool = False , _lowercase :bool = True , _lowercase :str = "layer_norm" , _lowercase :bool = False , ) -> str: super().__init__() UpperCAmelCase_ = only_cross_attention UpperCAmelCase_ = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' UpperCAmelCase_ = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.") # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: UpperCAmelCase_ = AdaLayerNorm(_lowercase , _lowercase) elif self.use_ada_layer_norm_zero: UpperCAmelCase_ = AdaLayerNormZero(_lowercase , _lowercase) else: UpperCAmelCase_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase) UpperCAmelCase_ = Attention( query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , dropout=_lowercase , bias=_lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowercase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. UpperCAmelCase_ = ( AdaLayerNorm(_lowercase , _lowercase) if self.use_ada_layer_norm else nn.LayerNorm(_lowercase , elementwise_affine=_lowercase) ) UpperCAmelCase_ = Attention( query_dim=_lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowercase , dim_head=_lowercase , dropout=_lowercase , bias=_lowercase , upcast_attention=_lowercase , ) # is self-attn if encoder_hidden_states is none else: UpperCAmelCase_ = None UpperCAmelCase_ = None # 3. Feed-forward UpperCAmelCase_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase) UpperCAmelCase_ = FeedForward(_lowercase , dropout=_lowercase , activation_fn=_lowercase , final_dropout=_lowercase) # let chunk size default to None UpperCAmelCase_ = None UpperCAmelCase_ = 0 def __a ( self :Tuple , _lowercase :Optional[int] , _lowercase :int) -> Dict: # Sets chunk feed-forward UpperCAmelCase_ = chunk_size UpperCAmelCase_ = dim def __a ( self :Dict , _lowercase :torch.FloatTensor , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[torch.LongTensor] = None , _lowercase :Dict[str, Any] = None , _lowercase :Optional[torch.LongTensor] = None , ) -> List[Any]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: UpperCAmelCase_ = self.norma(_lowercase , _lowercase) elif self.use_ada_layer_norm_zero: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.norma( _lowercase , _lowercase , _lowercase , hidden_dtype=hidden_states.dtype) else: UpperCAmelCase_ = self.norma(_lowercase) UpperCAmelCase_ = cross_attention_kwargs if cross_attention_kwargs is not None else {} UpperCAmelCase_ = self.attna( _lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowercase , **_lowercase , ) if self.use_ada_layer_norm_zero: UpperCAmelCase_ = gate_msa.unsqueeze(1) * attn_output UpperCAmelCase_ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: UpperCAmelCase_ = ( self.norma(_lowercase , _lowercase) if self.use_ada_layer_norm else self.norma(_lowercase) ) UpperCAmelCase_ = self.attna( _lowercase , encoder_hidden_states=_lowercase , attention_mask=_lowercase , **_lowercase , ) UpperCAmelCase_ = attn_output + hidden_states # 3. Feed-forward UpperCAmelCase_ = self.norma(_lowercase) if self.use_ada_layer_norm_zero: UpperCAmelCase_ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.") UpperCAmelCase_ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size UpperCAmelCase_ = torch.cat( [self.ff(_lowercase) for hid_slice in norm_hidden_states.chunk(_lowercase , dim=self._chunk_dim)] , dim=self._chunk_dim , ) else: UpperCAmelCase_ = self.ff(_lowercase) if self.use_ada_layer_norm_zero: UpperCAmelCase_ = gate_mlp.unsqueeze(1) * ff_output UpperCAmelCase_ = ff_output + hidden_states return hidden_states class a_ ( nn.Module ): def __init__( self :List[str] , _lowercase :int , _lowercase :Optional[int] = None , _lowercase :int = 4 , _lowercase :float = 0.0 , _lowercase :str = "geglu" , _lowercase :bool = False , ) -> int: super().__init__() UpperCAmelCase_ = int(dim * mult) UpperCAmelCase_ = dim_out if dim_out is not None else dim if activation_fn == "gelu": UpperCAmelCase_ = GELU(_lowercase , _lowercase) if activation_fn == "gelu-approximate": UpperCAmelCase_ = GELU(_lowercase , _lowercase , approximate='''tanh''') elif activation_fn == "geglu": UpperCAmelCase_ = GEGLU(_lowercase , _lowercase) elif activation_fn == "geglu-approximate": UpperCAmelCase_ = ApproximateGELU(_lowercase , _lowercase) UpperCAmelCase_ = nn.ModuleList([]) # project in self.net.append(_lowercase) # project dropout self.net.append(nn.Dropout(_lowercase)) # project out self.net.append(nn.Linear(_lowercase , _lowercase)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowercase)) def __a ( self :Union[str, Any] , _lowercase :Dict) -> Optional[Any]: for module in self.net: UpperCAmelCase_ = module(_lowercase) return hidden_states class a_ ( nn.Module ): def __init__( self :Any , _lowercase :int , _lowercase :int , _lowercase :str = "none") -> int: super().__init__() UpperCAmelCase_ = nn.Linear(_lowercase , _lowercase) UpperCAmelCase_ = approximate def __a ( self :Any , _lowercase :int) -> List[Any]: if gate.device.type != "mps": return F.gelu(_lowercase , approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa) , approximate=self.approximate).to(dtype=gate.dtype) def __a ( self :List[str] , _lowercase :List[Any]) -> Dict: UpperCAmelCase_ = self.proj(_lowercase) UpperCAmelCase_ = self.gelu(_lowercase) return hidden_states class a_ ( nn.Module ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :int) -> List[Any]: super().__init__() UpperCAmelCase_ = nn.Linear(_lowercase , dim_out * 2) def __a ( self :Tuple , _lowercase :Tuple) -> Tuple: if gate.device.type != "mps": return F.gelu(_lowercase) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa)).to(dtype=gate.dtype) def __a ( self :str , _lowercase :str) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ = self.proj(_lowercase).chunk(2 , dim=-1) return hidden_states * self.gelu(_lowercase) class a_ ( nn.Module ): def __init__( self :int , _lowercase :int , _lowercase :int) -> Any: super().__init__() UpperCAmelCase_ = nn.Linear(_lowercase , _lowercase) def __a ( self :int , _lowercase :List[str]) -> int: UpperCAmelCase_ = self.proj(_lowercase) return x * torch.sigmoid(1.702 * x) class a_ ( nn.Module ): def __init__( self :Dict , _lowercase :str , _lowercase :List[str]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Embedding(_lowercase , _lowercase) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = nn.Linear(_lowercase , embedding_dim * 2) UpperCAmelCase_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase) def __a ( self :Dict , _lowercase :Dict , _lowercase :List[Any]) -> str: UpperCAmelCase_ = self.linear(self.silu(self.emb(_lowercase))) UpperCAmelCase_ , UpperCAmelCase_ = torch.chunk(_lowercase , 2) UpperCAmelCase_ = self.norm(_lowercase) * (1 + scale) + shift return x class a_ ( nn.Module ): def __init__( self :Optional[int] , _lowercase :str , _lowercase :Optional[int]) -> Optional[Any]: super().__init__() UpperCAmelCase_ = CombinedTimestepLabelEmbeddings(_lowercase , _lowercase) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = nn.Linear(_lowercase , 6 * embedding_dim , bias=_lowercase) UpperCAmelCase_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase , eps=1E-6) def __a ( self :str , _lowercase :Any , _lowercase :List[str] , _lowercase :List[str] , _lowercase :int=None) -> Union[str, Any]: UpperCAmelCase_ = self.linear(self.silu(self.emb(_lowercase , _lowercase , hidden_dtype=_lowercase))) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = emb.chunk(6 , dim=1) UpperCAmelCase_ = self.norm(_lowercase) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a_ ( nn.Module ): def __init__( self :Any , _lowercase :int , _lowercase :int , _lowercase :int , _lowercase :Optional[str] = None , _lowercase :float = 1E-5) -> str: super().__init__() UpperCAmelCase_ = num_groups UpperCAmelCase_ = eps if act_fn is None: UpperCAmelCase_ = None else: UpperCAmelCase_ = get_activation(_lowercase) UpperCAmelCase_ = nn.Linear(_lowercase , out_dim * 2) def __a ( self :Optional[int] , _lowercase :str , _lowercase :Dict) -> Tuple: if self.act: UpperCAmelCase_ = self.act(_lowercase) UpperCAmelCase_ = self.linear(_lowercase) UpperCAmelCase_ = emb[:, :, None, None] UpperCAmelCase_ , UpperCAmelCase_ = emb.chunk(2 , dim=1) UpperCAmelCase_ = F.group_norm(_lowercase , self.num_groups , eps=self.eps) UpperCAmelCase_ = x * (1 + scale) + shift return x
344
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCamelCase_ = { "allenai/led-base-16384": 16_384, } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] =VOCAB_FILES_NAMES UpperCamelCase__ : Tuple =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[Any] =LEDTokenizer UpperCamelCase__ : List[str] =["input_ids", "attention_mask"] def __init__( self :Union[str, Any] , _lowercase :Dict=None , _lowercase :Optional[Any]=None , _lowercase :List[Any]=None , _lowercase :Dict="replace" , _lowercase :Optional[int]="<s>" , _lowercase :Any="</s>" , _lowercase :Union[str, Any]="</s>" , _lowercase :List[Any]="<s>" , _lowercase :int="<unk>" , _lowercase :List[str]="<pad>" , _lowercase :int="<mask>" , _lowercase :Tuple=False , _lowercase :List[str]=True , **_lowercase :str , ) -> Dict: super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase , **_lowercase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , _lowercase) != add_prefix_space: UpperCAmelCase_ = getattr(_lowercase , pre_tok_state.pop('''type''')) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**_lowercase) UpperCAmelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase_ = '''post_processor''' UpperCAmelCase_ = getattr(self.backend_tokenizer , _lowercase , _lowercase) if tokenizer_component_instance: UpperCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_ = tuple(state['''sep''']) if "cls" in state: UpperCAmelCase_ = tuple(state['''cls''']) UpperCAmelCase_ = False if state.get('''add_prefix_space''' , _lowercase) != add_prefix_space: UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = True if state.get('''trim_offsets''' , _lowercase) != trim_offsets: UpperCAmelCase_ = trim_offsets UpperCAmelCase_ = True if changes_to_apply: UpperCAmelCase_ = getattr(_lowercase , state.pop('''type''')) UpperCAmelCase_ = component_class(**_lowercase) setattr(self.backend_tokenizer , _lowercase , _lowercase) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __a ( self :List[Any]) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def __a ( self :List[str] , _lowercase :int) -> Tuple: UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else value UpperCAmelCase_ = value def __a ( self :Union[str, Any] , *_lowercase :Tuple , **_lowercase :str) -> BatchEncoding: UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''') return super()._batch_encode_plus(*_lowercase , **_lowercase) def __a ( self :int , *_lowercase :Any , **_lowercase :List[str]) -> BatchEncoding: UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''') return super()._encode_plus(*_lowercase , **_lowercase) def __a ( self :Any , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: UpperCAmelCase_ = self._tokenizer.model.save(_lowercase , name=_lowercase) return tuple(_lowercase) def __a ( self :str , _lowercase :Optional[int] , _lowercase :Union[str, Any]=None) -> str: UpperCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __a ( self :Tuple , _lowercase :Union[Dict[str, EncodedInput], BatchEncoding] , _lowercase :Optional[int] = None , _lowercase :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowercase :Optional[int] = None , _lowercase :Optional[bool] = None , ) -> dict: UpperCAmelCase_ = super()._pad( encoded_inputs=_lowercase , max_length=_lowercase , padding_strategy=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ = len(encoded_inputs['''global_attention_mask''']) != len(_lowercase) if needs_to_be_padded: UpperCAmelCase_ = len(_lowercase) - len(encoded_inputs['''global_attention_mask''']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side)) return encoded_inputs
344
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase_ = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def A ( ) -> Any: '''simple docstring''' UpperCAmelCase_ = '''https://pypi.org/pypi/diffusers/json''' UpperCAmelCase_ = json.loads(request.urlopen(__UpperCAmelCase ).read() )['''releases'''].keys() return sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : version.Version(__UpperCAmelCase ) ) def A ( ) -> Any: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCAmelCase_ = Path(__UpperCAmelCase ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' init_hf_modules() UpperCAmelCase_ = Path(__UpperCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCAmelCase_ = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def A ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ = f.read() # Imports of the form `import .xxx` UpperCAmelCase_ = re.findall('''^\s*import\s+\.(\S+)\s*$''' , __UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __UpperCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__UpperCAmelCase ) ) def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = [module_file] UpperCAmelCase_ = [] # Let's recurse through all relative imports while not no_change: UpperCAmelCase_ = [] for f in files_to_check: new_imports.extend(get_relative_imports(__UpperCAmelCase ) ) UpperCAmelCase_ = Path(__UpperCAmelCase ).parent UpperCAmelCase_ = [str(module_path / m ) for m in new_imports] UpperCAmelCase_ = [f for f in new_import_files if f not in all_relative_imports] UpperCAmelCase_ = [f"{f}.py" for f in new_import_files] UpperCAmelCase_ = len(__UpperCAmelCase ) == 0 all_relative_imports.extend(__UpperCAmelCase ) return all_relative_imports def A ( __UpperCAmelCase ) -> Dict: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ = f.read() # Imports of the form `import xxx` UpperCAmelCase_ = re.findall('''^\s*import\s+(\S+)\s*$''' , __UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __UpperCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module UpperCAmelCase_ = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all UpperCAmelCase_ = list(set(__UpperCAmelCase ) ) UpperCAmelCase_ = [] for imp in imports: try: importlib.import_module(__UpperCAmelCase ) except ImportError: missing_packages.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' f"{', '.join(__UpperCAmelCase )}. Run `pip install {' '.join(__UpperCAmelCase )}`" ) return get_relative_imports(__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' UpperCAmelCase_ = module_path.replace(os.path.sep , '''.''' ) UpperCAmelCase_ = importlib.import_module(__UpperCAmelCase ) if class_name is None: return find_pipeline_class(__UpperCAmelCase ) return getattr(__UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase ) -> int: '''simple docstring''' from ..pipelines import DiffusionPipeline UpperCAmelCase_ = dict(inspect.getmembers(__UpperCAmelCase , inspect.isclass ) ) UpperCAmelCase_ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __UpperCAmelCase ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" f" {loaded_module}." ) UpperCAmelCase_ = cls return pipeline_class def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = str(__UpperCAmelCase ) UpperCAmelCase_ = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ): UpperCAmelCase_ = module_file_or_url UpperCAmelCase_ = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: UpperCAmelCase_ = get_diffusers_versions() # cut ".dev0" UpperCAmelCase_ = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: UpperCAmelCase_ = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(f"Defaulting to latest_version: {revision}." ) elif revision in available_versions: UpperCAmelCase_ = f"v{revision}" elif revision == "main": UpperCAmelCase_ = revision else: raise ValueError( f"`custom_revision`: {revision} does not exist. Please make sure to choose one of" f" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub UpperCAmelCase_ = COMMUNITY_PIPELINES_URL.format(revision=__UpperCAmelCase , pipeline=__UpperCAmelCase ) try: UpperCAmelCase_ = cached_download( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , ) UpperCAmelCase_ = '''git''' UpperCAmelCase_ = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached UpperCAmelCase_ = hf_hub_download( __UpperCAmelCase , __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , ) UpperCAmelCase_ = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment UpperCAmelCase_ = check_imports(__UpperCAmelCase ) # Now we move the module inside our cached dynamic modules. UpperCAmelCase_ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__UpperCAmelCase ) UpperCAmelCase_ = Path(__UpperCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__UpperCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: UpperCAmelCase_ = f"{module_needed}.py" shutil.copy(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = use_auth_token elif use_auth_token is True: UpperCAmelCase_ = HfFolder.get_token() else: UpperCAmelCase_ = None UpperCAmelCase_ = model_info(__UpperCAmelCase , revision=__UpperCAmelCase , token=__UpperCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCAmelCase_ = submodule_path / commit_hash UpperCAmelCase_ = full_submodule + os.path.sep + commit_hash create_dynamic_module(__UpperCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__UpperCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __UpperCAmelCase , f"{module_needed}.py" , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , resume_download=__UpperCAmelCase , proxies=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , **__UpperCAmelCase , ) -> int: '''simple docstring''' UpperCAmelCase_ = get_cached_module_file( __UpperCAmelCase , __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , resume_download=__UpperCAmelCase , proxies=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) return get_class_in_module(__UpperCAmelCase , final_module.replace('''.py''' , '''''' ) )
344
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A ( ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__UpperCAmelCase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__UpperCAmelCase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__UpperCAmelCase ) return parser.parse_args() def A ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parse_args() # Import training_script as a module. UpperCAmelCase_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase_ = script_fpath.stem UpperCAmelCase_ = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv UpperCAmelCase_ = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
344
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase_ = 16 UpperCamelCase_ = 32 def A ( __UpperCAmelCase , __UpperCAmelCase = 16 , __UpperCAmelCase = "bert-base-cased" ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) UpperCAmelCase_ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) UpperCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) return train_dataloader, eval_dataloader def A ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config['''lr'''] UpperCAmelCase_ = int(config['''num_epochs'''] ) UpperCAmelCase_ = int(config['''seed'''] ) UpperCAmelCase_ = int(config['''batch_size'''] ) UpperCAmelCase_ = args.model_name_or_path set_seed(__UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase , return_dict=__UpperCAmelCase ) # Instantiate optimizer UpperCAmelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ = optimizer_cls(params=model.parameters() , lr=__UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase_ = 1 UpperCAmelCase_ = (len(__UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCAmelCase , num_warmup_steps=0 , num_training_steps=__UpperCAmelCase , ) else: UpperCAmelCase_ = DummyScheduler(__UpperCAmelCase , total_num_steps=__UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ = 0 # Now we train the model UpperCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ = 0 UpperCAmelCase_ = {} for epoch in range(__UpperCAmelCase , __UpperCAmelCase ): model.train() for step, batch in enumerate(__UpperCAmelCase ): UpperCAmelCase_ = model(**__UpperCAmelCase ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase_ = 0 for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**__UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCAmelCase ) - 1: UpperCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCAmelCase , references=__UpperCAmelCase , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , __UpperCAmelCase ) UpperCAmelCase_ = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: UpperCAmelCase_ = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def A ( ) -> Any: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__UpperCAmelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__UpperCAmelCase , ) parser.add_argument( '''--output_dir''' , type=__UpperCAmelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=__UpperCAmelCase , default=3 , help='''Number of train epochs.''' , ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
344
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | Literal[False]: '''simple docstring''' UpperCAmelCase_ = list(__UpperCAmelCase ) UpperCAmelCase_ = list(__UpperCAmelCase ) UpperCAmelCase_ = 0 for i in range(len(__UpperCAmelCase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase_ = '''_''' if count > 1: return False else: return "".join(__UpperCAmelCase ) def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] while True: UpperCAmelCase_ = ['''$'''] * len(__UpperCAmelCase ) UpperCAmelCase_ = [] for i in range(len(__UpperCAmelCase ) ): for j in range(i + 1 , len(__UpperCAmelCase ) ): UpperCAmelCase_ = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase_ = '''*''' UpperCAmelCase_ = '''*''' temp.append('''X''' ) for i in range(len(__UpperCAmelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__UpperCAmelCase ) == 0: return pi UpperCAmelCase_ = list(set(__UpperCAmelCase ) ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for minterm in minterms: UpperCAmelCase_ = '''''' for _ in range(__UpperCAmelCase ): UpperCAmelCase_ = str(minterm % 2 ) + string minterm //= 2 temp.append(__UpperCAmelCase ) return temp def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' UpperCAmelCase_ = list(__UpperCAmelCase ) UpperCAmelCase_ = list(__UpperCAmelCase ) UpperCAmelCase_ = 0 for i in range(len(__UpperCAmelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [0] * len(__UpperCAmelCase ) for i in range(len(chart[0] ) ): UpperCAmelCase_ = 0 UpperCAmelCase_ = -1 for j in range(len(__UpperCAmelCase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase_ = j if count == 1: UpperCAmelCase_ = 1 for i in range(len(__UpperCAmelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase_ = 0 UpperCAmelCase_ = -1 UpperCAmelCase_ = 0 for i in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase_ = count_n UpperCAmelCase_ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ = 0 def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase_ = [[0 for x in range(len(__UpperCAmelCase ) )] for x in range(len(__UpperCAmelCase ) )] for i in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ = prime_implicants[i].count('''_''' ) for j in range(len(__UpperCAmelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , __UpperCAmelCase ): UpperCAmelCase_ = 1 return chart def A ( ) -> None: '''simple docstring''' UpperCAmelCase_ = int(input('''Enter the no. of variables\n''' ) ) UpperCAmelCase_ = [ float(__UpperCAmelCase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] UpperCAmelCase_ = decimal_to_binary(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = check(__UpperCAmelCase ) print('''Prime Implicants are:''' ) print(__UpperCAmelCase ) UpperCAmelCase_ = prime_implicant_chart(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = selection(__UpperCAmelCase , __UpperCAmelCase ) print('''Essential Prime Implicants are:''' ) print(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
344
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase_ = "." if __name__ == "__main__": UpperCamelCase_ = os.path.join(REPO_PATH, "utils/documentation_tests.txt") UpperCamelCase_ = [] UpperCamelCase_ = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase_ = line.strip() UpperCamelCase_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase_ = "\n".join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
344
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["YolosFeatureExtractor"] UpperCamelCase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
1
import datasets from .evaluate import evaluate UpperCamelCase_ = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" UpperCamelCase_ = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" UpperCamelCase_ = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def __a ( self :Optional[int]) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string'''), '''prediction_text''': datasets.Value('''string''')}, '''references''': { '''id''': datasets.Value('''string'''), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string'''), '''answer_start''': datasets.Value('''int32'''), }), }, }) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __a ( self :str , _lowercase :Dict , _lowercase :Optional[int]) -> Dict: UpperCAmelCase_ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} UpperCAmelCase_ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] UpperCAmelCase_ = evaluate(dataset=_lowercase , predictions=_lowercase) return score
344
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : def __init__( self :Tuple , _lowercase :Dict , _lowercase :Union[str, Any]=13 , _lowercase :Optional[Any]=7 , _lowercase :List[Any]=True , _lowercase :Dict=True , _lowercase :Optional[Any]=True , _lowercase :str=True , _lowercase :str=99 , _lowercase :Optional[Any]=16 , _lowercase :List[Any]=36 , _lowercase :Dict=6 , _lowercase :Tuple=6 , _lowercase :Optional[int]=6 , _lowercase :int=37 , _lowercase :str="gelu" , _lowercase :List[Any]=0.1 , _lowercase :int=0.1 , _lowercase :Any=512 , _lowercase :str=16 , _lowercase :Optional[Any]=2 , _lowercase :str=0.02 , _lowercase :Tuple=3 , _lowercase :List[Any]=4 , _lowercase :str=None , ) -> List[str]: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = embedding_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_hidden_groups UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def __a ( self :int) -> Optional[Any]: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self :int) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self :Optional[int] , _lowercase :Tuple , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :Tuple , _lowercase :Optional[int] , _lowercase :Dict , _lowercase :List[Any]) -> List[Any]: UpperCAmelCase_ = AlbertModel(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase) UpperCAmelCase_ = model(_lowercase , token_type_ids=_lowercase) UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def __a ( self :Any , _lowercase :str , _lowercase :str , _lowercase :str , _lowercase :List[str] , _lowercase :str , _lowercase :Any , _lowercase :Optional[int]) -> Any: UpperCAmelCase_ = AlbertForPreTraining(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , sentence_order_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def __a ( self :Union[str, Any] , _lowercase :List[Any] , _lowercase :Union[str, Any] , _lowercase :str , _lowercase :Dict , _lowercase :int , _lowercase :Tuple , _lowercase :Dict) -> Any: UpperCAmelCase_ = AlbertForMaskedLM(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __a ( self :Dict , _lowercase :Union[str, Any] , _lowercase :Dict , _lowercase :List[Any] , _lowercase :List[str] , _lowercase :int , _lowercase :int , _lowercase :str) -> str: UpperCAmelCase_ = AlbertForQuestionAnswering(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __a ( self :Tuple , _lowercase :List[str] , _lowercase :Any , _lowercase :Dict , _lowercase :List[Any] , _lowercase :Optional[Any] , _lowercase :Dict , _lowercase :Tuple) -> int: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = AlbertForSequenceClassification(_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __a ( self :Union[str, Any] , _lowercase :Optional[int] , _lowercase :str , _lowercase :Optional[int] , _lowercase :int , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :List[str]) -> Any: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = AlbertForTokenClassification(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __a ( self :Union[str, Any] , _lowercase :Optional[Any] , _lowercase :Tuple , _lowercase :List[str] , _lowercase :Union[str, Any] , _lowercase :List[str] , _lowercase :int , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = AlbertForMultipleChoice(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ : Tuple =( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : List[str] =True def __a ( self :Optional[int] , _lowercase :str , _lowercase :Tuple , _lowercase :Dict=False) -> Dict: UpperCAmelCase_ = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) if return_labels: if model_class in get_values(_lowercase): UpperCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase) UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase) return inputs_dict def __a ( self :Any) -> List[str]: UpperCAmelCase_ = AlbertModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , hidden_size=37) def __a ( self :int) -> Optional[Any]: self.config_tester.run_common_tests() def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase) def __a ( self :Dict) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase) def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase) def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase) def __a ( self :List[str]) -> Union[str, Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase) def __a ( self :Optional[int]) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*_lowercase) @slow def __a ( self :Optional[Any]) -> Dict: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AlbertModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) @require_torch class a_ ( unittest.TestCase ): @slow def __a ( self :str) -> List[str]: UpperCAmelCase_ = AlbertModel.from_pretrained('''albert-base-v2''') UpperCAmelCase_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) UpperCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase)[0] UpperCAmelCase_ = torch.Size((1, 11, 768)) self.assertEqual(output.shape , _lowercase) UpperCAmelCase_ = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4))
344
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
1
from maths.prime_check import is_prime def A ( __UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = f"Input value of [number={number}] must be an integer" raise TypeError(__UpperCAmelCase ) if is_prime(__UpperCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
344
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class a_ ( unittest.TestCase ): def __a ( self :int) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :Optional[int]) -> Union[str, Any]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''') UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) sd_pipe.set_scheduler('''sample_euler''') UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = sd_pipe([prompt] , generator=_lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''') UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def __a ( self :Union[str, Any]) -> Union[str, Any]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) sd_pipe.set_scheduler('''sample_euler''') UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = sd_pipe([prompt] , generator=_lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''') UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-1 def __a ( self :List[str]) -> str: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) sd_pipe.set_scheduler('''sample_dpmpp_2m''') UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=_lowercase , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
344
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
1
import warnings from functools import wraps from typing import Callable def A ( __UpperCAmelCase ) -> Callable: '''simple docstring''' @wraps(__UpperCAmelCase ) def _inner_fn(*__UpperCAmelCase , **__UpperCAmelCase ): warnings.warn( (f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , __UpperCAmelCase , ) return fn(*__UpperCAmelCase , **__UpperCAmelCase ) return _inner_fn
344
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( _snake_case ): UpperCamelCase__ : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , _snake_case , _snake_case ): UpperCamelCase__ : int =32 UpperCamelCase__ : int =4 UpperCamelCase__ : int =4 UpperCamelCase__ : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ : Tuple[str] =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCamelCase__ : Union[bool, Tuple[bool]] =False UpperCamelCase__ : Tuple[int] =(3_20, 6_40, 12_80, 12_80) UpperCamelCase__ : int =2 UpperCamelCase__ : Union[int, Tuple[int]] =8 UpperCamelCase__ : Optional[Union[int, Tuple[int]]] =None UpperCamelCase__ : int =12_80 UpperCamelCase__ : float =0.0 UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa UpperCamelCase__ : bool =True UpperCamelCase__ : int =0 UpperCamelCase__ : bool =False def __a ( self :int , _lowercase :jax.random.KeyArray) -> FrozenDict: # init input tensors UpperCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ = jnp.zeros(_lowercase , dtype=jnp.floataa) UpperCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa) UpperCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(_lowercase) UpperCAmelCase_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowercase , _lowercase , _lowercase , _lowercase)["params"] def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = self.block_out_channels UpperCAmelCase_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) UpperCAmelCase_ = FlaxTimestepEmbedding(_lowercase , dtype=self.dtype) UpperCAmelCase_ = self.only_cross_attention if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = (only_cross_attention,) * len(self.down_block_types) if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = (num_attention_heads,) * len(self.down_block_types) # down UpperCAmelCase_ = [] UpperCAmelCase_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] UpperCAmelCase_ = i == len(_lowercase) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowercase) UpperCAmelCase_ = down_blocks # mid UpperCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up UpperCAmelCase_ = [] UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = reversed_block_out_channels[i] UpperCAmelCase_ = reversed_block_out_channels[min(i + 1 , len(_lowercase) - 1)] UpperCAmelCase_ = i == len(_lowercase) - 1 if up_block_type == "CrossAttnUpBlock2D": UpperCAmelCase_ = FlaxCrossAttnUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowercase) UpperCAmelCase_ = output_channel UpperCAmelCase_ = up_blocks # out UpperCAmelCase_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5) UpperCAmelCase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :Any , _lowercase :Optional[int] , _lowercase :Optional[int] , _lowercase :Tuple , _lowercase :List[str]=None , _lowercase :Union[str, Any]=None , _lowercase :bool = True , _lowercase :bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowercase , jnp.ndarray): UpperCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(_lowercase , jnp.ndarray) and len(timesteps.shape) == 0: UpperCAmelCase_ = timesteps.astype(dtype=jnp.floataa) UpperCAmelCase_ = jnp.expand_dims(_lowercase , 0) UpperCAmelCase_ = self.time_proj(_lowercase) UpperCAmelCase_ = self.time_embedding(_lowercase) # 2. pre-process UpperCAmelCase_ = jnp.transpose(_lowercase , (0, 2, 3, 1)) UpperCAmelCase_ = self.conv_in(_lowercase) # 3. down UpperCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(_lowercase , _lowercase): UpperCAmelCase_ , UpperCAmelCase_ = down_block(_lowercase , _lowercase , _lowercase , deterministic=not train) else: UpperCAmelCase_ , UpperCAmelCase_ = down_block(_lowercase , _lowercase , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: UpperCAmelCase_ = () for down_block_res_sample, down_block_additional_residual in zip( _lowercase , _lowercase): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ = new_down_block_res_samples # 4. mid UpperCAmelCase_ = self.mid_block(_lowercase , _lowercase , _lowercase , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: UpperCAmelCase_ = down_block_res_samples[-(self.layers_per_block + 1) :] UpperCAmelCase_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = up_block( _lowercase , temb=_lowercase , encoder_hidden_states=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train , ) else: UpperCAmelCase_ = up_block(_lowercase , temb=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train) # 6. post-process UpperCAmelCase_ = self.conv_norm_out(_lowercase) UpperCAmelCase_ = nn.silu(_lowercase) UpperCAmelCase_ = self.conv_out(_lowercase) UpperCAmelCase_ = jnp.transpose(_lowercase , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowercase)
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1
import sys def A ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = [[0 for x in range(__UpperCAmelCase )] for x in range(__UpperCAmelCase )] UpperCAmelCase_ = [[0 for x in range(__UpperCAmelCase )] for x in range(__UpperCAmelCase )] for chain_length in range(2 , __UpperCAmelCase ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if i == j: print('''A''' + str(__UpperCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__UpperCAmelCase , __UpperCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__UpperCAmelCase , optimal_solution[i][j] + 1 , __UpperCAmelCase ) print(''')''' , end=''' ''' ) def A ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__UpperCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__UpperCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__UpperCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
344
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
344
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
1
import fire from utils import calculate_rouge, save_json def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [x.strip() for x in open(__UpperCAmelCase ).readlines()] UpperCAmelCase_ = [x.strip() for x in open(__UpperCAmelCase ).readlines()][: len(__UpperCAmelCase )] UpperCAmelCase_ = calculate_rouge(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) if save_path is not None: save_json(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
344
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> Union[str, Any]: debug_launcher(test_script.main) def __a ( self :List[str]) -> str: debug_launcher(test_ops.main)
344
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
1
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase_ = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a_ ( _snake_case ): UpperCamelCase__ : Tuple ="beit" def __init__( self :Tuple , _lowercase :Dict=8192 , _lowercase :List[Any]=768 , _lowercase :Tuple=12 , _lowercase :Optional[int]=12 , _lowercase :int=3072 , _lowercase :int="gelu" , _lowercase :Union[str, Any]=0.0 , _lowercase :List[str]=0.0 , _lowercase :Dict=0.02 , _lowercase :str=1E-1_2 , _lowercase :List[str]=224 , _lowercase :Any=16 , _lowercase :Optional[int]=3 , _lowercase :List[Any]=False , _lowercase :int=False , _lowercase :Tuple=False , _lowercase :int=False , _lowercase :str=0.1 , _lowercase :List[Any]=0.1 , _lowercase :Optional[Any]=True , _lowercase :Optional[Any]=[3, 5, 7, 11] , _lowercase :Union[str, Any]=[1, 2, 3, 6] , _lowercase :List[Any]=True , _lowercase :Optional[Any]=0.4 , _lowercase :Dict=256 , _lowercase :Optional[Any]=1 , _lowercase :Optional[int]=False , _lowercase :Optional[Any]=255 , **_lowercase :List[str] , ) -> Any: super().__init__(**_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = use_mask_token UpperCAmelCase_ = use_absolute_position_embeddings UpperCAmelCase_ = use_relative_position_bias UpperCAmelCase_ = use_shared_relative_position_bias UpperCAmelCase_ = layer_scale_init_value UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase_ = out_indices UpperCAmelCase_ = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase_ = use_auxiliary_head UpperCAmelCase_ = auxiliary_loss_weight UpperCAmelCase_ = auxiliary_channels UpperCAmelCase_ = auxiliary_num_convs UpperCAmelCase_ = auxiliary_concat_input UpperCAmelCase_ = semantic_loss_ignore_index class a_ ( _snake_case ): UpperCamelCase__ : Dict =version.parse("1.11" ) @property def __a ( self :Optional[Any]) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :Optional[int]) -> float: return 1E-4
344
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class a_ ( datasets.BuilderConfig ): UpperCamelCase__ : Optional[datasets.Features] =None class a_ ( datasets.ArrowBasedBuilder ): UpperCamelCase__ : Optional[int] =PandasConfig def __a ( self :int) -> int: return datasets.DatasetInfo(features=self.config.features) def __a ( self :List[str] , _lowercase :Dict) -> Tuple: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") UpperCAmelCase_ = dl_manager.download_and_extract(self.config.data_files) if isinstance(_lowercase , (str, list, tuple)): UpperCAmelCase_ = data_files if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ = [dl_manager.iter_files(_lowercase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] UpperCAmelCase_ = [] for split_name, files in data_files.items(): if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ = [dl_manager.iter_files(_lowercase) for file in files] splits.append(datasets.SplitGenerator(name=_lowercase , gen_kwargs={'''files''': files})) return splits def __a ( self :Optional[Any] , _lowercase :pa.Table) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ = table_cast(_lowercase , self.config.features.arrow_schema) return pa_table def __a ( self :List[Any] , _lowercase :Union[str, Any]) -> Any: for i, file in enumerate(itertools.chain.from_iterable(_lowercase)): with open(_lowercase , '''rb''') as f: UpperCAmelCase_ = pa.Table.from_pandas(pd.read_pickle(_lowercase)) yield i, self._cast_table(_lowercase)
344
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = "▁" UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } UpperCamelCase_ = { "google/reformer-crime-and-punishment": 524_288, } class a_ ( _snake_case ): UpperCamelCase__ : Tuple =VOCAB_FILES_NAMES UpperCamelCase__ : Any =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any =["input_ids", "attention_mask"] def __init__( self :List[str] , _lowercase :List[str] , _lowercase :List[Any]="</s>" , _lowercase :List[str]="<unk>" , _lowercase :Dict=[] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Optional[int] , ) -> None: UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowercase , unk_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :Any) -> List[Any]: return self.sp_model.get_piece_size() def __a ( self :Any) -> Dict[str, int]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :List[str]) -> int: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :str) -> List[str]: return self.sp_model.encode(_lowercase , out_type=_lowercase) def __a ( self :Tuple , _lowercase :Tuple) -> Tuple: return self.sp_model.piece_to_id(_lowercase) def __a ( self :Optional[Any] , _lowercase :Tuple) -> List[str]: if index < self.sp_model.get_piece_size(): UpperCAmelCase_ = self.sp_model.IdToPiece(_lowercase) return token def __a ( self :Any , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(_lowercase) out_string += self.sp_model.decode(_lowercase) return out_string.strip() def __a ( self :Optional[Any] , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A ( __UpperCAmelCase ) -> Dict: '''simple docstring''' UpperCAmelCase_ = 384 if "tiny" in model_name: UpperCAmelCase_ = [3, 3, 9, 3] UpperCAmelCase_ = [96, 192, 384, 768] if "small" in model_name: UpperCAmelCase_ = [3, 3, 27, 3] UpperCAmelCase_ = [96, 192, 384, 768] if "base" in model_name: UpperCAmelCase_ = [3, 3, 27, 3] UpperCAmelCase_ = [128, 256, 512, 1024] UpperCAmelCase_ = 512 if "large" in model_name: UpperCAmelCase_ = [3, 3, 27, 3] UpperCAmelCase_ = [192, 384, 768, 1536] UpperCAmelCase_ = 768 if "xlarge" in model_name: UpperCAmelCase_ = [3, 3, 27, 3] UpperCAmelCase_ = [256, 512, 1024, 2048] UpperCAmelCase_ = 1024 # set label information UpperCAmelCase_ = 150 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''ade20k-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = ConvNextConfig( depths=__UpperCAmelCase , hidden_sizes=__UpperCAmelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) UpperCAmelCase_ = UperNetConfig( backbone_config=__UpperCAmelCase , auxiliary_in_channels=__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase , ) return config def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.{j}.gamma", f"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.weight", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.bias", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.weight", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.bias", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((f"backbone.downsample_layers.{i}.0.weight", f"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.0.bias", f"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.weight", f"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.bias", f"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = dct.pop(__UpperCAmelCase ) UpperCAmelCase_ = val def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } UpperCAmelCase_ = model_name_to_url[model_name] UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase_ = get_upernet_config(__UpperCAmelCase ) UpperCAmelCase_ = UperNetForSemanticSegmentation(__UpperCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase_ = state_dict.pop(__UpperCAmelCase ) if "bn" in key: UpperCAmelCase_ = key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase_ = val # rename keys UpperCAmelCase_ = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify on image UpperCAmelCase_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert('''RGB''' ) UpperCAmelCase_ = SegformerImageProcessor() UpperCAmelCase_ = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase_ = model(__UpperCAmelCase ) if model_name == "upernet-convnext-tiny": UpperCAmelCase_ = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase_ = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase_ = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase_ = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase_ = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f"upernet-convnext-{size}" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
344
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
1
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
1
from __future__ import annotations from cmath import sqrt def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> tuple[complex, complex]: '''simple docstring''' if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) UpperCAmelCase_ = b * b - 4 * a * c UpperCAmelCase_ = (-b + sqrt(__UpperCAmelCase )) / (2 * a) UpperCAmelCase_ = (-b - sqrt(__UpperCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def A ( ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = quadratic_roots(a=5 , b=6 , c=1 ) print(f"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
344
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCamelCase_ = get_tests_dir("fixtures/dummy-config.json") class a_ ( unittest.TestCase ): def __a ( self :Tuple) -> str: UpperCAmelCase_ = 0 def __a ( self :Union[str, Any]) -> Optional[int]: self.assertIsNotNone(transformers.models.auto.__spec__) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''')) def __a ( self :str) -> int: UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-uncased''') self.assertIsInstance(_lowercase , _lowercase) def __a ( self :List[str]) -> Optional[Any]: UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase) self.assertIsInstance(_lowercase , _lowercase) def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase) self.assertIsInstance(_lowercase , _lowercase) def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = AutoConfig.for_model('''roberta''') self.assertIsInstance(_lowercase , _lowercase) def __a ( self :Any) -> int: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. UpperCAmelCase_ = os.path.join(_lowercase , '''fake-roberta''') os.makedirs(_lowercase , exist_ok=_lowercase) with open(os.path.join(_lowercase , '''config.json''') , '''w''') as f: f.write(json.dumps({})) UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase) self.assertEqual(type(_lowercase) , _lowercase) def __a ( self :Any) -> Any: try: AutoConfig.register('''custom''' , _lowercase) # Wrong model type will raise an error with self.assertRaises(_lowercase): AutoConfig.register('''model''' , _lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase): AutoConfig.register('''bert''' , _lowercase) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase) UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase) self.assertIsInstance(_lowercase , _lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __a ( self :Any) -> Optional[Any]: with self.assertRaisesRegex( _lowercase , '''bert-base is not a local folder and is not a valid model identifier'''): UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base''') def __a ( self :Optional[int]) -> int: with self.assertRaisesRegex( _lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase , revision='''aaaaaa''') def __a ( self :str) -> Optional[int]: with self.assertRaisesRegex( _lowercase , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''') def __a ( self :Tuple) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase): UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''') # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase): UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase) UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''') # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase) UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase , trust_remote_code=_lowercase) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''') def __a ( self :Any) -> Optional[Any]: class a_ ( _snake_case ): UpperCamelCase__ : Any ="new-model" try: AutoConfig.register('''new-model''' , _lowercase) # If remote code is not set, the default is to use local UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''') self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''') # If remote code is disabled, we load the local one. UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''') # If remote is enabled, we load from the Hub UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''') finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
344
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
1
from __future__ import annotations def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCAmelCase_ = (l + r) // 2 if v[m] >= key: UpperCAmelCase_ = m else: UpperCAmelCase_ = m # noqa: E741 return r def A ( __UpperCAmelCase ) -> int: '''simple docstring''' if len(__UpperCAmelCase ) == 0: return 0 UpperCAmelCase_ = [0] * len(__UpperCAmelCase ) UpperCAmelCase_ = 1 UpperCAmelCase_ = v[0] for i in range(1 , len(__UpperCAmelCase ) ): if v[i] < tail[0]: UpperCAmelCase_ = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase_ = v[i] length += 1 else: UpperCAmelCase_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
344
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a_ ( unittest.TestCase ): UpperCamelCase__ : Dict =JukeboxTokenizer UpperCamelCase__ : Dict ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def __a ( self :Dict) -> Tuple: import torch UpperCAmelCase_ = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''') UpperCAmelCase_ = tokenizer(**self.metas)['''input_ids'''] # fmt: off UpperCAmelCase_ = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 1069, 11]]), torch.tensor([[0, 0, 0, 1069, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2])) @require_torch def __a ( self :List[Any]) -> str: import torch UpperCAmelCase_ = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''') UpperCAmelCase_ = tokenizer(**self.metas)['''input_ids'''] # fmt: off UpperCAmelCase_ = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
344
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
1
def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if index == number_of_items: return 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , index + 1 ) if weights[index] <= max_weight: UpperCAmelCase_ = values[index] + knapsack( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , max_weight - weights[index] , index + 1 ) return max(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
344
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a_ ( unittest.TestCase ): def __init__( self :List[str] , _lowercase :List[str] , _lowercase :Optional[int]=7 , _lowercase :Optional[Any]=3 , _lowercase :str=18 , _lowercase :Optional[Any]=30 , _lowercase :Union[str, Any]=400 , _lowercase :Any=True , _lowercase :List[str]=None , _lowercase :Optional[Any]=True , ) -> Union[str, Any]: UpperCAmelCase_ = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = apply_ocr def __a ( self :Union[str, Any]) -> Union[str, Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Any =LayoutLMvaImageProcessor if is_pytesseract_available() else None def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = LayoutLMvaImageProcessingTester(self) @property def __a ( self :str) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''apply_ocr''')) def __a ( self :str) -> Dict: UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18}) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42}) def __a ( self :Any) -> List[str]: pass def __a ( self :List[str]) -> List[str]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , _lowercase) self.assertIsInstance(encoding.boxes , _lowercase) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __a ( self :List[Any]) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __a ( self :Dict) -> Tuple: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __a ( self :List[Any]) -> List[Any]: # with apply_OCR = True UpperCAmelCase_ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCAmelCase_ = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''') UpperCAmelCase_ = Image.open(ds[0]['''file''']).convert('''RGB''') UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCAmelCase_ = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 UpperCAmelCase_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase) self.assertListEqual(encoding.boxes , _lowercase) # with apply_OCR = False UpperCAmelCase_ = LayoutLMvaImageProcessor(apply_ocr=_lowercase) UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
344
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class a_ ( unittest.TestCase ): def __a ( self :str , _lowercase :Union[str, Any] , _lowercase :Optional[int] , _lowercase :Dict) -> int: self.assertEqual(len(_lowercase) , len(_lowercase)) for a, b in zip(_lowercase , _lowercase): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase) def __a ( self :str) -> Tuple: UpperCAmelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(_lowercase): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step , 3) self.assertEqual(len(accumulator.gradients) , 1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2) accumulator.reset() self.assertEqual(accumulator.step , 0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2) def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = None ops.enable_eager_execution_internal() UpperCAmelCase_ = tf.config.list_physical_devices('''CPU''') if len(_lowercase) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()]) UpperCAmelCase_ = tf.config.list_logical_devices(device_type='''CPU''') UpperCAmelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2]) with strategy.scope(): UpperCAmelCase_ = GradientAccumulator() UpperCAmelCase_ = tf.Variable([4.0, 3.0]) UpperCAmelCase_ , UpperCAmelCase_ = create_optimizer(5E-5 , 10 , 5) UpperCAmelCase_ = tf.Variable([0.0, 0.0] , trainable=_lowercase) def accumulate_on_replica(_lowercase :Optional[Any]): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable]))) @tf.function def accumulate(_lowercase :str , _lowercase :Union[str, Any]): with strategy.scope(): UpperCAmelCase_ = strategy.experimental_local_results(_lowercase) local_variables[0].assign(_lowercase) local_variables[1].assign(_lowercase) strategy.run(_lowercase , args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowercase) def _check_local_values(_lowercase :List[Any] , _lowercase :Any): UpperCAmelCase_ = strategy.experimental_local_results(accumulator._gradients[0]) self.assertListAlmostEqual(values[0].value() , _lowercase , tol=1E-2) self.assertListAlmostEqual(values[1].value() , _lowercase , tol=1E-2) accumulate([1.0, 2.0] , [-1.0, 1.0]) accumulate([3.0, -1.0] , [-1.0, -1.0]) accumulate([-2.0, 2.0] , [3.0, -2.0]) self.assertEqual(accumulator.step , 3) _check_local_values([2.0, 3.0] , [1.0, -2.0]) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2) accumulator.reset() self.assertEqual(accumulator.step , 0) _check_local_values([0.0, 0.0] , [0.0, 0.0])
344
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCamelCase_ = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def A ( __UpperCAmelCase=True ) -> Optional[int]: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_snake_case ) ) class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =None UpperCamelCase__ : List[Any] =None def __a ( self :List[Any] , _lowercase :Dict , _lowercase :Any) -> List[Any]: with TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = dataset_module_factory(_lowercase , cache_dir=_lowercase) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=_lowercase) UpperCAmelCase_ = builder_cls( cache_dir=_lowercase , config_name=_lowercase , hash=dataset_module.hash , ) UpperCAmelCase_ = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_lowercase).replace(os.sep , '''/'''), config.DATASET_INFO_FILENAME, ]) UpperCAmelCase_ = cached_path(_lowercase , cache_dir=_lowercase) self.assertTrue(os.path.exists(_lowercase)) @pytest.mark.integration def A ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' UpperCAmelCase_ = dataset_module_factory('''wikipedia''' , cache_dir=__UpperCAmelCase ) UpperCAmelCase_ = import_main_class(dataset_module.module_path ) UpperCAmelCase_ = builder_cls( cache_dir=__UpperCAmelCase , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase_ = None builder_instance.download_and_prepare() UpperCAmelCase_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def A ( __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = dataset_module_factory('''wikipedia''' , cache_dir=__UpperCAmelCase ) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=__UpperCAmelCase ) UpperCAmelCase_ = builder_cls( cache_dir=__UpperCAmelCase , config_name='''20220301.frr''' , hash=dataset_module.hash , ) UpperCAmelCase_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert "train" in ds assert isinstance(ds['''train'''] , __UpperCAmelCase ) assert next(iter(ds['''train'''] ) )
344
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
1
from __future__ import annotations import typing from collections import Counter def A ( __UpperCAmelCase ) -> typing.Counter[int]: '''simple docstring''' UpperCAmelCase_ = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__UpperCAmelCase , max_perimeter + 1 ): UpperCAmelCase_ = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__UpperCAmelCase ): UpperCAmelCase_ = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def A ( __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' UpperCAmelCase_ = pythagorean_triple(__UpperCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
344
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a_ ( unittest.TestCase ): def __a ( self :Dict) -> str: UpperCAmelCase_ = '''ylacombe/bark-small''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = '''en_speaker_1''' UpperCAmelCase_ = '''This is a test string''' UpperCAmelCase_ = '''speaker_embeddings_path.json''' UpperCAmelCase_ = '''speaker_embeddings''' def __a ( self :Tuple , **_lowercase :Tuple) -> str: return AutoTokenizer.from_pretrained(self.checkpoint , **_lowercase) def __a ( self :List[str]) -> Union[str, Any]: shutil.rmtree(self.tmpdirname) def __a ( self :str) -> str: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_lowercase) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ = 35 UpperCAmelCase_ = 2 UpperCAmelCase_ = 8 UpperCAmelCase_ = { '''semantic_prompt''': np.ones(_lowercase), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len)), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_lowercase) UpperCAmelCase_ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowercase , np.array([])).tolist()) # test loading voice preset from npz file UpperCAmelCase_ = os.path.join(self.tmpdirname , '''file.npz''') np.savez(_lowercase , **_lowercase) UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_lowercase) UpperCAmelCase_ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowercase , np.array([])).tolist()) # test loading voice preset from the hub UpperCAmelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset) def __a ( self :str) -> Tuple: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_lowercase) UpperCAmelCase_ = processor(text=self.input_string) UpperCAmelCase_ = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class a_ ( tf.keras.layers.Layer ): def __init__( self :str , _lowercase :Dict[str, int] , _lowercase :List[str] , _lowercase :int = None , _lowercase :int = None) -> Optional[Any]: super().__init__() UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = max_length UpperCAmelCase_ = vocab UpperCAmelCase_ = merges UpperCAmelCase_ = BytePairTokenizer(_lowercase , _lowercase , sequence_length=_lowercase) @classmethod def __a ( cls :Tuple , _lowercase :GPTaTokenizer , *_lowercase :Union[str, Any] , **_lowercase :str) -> List[Any]: UpperCAmelCase_ = [''' '''.join(_lowercase) for m in tokenizer.bpe_ranks.keys()] UpperCAmelCase_ = tokenizer.get_vocab() return cls(_lowercase , _lowercase , *_lowercase , **_lowercase) @classmethod def __a ( cls :Optional[int] , _lowercase :Union[str, os.PathLike] , *_lowercase :str , **_lowercase :int) -> Union[str, Any]: UpperCAmelCase_ = GPTaTokenizer.from_pretrained(_lowercase , *_lowercase , **_lowercase) return cls.from_tokenizer(_lowercase , *_lowercase , **_lowercase) @classmethod def __a ( cls :List[str] , _lowercase :Any) -> Optional[int]: return cls(**_lowercase) def __a ( self :Dict) -> Optional[int]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __a ( self :Tuple , _lowercase :Union[str, Any] , _lowercase :int = None) -> Optional[int]: UpperCAmelCase_ = self.tf_tokenizer(_lowercase) UpperCAmelCase_ = tf.ones_like(_lowercase) if self.pad_token_id is not None: # pad the tokens up to max length UpperCAmelCase_ = max_length if max_length is not None else self.max_length if max_length is not None: UpperCAmelCase_ , UpperCAmelCase_ = pad_model_inputs( _lowercase , max_seq_length=_lowercase , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
1
def A ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError('''Input must be a positive integer''' ) UpperCAmelCase_ = [True] * (num + 1) UpperCAmelCase_ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __UpperCAmelCase ): UpperCAmelCase_ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
344
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split('''.''' ): UpperCAmelCase_ = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: UpperCAmelCase_ = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase_ = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: UpperCAmelCase_ = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ = '''weight_v''' elif "weight" in name: UpperCAmelCase_ = '''weight''' elif "bias" in name: UpperCAmelCase_ = '''bias''' else: UpperCAmelCase_ = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase_ = name.split('''.''' ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCAmelCase_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> List[str]: '''simple docstring''' if config_path is not None: UpperCAmelCase_ = HubertConfig.from_pretrained(__UpperCAmelCase ) else: UpperCAmelCase_ = HubertConfig() if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , __UpperCAmelCase ) UpperCAmelCase_ = WavaVecaCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) UpperCAmelCase_ = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) UpperCAmelCase_ = HubertForCTC(__UpperCAmelCase ) else: UpperCAmelCase_ = HubertModel(__UpperCAmelCase ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_wavavec.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
344
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] UpperCamelCase_ = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] UpperCamelCase_ = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): UpperCamelCase_ = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
1
def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' UpperCAmelCase_ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def A ( ) -> Any: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
344
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class a_ ( _snake_case ): def __init__( self :int , _lowercase :int , _lowercase :Dict=13 , _lowercase :List[Any]=7 , _lowercase :Optional[int]=True , _lowercase :Tuple=True , _lowercase :List[Any]=False , _lowercase :Any=True , _lowercase :Dict=99 , _lowercase :List[str]=32 , _lowercase :Tuple=5 , _lowercase :Optional[Any]=4 , _lowercase :List[str]=37 , _lowercase :Optional[int]="gelu" , _lowercase :List[str]=0.1 , _lowercase :Dict=0.1 , _lowercase :Optional[int]=512 , _lowercase :Tuple=16 , _lowercase :Any=2 , _lowercase :List[str]=0.02 , _lowercase :int=3 , _lowercase :Union[str, Any]=4 , _lowercase :Tuple=None , ) -> Dict: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def __a ( self :str) -> Union[str, Any]: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self :Any) -> Dict: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __a ( self :Any , _lowercase :Union[str, Any] , _lowercase :Optional[int] , _lowercase :int , _lowercase :List[Any] , _lowercase :Tuple , _lowercase :Tuple) -> Optional[Any]: UpperCAmelCase_ = DistilBertModel(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __a ( self :List[str] , _lowercase :Dict , _lowercase :List[str] , _lowercase :Dict , _lowercase :Union[str, Any] , _lowercase :Any , _lowercase :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = DistilBertForMaskedLM(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __a ( self :Optional[int] , _lowercase :Optional[Any] , _lowercase :Any , _lowercase :List[Any] , _lowercase :Optional[int] , _lowercase :List[str] , _lowercase :Optional[Any]) -> Dict: UpperCAmelCase_ = DistilBertForQuestionAnswering(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __a ( self :Any , _lowercase :Optional[int] , _lowercase :Optional[Any] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any] , _lowercase :List[Any] , _lowercase :Union[str, Any]) -> str: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = DistilBertForSequenceClassification(_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __a ( self :Dict , _lowercase :List[str] , _lowercase :List[Any] , _lowercase :Optional[Any] , _lowercase :int , _lowercase :List[str] , _lowercase :Union[str, Any]) -> Tuple: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = DistilBertForTokenClassification(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __a ( self :Optional[int] , _lowercase :Any , _lowercase :Dict , _lowercase :Dict , _lowercase :int , _lowercase :Dict , _lowercase :Optional[int]) -> Any: UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = DistilBertForMultipleChoice(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __a ( self :List[str]) -> Optional[Any]: UpperCAmelCase_ = self.prepare_config_and_inputs() ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase__ : List[Any] =( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : Dict =True def __a ( self :Any) -> Tuple: UpperCAmelCase_ = DistilBertModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , dim=37) def __a ( self :Optional[Any]) -> List[Any]: self.config_tester.run_common_tests() def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowercase) def __a ( self :Tuple) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowercase) def __a ( self :Optional[int]) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowercase) def __a ( self :Any) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowercase) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowercase) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowercase) @slow def __a ( self :Tuple) -> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = DistilBertModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) @slow @require_torch_gpu def __a ( self :List[Any]) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return UpperCAmelCase_ = True UpperCAmelCase_ = model_class(config=_lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) UpperCAmelCase_ = torch.jit.trace( _lowercase , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , '''traced_model.pt''')) UpperCAmelCase_ = torch.jit.load(os.path.join(_lowercase , '''traced_model.pt''') , map_location=_lowercase) loaded(inputs_dict['''input_ids'''].to(_lowercase) , inputs_dict['''attention_mask'''].to(_lowercase)) @require_torch class a_ ( unittest.TestCase ): @slow def __a ( self :List[Any]) -> str: UpperCAmelCase_ = DistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCAmelCase_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) UpperCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase)[0] UpperCAmelCase_ = torch.Size((1, 11, 768)) self.assertEqual(output.shape , _lowercase) UpperCAmelCase_ = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4))
344
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
1
def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' while a != 0: UpperCAmelCase_ , UpperCAmelCase_ = b % a, a return b def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if gcd(__UpperCAmelCase , __UpperCAmelCase ) != 1: UpperCAmelCase_ = f"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(__UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1, 0, a UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 1, m while va != 0: UpperCAmelCase_ = ua // va UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
344
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = FileLock(str(tmpdir / '''foo.lock''' ) ) UpperCAmelCase_ = FileLock(str(tmpdir / '''foo.lock''' ) ) UpperCAmelCase_ = 0.01 with locka.acquire(): with pytest.raises(__UpperCAmelCase ): UpperCAmelCase_ = time.time() locka.acquire(__UpperCAmelCase ) assert time.time() - _start > timeout def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' UpperCAmelCase_ = '''a''' * 1000 + '''.lock''' UpperCAmelCase_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__UpperCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCAmelCase ): locka.acquire(0 )
344
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
1
import operator as op UpperCamelCase_ = "scaler.pt" UpperCamelCase_ = "pytorch_model" UpperCamelCase_ = "random_states" UpperCamelCase_ = "optimizer" UpperCamelCase_ = "scheduler" UpperCamelCase_ = "pytorch_model.bin" UpperCamelCase_ = "pytorch_model.bin.index.json" UpperCamelCase_ = "model.safetensors" UpperCamelCase_ = "model.safetensors.index.json" UpperCamelCase_ = "1.10.2" UpperCamelCase_ = "py38" UpperCamelCase_ = "4.17.0" UpperCamelCase_ = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] UpperCamelCase_ = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] UpperCamelCase_ = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] UpperCamelCase_ = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] UpperCamelCase_ = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] UpperCamelCase_ = "2.0.1" UpperCamelCase_ = ["pdsh", "standard", "openmpi", "mvapich"] UpperCamelCase_ = ["default", "reduce-overhead", "max-autotune"] UpperCamelCase_ = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCamelCase_ = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] UpperCamelCase_ = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] UpperCamelCase_ = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
344
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
1
class a_ : def __init__( self :Optional[int] , _lowercase :List[Any] , _lowercase :Any , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = graph self._normalize_graph(_lowercase , _lowercase) UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = None def __a ( self :Any , _lowercase :List[Any] , _lowercase :Tuple) -> List[str]: if sources is int: UpperCAmelCase_ = [sources] if sinks is int: UpperCAmelCase_ = [sinks] if len(_lowercase) == 0 or len(_lowercase) == 0: return UpperCAmelCase_ = sources[0] UpperCAmelCase_ = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowercase) > 1 or len(_lowercase) > 1: UpperCAmelCase_ = 0 for i in sources: max_input_flow += sum(self.graph[i]) UpperCAmelCase_ = len(self.graph) + 1 for room in self.graph: room.insert(0 , 0) self.graph.insert(0 , [0] * size) for i in sources: UpperCAmelCase_ = max_input_flow UpperCAmelCase_ = 0 UpperCAmelCase_ = len(self.graph) + 1 for room in self.graph: room.append(0) self.graph.append([0] * size) for i in sinks: UpperCAmelCase_ = max_input_flow UpperCAmelCase_ = size - 1 def __a ( self :int) -> Tuple: if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''') if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __a ( self :Union[str, Any] , _lowercase :List[str]) -> List[Any]: UpperCAmelCase_ = algorithm(self) class a_ : def __init__( self :Any , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = flow_network UpperCAmelCase_ = flow_network.verticesCount UpperCAmelCase_ = flow_network.sourceIndex UpperCAmelCase_ = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that UpperCAmelCase_ = flow_network.graph UpperCAmelCase_ = False def __a ( self :str) -> List[Any]: if not self.executed: self._algorithm() UpperCAmelCase_ = True def __a ( self :Dict) -> Optional[int]: pass class a_ ( _snake_case ): def __init__( self :Optional[Any] , _lowercase :List[str]) -> Tuple: super().__init__(_lowercase) # use this to save your result UpperCAmelCase_ = -1 def __a ( self :Any) -> int: if not self.executed: raise Exception('''You should execute algorithm before using its result!''') return self.maximum_flow class a_ ( _snake_case ): def __init__( self :str , _lowercase :List[Any]) -> Optional[int]: super().__init__(_lowercase) UpperCAmelCase_ = [[0] * self.verticies_count for i in range(self.verticies_count)] UpperCAmelCase_ = [0] * self.verticies_count UpperCAmelCase_ = [0] * self.verticies_count def __a ( self :str) -> Tuple: UpperCAmelCase_ = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index]): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule UpperCAmelCase_ = [ i for i in range(self.verticies_count) if i != self.source_index and i != self.sink_index ] # move through list UpperCAmelCase_ = 0 while i < len(_lowercase): UpperCAmelCase_ = vertices_list[i] UpperCAmelCase_ = self.heights[vertex_index] self.process_vertex(_lowercase) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowercase)) UpperCAmelCase_ = 0 else: i += 1 UpperCAmelCase_ = sum(self.preflow[self.source_index]) def __a ( self :Union[str, Any] , _lowercase :Any) -> Tuple: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowercase , _lowercase) self.relabel(_lowercase) def __a ( self :Any , _lowercase :int , _lowercase :str) -> str: UpperCAmelCase_ = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __a ( self :Optional[Any] , _lowercase :Any) -> int: UpperCAmelCase_ = None for to_index in range(self.verticies_count): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): UpperCAmelCase_ = self.heights[to_index] if min_height is not None: UpperCAmelCase_ = min_height + 1 if __name__ == "__main__": UpperCamelCase_ = [0] UpperCamelCase_ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase_ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase_ = flow_network.find_maximum_flow() print(f"maximum flow is {maximum_flow}")
344
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
1
import math class a_ : def __init__( self :Dict , _lowercase :Union[str, Any]=0) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 UpperCAmelCase_ = n UpperCAmelCase_ = [ [math.inf for j in range(0 , _lowercase)] for i in range(0 , _lowercase) ] # adjacency matrix for weight UpperCAmelCase_ = [ [math.inf for j in range(0 , _lowercase)] for i in range(0 , _lowercase) ] # dp[i][j] stores minimum distance from i to j def __a ( self :Any , _lowercase :List[str] , _lowercase :List[str] , _lowercase :Optional[int]) -> Any: UpperCAmelCase_ = w def __a ( self :str) -> Optional[Any]: for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): UpperCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def __a ( self :int , _lowercase :Tuple , _lowercase :Optional[int]) -> List[str]: return self.dp[u][v] if __name__ == "__main__": UpperCamelCase_ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
344
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = OmegaConf.load(__UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCAmelCase ) ) ) return config def A ( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> List[Any]: '''simple docstring''' if conf_path is None: UpperCAmelCase_ = '''./model_checkpoints/vqgan_only.yaml''' UpperCAmelCase_ = load_config(__UpperCAmelCase , display=__UpperCAmelCase ) UpperCAmelCase_ = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase_ = '''./model_checkpoints/vqgan_only.pt''' UpperCAmelCase_ = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) if ".ckpt" in ckpt_path: UpperCAmelCase_ = sd['''state_dict'''] model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) model.to(__UpperCAmelCase ) del sd return model def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = model.encode(__UpperCAmelCase ) print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) UpperCAmelCase_ = model.decode(__UpperCAmelCase ) return xrec def A ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = string.rsplit('''.''' , 1 ) if reload: UpperCAmelCase_ = importlib.import_module(__UpperCAmelCase ) importlib.reload(__UpperCAmelCase ) return getattr(importlib.import_module(__UpperCAmelCase , package=__UpperCAmelCase ) , cls ) def A ( __UpperCAmelCase ) -> str: '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=True ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = instantiate_from_config(__UpperCAmelCase ) if sd is not None: model.load_state_dict(__UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if ckpt: UpperCAmelCase_ = torch.load(__UpperCAmelCase , map_location='''cpu''' ) UpperCAmelCase_ = pl_sd['''global_step'''] print(f"loaded model from global step {global_step}." ) else: UpperCAmelCase_ = {'''state_dict''': None} UpperCAmelCase_ = None UpperCAmelCase_ = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=__UpperCAmelCase , eval_mode=__UpperCAmelCase )['''model'''] return model, global_step
344
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
1
def A ( __UpperCAmelCase , __UpperCAmelCase = 0 ) -> list: '''simple docstring''' UpperCAmelCase_ = length or len(__UpperCAmelCase ) UpperCAmelCase_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: UpperCAmelCase_ , UpperCAmelCase_ = list_data[i + 1], list_data[i] UpperCAmelCase_ = True return list_data if not swapped else bubble_sort(__UpperCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
344
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
1
from collections import deque from .hash_table import HashTable class a_ ( _snake_case ): def __init__( self :Union[str, Any] , *_lowercase :Optional[int] , **_lowercase :List[str]) -> int: super().__init__(*_lowercase , **_lowercase) def __a ( self :Optional[int] , _lowercase :str , _lowercase :Optional[Any]) -> List[str]: UpperCAmelCase_ = deque([]) if self.values[key] is None else self.values[key] self.values[key].appendleft(_lowercase) UpperCAmelCase_ = self.values[key] def __a ( self :Optional[Any]) -> List[Any]: return ( sum(self.charge_factor - len(_lowercase) for slot in self.values) / self.size_table * self.charge_factor ) def __a ( self :Any , _lowercase :Union[str, Any] , _lowercase :int=None) -> Tuple: if not ( len(self.values[key]) == self.charge_factor and self.values.count(_lowercase) == 0 ): return key return super()._collision_resolution(_lowercase , _lowercase)
344
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
1
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCamelCase_ = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def A ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Dict: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
344
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Tuple =(DDPMParallelScheduler,) def __a ( self :Tuple , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_lowercase) return config def __a ( self :Dict) -> Tuple: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :Tuple) -> str: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Dict) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :Any) -> Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase) def __a ( self :Tuple) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase) def __a ( self :Union[str, Any]) -> Optional[int]: self.check_over_configs(thresholding=_lowercase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def __a ( self :Dict) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Tuple) -> List[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase) def __a ( self :Union[str, Any]) -> Optional[int]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00_979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def __a ( self :Optional[Any]) -> Dict: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = self.dummy_sample_deter + 0.1 UpperCAmelCase_ = self.dummy_sample_deter - 0.1 UpperCAmelCase_ = samplea.shape[0] UpperCAmelCase_ = torch.stack([samplea, samplea, samplea] , dim=0) UpperCAmelCase_ = torch.arange(_lowercase)[0:3, None].repeat(1 , _lowercase) UpperCAmelCase_ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) UpperCAmelCase_ = scheduler.batch_step_no_noise(_lowercase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 1_153.1_833) < 1E-2 assert abs(result_mean.item() - 0.5_005) < 1E-3 def __a ( self :Optional[int]) -> Dict: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0) for t in reversed(range(_lowercase)): # 1. predict noise residual UpperCAmelCase_ = model(_lowercase , _lowercase) # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 258.9_606) < 1E-2 assert abs(result_mean.item() - 0.3_372) < 1E-3 def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''') UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0) for t in reversed(range(_lowercase)): # 1. predict noise residual UpperCAmelCase_ = model(_lowercase , _lowercase) # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 202.0_296) < 1E-2 assert abs(result_mean.item() - 0.2_631) < 1E-3 def __a ( self :Optional[int]) -> List[str]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase) UpperCAmelCase_ = scheduler.timesteps for i, timestep in enumerate(_lowercase): if i == len(_lowercase) - 1: UpperCAmelCase_ = -1 else: UpperCAmelCase_ = timesteps[i + 1] UpperCAmelCase_ = scheduler.previous_timestep(_lowercase) UpperCAmelCase_ = prev_t.item() self.assertEqual(_lowercase , _lowercase) def __a ( self :Dict) -> Dict: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=_lowercase) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = [100, 87, 50, 1, 0] UpperCAmelCase_ = len(_lowercase) with self.assertRaises(_lowercase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase) def __a ( self :Union[str, Any]) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_lowercase)
344
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
from queue import PriorityQueue from typing import Any import numpy as np def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCAmelCase_ = cst_fwd.get(__UpperCAmelCase , np.inf ) UpperCAmelCase_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCAmelCase_ = new_cost_f UpperCAmelCase_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCAmelCase_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = -1 UpperCAmelCase_ = set() UpperCAmelCase_ = set() UpperCAmelCase_ = {source: 0} UpperCAmelCase_ = {destination: 0} UpperCAmelCase_ = {source: None} UpperCAmelCase_ = {destination: None} UpperCAmelCase_ = PriorityQueue() UpperCAmelCase_ = PriorityQueue() UpperCAmelCase_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCAmelCase_ , UpperCAmelCase_ = queue_forward.get() visited_forward.add(__UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = queue_backward.get() visited_backward.add(__UpperCAmelCase ) UpperCAmelCase_ = pass_and_relaxation( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) UpperCAmelCase_ = pass_and_relaxation( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCAmelCase_ = shortest_distance return shortest_path_distance UpperCamelCase_ = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } UpperCamelCase_ = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
344
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
1
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class a_ : @property def __a ( self :Union[str, Any]) -> Any: return self.get_dummy_input() @property def __a ( self :int) -> Any: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.") def __a ( self :List[Any] , _lowercase :List[str]=True , _lowercase :str=False , _lowercase :Any=False , _lowercase :str=False , ) -> Optional[int]: UpperCAmelCase_ = 4 UpperCAmelCase_ = 32 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = torch.device(_lowercase) UpperCAmelCase_ = (batch_size, num_channels) + sizes UpperCAmelCase_ = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase) UpperCAmelCase_ = {'''hidden_states''': hidden_states} if include_temb: UpperCAmelCase_ = 128 UpperCAmelCase_ = randn_tensor((batch_size, temb_channels) , generator=_lowercase , device=_lowercase) if include_res_hidden_states_tuple: UpperCAmelCase_ = torch.manual_seed(1) UpperCAmelCase_ = (randn_tensor(_lowercase , generator=_lowercase , device=_lowercase),) if include_encoder_hidden_states: UpperCAmelCase_ = floats_tensor((batch_size, 32, 32)).to(_lowercase) if include_skip_sample: UpperCAmelCase_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowercase , device=_lowercase) return dummy_input def __a ( self :List[Any]) -> Any: UpperCAmelCase_ = { '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 128, } if self.block_type == "up": UpperCAmelCase_ = 32 if self.block_type == "mid": init_dict.pop('''out_channels''') UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def __a ( self :Optional[Any] , _lowercase :str) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.block_class(**_lowercase) unet_block.to(_lowercase) unet_block.eval() with torch.no_grad(): UpperCAmelCase_ = unet_block(**_lowercase) if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = output[0] self.assertEqual(output.shape , self.output_shape) UpperCAmelCase_ = output[0, -1, -3:, -3:] UpperCAmelCase_ = torch.tensor(_lowercase).to(_lowercase) assert torch_all_close(output_slice.flatten() , _lowercase , atol=5E-3) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''') def __a ( self :List[Any]) -> Any: UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.block_class(**_lowercase) model.to(_lowercase) model.train() UpperCAmelCase_ = model(**_lowercase) if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = output[0] UpperCAmelCase_ = torch.device(_lowercase) UpperCAmelCase_ = randn_tensor(output.shape , device=_lowercase) UpperCAmelCase_ = torch.nn.functional.mse_loss(_lowercase , _lowercase) loss.backward()
344
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] ="deformable_detr" UpperCamelCase__ : Any ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self :Optional[Any] , _lowercase :Optional[Any]=True , _lowercase :Any=None , _lowercase :Optional[Any]=3 , _lowercase :int=300 , _lowercase :List[Any]=1024 , _lowercase :Any=6 , _lowercase :Dict=1024 , _lowercase :Union[str, Any]=8 , _lowercase :int=6 , _lowercase :str=1024 , _lowercase :List[str]=8 , _lowercase :Tuple=0.0 , _lowercase :List[str]=True , _lowercase :Optional[int]="relu" , _lowercase :Optional[int]=256 , _lowercase :str=0.1 , _lowercase :Union[str, Any]=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Any=0.02 , _lowercase :Tuple=1.0 , _lowercase :Union[str, Any]=True , _lowercase :int=False , _lowercase :List[Any]="sine" , _lowercase :Optional[int]="resnet50" , _lowercase :Optional[int]=True , _lowercase :Any=False , _lowercase :Optional[Any]=4 , _lowercase :Optional[Any]=4 , _lowercase :Dict=4 , _lowercase :List[str]=False , _lowercase :Union[str, Any]=300 , _lowercase :List[Any]=False , _lowercase :int=1 , _lowercase :str=5 , _lowercase :List[Any]=2 , _lowercase :str=1 , _lowercase :str=1 , _lowercase :Optional[int]=5 , _lowercase :Optional[int]=2 , _lowercase :Union[str, Any]=0.1 , _lowercase :List[Any]=0.25 , _lowercase :Dict=False , **_lowercase :List[Any] , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') UpperCAmelCase_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(_lowercase , _lowercase): UpperCAmelCase_ = backbone_config.get('''model_type''') UpperCAmelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ = config_class.from_dict(_lowercase) UpperCAmelCase_ = use_timm_backbone UpperCAmelCase_ = backbone_config UpperCAmelCase_ = num_channels UpperCAmelCase_ = num_queries UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = init_xavier_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = auxiliary_loss UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = backbone UpperCAmelCase_ = use_pretrained_backbone UpperCAmelCase_ = dilation # deformable attributes UpperCAmelCase_ = num_feature_levels UpperCAmelCase_ = encoder_n_points UpperCAmelCase_ = decoder_n_points UpperCAmelCase_ = two_stage UpperCAmelCase_ = two_stage_num_proposals UpperCAmelCase_ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher UpperCAmelCase_ = class_cost UpperCAmelCase_ = bbox_cost UpperCAmelCase_ = giou_cost # Loss coefficients UpperCAmelCase_ = mask_loss_coefficient UpperCAmelCase_ = dice_loss_coefficient UpperCAmelCase_ = bbox_loss_coefficient UpperCAmelCase_ = giou_loss_coefficient UpperCAmelCase_ = eos_coefficient UpperCAmelCase_ = focal_alpha UpperCAmelCase_ = disable_custom_kernels super().__init__(is_encoder_decoder=_lowercase , **_lowercase) @property def __a ( self :Optional[Any]) -> int: return self.encoder_attention_heads @property def __a ( self :int) -> int: return self.d_model def __a ( self :int) -> Optional[int]: UpperCAmelCase_ = copy.deepcopy(self.__dict__) if self.backbone_config is not None: UpperCAmelCase_ = self.backbone_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
344
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase_ = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" UpperCamelCase_ = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" UpperCamelCase_ = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def __a ( self :List[str]) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __a ( self :List[str] , _lowercase :Tuple , _lowercase :Any , _lowercase :Optional[Any]=None , _lowercase :Optional[Any]=None , _lowercase :Optional[Any]=None , _lowercase :List[Any]=None , _lowercase :List[Any]="auto" , _lowercase :List[str]=-1 , _lowercase :List[str]=0.9 , _lowercase :Dict=5 , _lowercase :Dict=500 , _lowercase :Any="gpt2-large" , _lowercase :str=-1 , _lowercase :List[str]=1024 , _lowercase :str=25 , _lowercase :Optional[Any]=5 , _lowercase :List[Any]=True , _lowercase :int=25 , ) -> Optional[Any]: UpperCAmelCase_ = compute_mauve( p_text=_lowercase , q_text=_lowercase , p_features=_lowercase , q_features=_lowercase , p_tokens=_lowercase , q_tokens=_lowercase , num_buckets=_lowercase , pca_max_data=_lowercase , kmeans_explained_var=_lowercase , kmeans_num_redo=_lowercase , kmeans_max_iter=_lowercase , featurize_model_name=_lowercase , device_id=_lowercase , max_text_length=_lowercase , divergence_curve_discretization_size=_lowercase , mauve_scaling_factor=_lowercase , verbose=_lowercase , seed=_lowercase , ) return out
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : List[str] ="git_vision_model" def __init__( self :Optional[Any] , _lowercase :Optional[int]=768 , _lowercase :Any=3072 , _lowercase :Dict=12 , _lowercase :Optional[Any]=12 , _lowercase :int=3 , _lowercase :List[str]=224 , _lowercase :Dict=16 , _lowercase :List[str]="quick_gelu" , _lowercase :List[str]=1E-5 , _lowercase :Any=0.0 , _lowercase :Optional[int]=0.02 , **_lowercase :List[Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = patch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = hidden_act @classmethod def __a ( cls :Any , _lowercase :Union[str, os.PathLike] , **_lowercase :Optional[int]) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_lowercase , **_lowercase) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": UpperCAmelCase_ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(_lowercase , **_lowercase) class a_ ( _snake_case ): UpperCamelCase__ : Any ="git" def __init__( self :int , _lowercase :Optional[Any]=None , _lowercase :Optional[int]=30522 , _lowercase :Union[str, Any]=768 , _lowercase :Union[str, Any]=6 , _lowercase :Dict=12 , _lowercase :Dict=3072 , _lowercase :Any="gelu" , _lowercase :Union[str, Any]=0.1 , _lowercase :Any=0.1 , _lowercase :Any=1024 , _lowercase :Union[str, Any]=0.02 , _lowercase :Any=1E-1_2 , _lowercase :Tuple=0 , _lowercase :Tuple="absolute" , _lowercase :Optional[int]=True , _lowercase :Dict=False , _lowercase :Tuple=101 , _lowercase :Optional[int]=102 , _lowercase :Optional[Any]=None , **_lowercase :Dict , ) -> Optional[Any]: super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , pad_token_id=_lowercase , **_lowercase) if vision_config is None: UpperCAmelCase_ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') UpperCAmelCase_ = GitVisionConfig(**_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = tie_word_embeddings UpperCAmelCase_ = num_image_with_embedding UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id def __a ( self :Tuple) -> Tuple: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
344
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
1
import math def A ( __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 ) -> list: '''simple docstring''' UpperCAmelCase_ = end or len(__UpperCAmelCase ) for i in range(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = i UpperCAmelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCAmelCase_ = array[temp_index - 1] temp_index -= 1 UpperCAmelCase_ = temp_index_value return array def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: # Max Heap '''simple docstring''' UpperCAmelCase_ = index UpperCAmelCase_ = 2 * index + 1 # Left Node UpperCAmelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCAmelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCAmelCase_ = right_index if largest != index: UpperCAmelCase_ , UpperCAmelCase_ = array[largest], array[index] heapify(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase ) -> list: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for i in range(n - 1 , 0 , -1 ): UpperCAmelCase_ , UpperCAmelCase_ = array[0], array[i] heapify(__UpperCAmelCase , 0 , __UpperCAmelCase ) return array def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = low UpperCAmelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCAmelCase_ , UpperCAmelCase_ = array[j], array[i] i += 1 def A ( __UpperCAmelCase ) -> list: '''simple docstring''' if len(__UpperCAmelCase ) == 0: return array UpperCAmelCase_ = 2 * math.ceil(math.loga(len(__UpperCAmelCase ) ) ) UpperCAmelCase_ = 16 return intro_sort(__UpperCAmelCase , 0 , len(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(__UpperCAmelCase ) max_depth -= 1 UpperCAmelCase_ = median_of_a(__UpperCAmelCase , __UpperCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) UpperCAmelCase_ = partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) intro_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = p return insertion_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = input("Enter numbers separated by a comma : ").strip() UpperCamelCase_ = [float(item) for item in user_input.split(",")] print(sort(unsorted))
344
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
1
from sklearn.metrics import recall_score import datasets UpperCamelCase_ = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" UpperCamelCase_ = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" UpperCamelCase_ = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def __a ( self :int) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''')), '''references''': datasets.Sequence(datasets.Value('''int32''')), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32'''), '''references''': datasets.Value('''int32'''), }) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def __a ( self :Tuple , _lowercase :Optional[Any] , _lowercase :str , _lowercase :Optional[int]=None , _lowercase :Dict=1 , _lowercase :List[str]="binary" , _lowercase :Tuple=None , _lowercase :str="warn" , ) -> Dict: UpperCAmelCase_ = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase) if score.size == 1 else score}
344
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : Tuple =["pixel_values"] def __init__( self :List[str] , _lowercase :bool = True , _lowercase :Optional[Dict[str, int]] = None , _lowercase :PILImageResampling = PILImageResampling.BILINEAR , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = None , _lowercase :Optional[Union[float, List[float]]] = None , **_lowercase :Tuple , ) -> None: super().__init__(**_lowercase) UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase) UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ = get_size_dict(_lowercase , param_name='''crop_size''') UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self :Any , _lowercase :np.ndarray , _lowercase :Dict[str, int] , _lowercase :PILImageResampling = PILImageResampling.BICUBIC , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :Union[str, Any] , ) -> np.ndarray: UpperCAmelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") UpperCAmelCase_ = get_resize_output_image_size(_lowercase , size=size['''shortest_edge'''] , default_to_square=_lowercase) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase) def __a ( self :Optional[int] , _lowercase :np.ndarray , _lowercase :Dict[str, int] , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :Union[str, Any] , ) -> np.ndarray: UpperCAmelCase_ = get_size_dict(_lowercase) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(_lowercase , size=(size['''height'''], size['''width''']) , data_format=_lowercase , **_lowercase) def __a ( self :List[str] , _lowercase :np.ndarray , _lowercase :float , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :Optional[Any]) -> np.ndarray: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase) def __a ( self :Union[str, Any] , _lowercase :np.ndarray , _lowercase :Union[float, List[float]] , _lowercase :Union[float, List[float]] , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :int , ) -> np.ndarray: return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase) def __a ( self :Optional[int] , _lowercase :ImageInput , _lowercase :Optional[bool] = None , _lowercase :Dict[str, int] = None , _lowercase :PILImageResampling = None , _lowercase :bool = None , _lowercase :Dict[str, int] = None , _lowercase :Optional[bool] = None , _lowercase :Optional[float] = None , _lowercase :Optional[bool] = None , _lowercase :Optional[Union[float, List[float]]] = None , _lowercase :Optional[Union[float, List[float]]] = None , _lowercase :Optional[Union[str, TensorType]] = None , _lowercase :Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase :Dict , ) -> int: UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_lowercase , param_name='''crop_size''') UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = make_list_of_images(_lowercase) if not valid_images(_lowercase): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_lowercase) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=_lowercase , size=_lowercase) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_lowercase , scale=_lowercase) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_lowercase , _lowercase) for image in images] UpperCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase) def __a ( self :Tuple , _lowercase :Optional[Any] , _lowercase :List[Tuple] = None) -> List[Any]: UpperCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase) != len(_lowercase): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(_lowercase): UpperCAmelCase_ = target_sizes.numpy() UpperCAmelCase_ = [] for idx in range(len(_lowercase)): UpperCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase) UpperCAmelCase_ = resized_logits[0].argmax(dim=0) semantic_segmentation.append(_lowercase) else: UpperCAmelCase_ = logits.argmax(dim=1) UpperCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
1
import math def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 while num > 0: UpperCAmelCase_ = num % 8 UpperCAmelCase_ = octal + (remainder * math.floor(math.pow(10 , __UpperCAmelCase ) )) counter += 1 UpperCAmelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"0o{int(__UpperCAmelCase )}" def A ( ) -> None: '''simple docstring''' print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(216 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(512 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
344
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : int ="encoder-decoder" UpperCamelCase__ : List[Any] =True def __init__( self :str , **_lowercase :Any) -> List[Any]: super().__init__(**_lowercase) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ = kwargs.pop('''encoder''') UpperCAmelCase_ = encoder_config.pop('''model_type''') UpperCAmelCase_ = kwargs.pop('''decoder''') UpperCAmelCase_ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = True @classmethod def __a ( cls :int , _lowercase :PretrainedConfig , _lowercase :PretrainedConfig , **_lowercase :str) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') UpperCAmelCase_ = True UpperCAmelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowercase) def __a ( self :List[Any]) -> int: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.encoder.to_dict() UpperCAmelCase_ = self.decoder.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
344
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["ViTFeatureExtractor"] UpperCamelCase_ = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : List[Any] =XLMTokenizer UpperCamelCase__ : Tuple =False def __a ( self :Optional[Any]) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(_lowercase , range(len(_lowercase)))) UpperCAmelCase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''') as fp: fp.write(json.dumps(_lowercase)) with open(self.merges_file , '''w''') as fp: fp.write('''\n'''.join(_lowercase)) def __a ( self :Union[str, Any] , _lowercase :List[Any]) -> Tuple: UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def __a ( self :str) -> Any: UpperCAmelCase_ = XLMTokenizer(self.vocab_file , self.merges_file) UpperCAmelCase_ = '''lower''' UpperCAmelCase_ = ['''low''', '''er</w>'''] UpperCAmelCase_ = tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokens + ['''<unk>'''] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , _lowercase) @slow def __a ( self :List[Any]) -> List[Any]: UpperCAmelCase_ = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''') UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
344
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] ="unispeech" def __init__( self :Dict , _lowercase :Optional[int]=32 , _lowercase :List[Any]=768 , _lowercase :List[str]=12 , _lowercase :Tuple=12 , _lowercase :List[str]=3072 , _lowercase :Dict="gelu" , _lowercase :Any=0.1 , _lowercase :Optional[int]=0.1 , _lowercase :Dict=0.1 , _lowercase :List[str]=0.0 , _lowercase :Dict=0.0 , _lowercase :List[Any]=0.1 , _lowercase :str=0.1 , _lowercase :Optional[Any]=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[Any]="group" , _lowercase :str="gelu" , _lowercase :Any=(512, 512, 512, 512, 512, 512, 512) , _lowercase :Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , _lowercase :Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , _lowercase :Dict=False , _lowercase :str=128 , _lowercase :List[str]=16 , _lowercase :Union[str, Any]=False , _lowercase :Union[str, Any]=True , _lowercase :Any=0.05 , _lowercase :List[Any]=10 , _lowercase :Optional[Any]=2 , _lowercase :Tuple=0.0 , _lowercase :Union[str, Any]=10 , _lowercase :Union[str, Any]=0 , _lowercase :List[Any]=320 , _lowercase :Union[str, Any]=2 , _lowercase :int=0.1 , _lowercase :int=100 , _lowercase :List[str]=256 , _lowercase :Tuple=256 , _lowercase :List[str]=0.1 , _lowercase :List[Any]="mean" , _lowercase :Any=False , _lowercase :Union[str, Any]=False , _lowercase :str=256 , _lowercase :int=80 , _lowercase :List[str]=0 , _lowercase :Union[str, Any]=1 , _lowercase :str=2 , _lowercase :Dict=0.5 , **_lowercase :List[Any] , ) -> Dict: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = feat_extract_norm UpperCAmelCase_ = feat_extract_activation UpperCAmelCase_ = list(_lowercase) UpperCAmelCase_ = list(_lowercase) UpperCAmelCase_ = list(_lowercase) UpperCAmelCase_ = conv_bias UpperCAmelCase_ = num_conv_pos_embeddings UpperCAmelCase_ = num_conv_pos_embedding_groups UpperCAmelCase_ = len(self.conv_dim) UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = feat_proj_dropout UpperCAmelCase_ = final_dropout UpperCAmelCase_ = layerdrop UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_ctc_classes UpperCAmelCase_ = vocab_size UpperCAmelCase_ = do_stable_layer_norm UpperCAmelCase_ = use_weighted_layer_sum UpperCAmelCase_ = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ = apply_spec_augment UpperCAmelCase_ = mask_time_prob UpperCAmelCase_ = mask_time_length UpperCAmelCase_ = mask_time_min_masks UpperCAmelCase_ = mask_feature_prob UpperCAmelCase_ = mask_feature_length UpperCAmelCase_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ = num_codevectors_per_group UpperCAmelCase_ = num_codevector_groups UpperCAmelCase_ = contrastive_logits_temperature UpperCAmelCase_ = feat_quantizer_dropout UpperCAmelCase_ = num_negatives UpperCAmelCase_ = codevector_dim UpperCAmelCase_ = proj_codevector_dim UpperCAmelCase_ = diversity_loss_weight # ctc loss UpperCAmelCase_ = ctc_loss_reduction UpperCAmelCase_ = ctc_zero_infinity # pretraining loss UpperCAmelCase_ = replace_prob @property def __a ( self :Dict) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1)
344
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = UniSpeechSatForSequenceClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) UpperCAmelCase_ = downstream_dict['''projector.weight'''] UpperCAmelCase_ = downstream_dict['''projector.bias'''] UpperCAmelCase_ = downstream_dict['''model.post_net.linear.weight'''] UpperCAmelCase_ = downstream_dict['''model.post_net.linear.bias'''] return model def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' UpperCAmelCase_ = UniSpeechSatForAudioFrameClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) UpperCAmelCase_ = downstream_dict['''model.linear.weight'''] UpperCAmelCase_ = downstream_dict['''model.linear.bias'''] return model def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' UpperCAmelCase_ = UniSpeechSatForXVector.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) UpperCAmelCase_ = downstream_dict['''connector.weight'''] UpperCAmelCase_ = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase_ = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] UpperCAmelCase_ = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] UpperCAmelCase_ = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] UpperCAmelCase_ = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] UpperCAmelCase_ = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] UpperCAmelCase_ = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] UpperCAmelCase_ = downstream_dict['''objective.W'''] return model @torch.no_grad() def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = torch.load(__UpperCAmelCase , map_location='''cpu''' ) UpperCAmelCase_ = checkpoint['''Downstream'''] UpperCAmelCase_ = UniSpeechSatConfig.from_pretrained(__UpperCAmelCase ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained( __UpperCAmelCase , return_attention_mask=__UpperCAmelCase , do_normalize=__UpperCAmelCase ) UpperCAmelCase_ = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): UpperCAmelCase_ = convert_classification(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) elif arch.endswith('''ForAudioFrameClassification''' ): UpperCAmelCase_ = convert_diarization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) elif arch.endswith('''ForXVector''' ): UpperCAmelCase_ = convert_xvector(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: UpperCAmelCase_ = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(__UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") UpperCamelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
344
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="funnel" UpperCamelCase__ : Optional[Any] ={ "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self :Union[str, Any] , _lowercase :int=30522 , _lowercase :str=[4, 4, 4] , _lowercase :str=None , _lowercase :Optional[int]=2 , _lowercase :Union[str, Any]=768 , _lowercase :List[str]=12 , _lowercase :Optional[int]=64 , _lowercase :int=3072 , _lowercase :Dict="gelu_new" , _lowercase :Optional[Any]=0.1 , _lowercase :Union[str, Any]=0.1 , _lowercase :str=0.0 , _lowercase :Dict=0.1 , _lowercase :str=None , _lowercase :Tuple=1E-9 , _lowercase :List[Any]="mean" , _lowercase :Optional[int]="relative_shift" , _lowercase :List[str]=True , _lowercase :Optional[Any]=True , _lowercase :Optional[int]=True , **_lowercase :str , ) -> List[str]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = block_sizes UpperCAmelCase_ = [1] * len(_lowercase) if block_repeats is None else block_repeats assert len(_lowercase) == len( self.block_repeats), "`block_sizes` and `block_repeats` should have the same length." UpperCAmelCase_ = num_decoder_layers UpperCAmelCase_ = d_model UpperCAmelCase_ = n_head UpperCAmelCase_ = d_head UpperCAmelCase_ = d_inner UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_std UpperCAmelCase_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." UpperCAmelCase_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." UpperCAmelCase_ = attention_type UpperCAmelCase_ = separate_cls UpperCAmelCase_ = truncate_seq UpperCAmelCase_ = pool_q_only super().__init__(**_lowercase) @property def __a ( self :int) -> Any: return sum(self.block_sizes) @num_hidden_layers.setter def __a ( self :int , _lowercase :str) -> str: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''') @property def __a ( self :Optional[int]) -> Dict: return len(self.block_sizes) @num_blocks.setter def __a ( self :Union[str, Any] , _lowercase :int) -> Optional[Any]: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''')
344
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): @slow def __a ( self :Any) -> Any: UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_lowercase)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3)) @slow def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_lowercase)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3))
344
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = state_dict.pop(__UpperCAmelCase ) UpperCAmelCase_ = val def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def A ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = '''''' if is_panoptic: UpperCAmelCase_ = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) UpperCAmelCase_ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] def A ( ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ = '''resnet101''' if "dc5" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = '''panoptic''' in model_name if is_panoptic: UpperCAmelCase_ = 250 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''coco-detection-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' UpperCAmelCase_ = ConditionalDetrImageProcessor(format=__UpperCAmelCase ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase_ = encoding['''pixel_values'''] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub UpperCAmelCase_ = torch.hub.load('''DeppMeng/ConditionalDETR''' , __UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() UpperCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ = '''conditional_detr.''' + src rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = rename_backbone_keys(__UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCAmelCase , is_panoptic=__UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): UpperCAmelCase_ = state_dict.pop(__UpperCAmelCase ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(__UpperCAmelCase ) UpperCAmelCase_ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: UpperCAmelCase_ = state_dict.pop(__UpperCAmelCase ) UpperCAmelCase_ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ = state_dict.pop(__UpperCAmelCase ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = ConditionalDetrForSegmentation(__UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=__UpperCAmelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion UpperCAmelCase_ = conditional_detr(__UpperCAmelCase ) UpperCAmelCase_ = model(__UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) UpperCamelCase_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
1
def A ( __UpperCAmelCase ) -> list: '''simple docstring''' if len(__UpperCAmelCase ) <= 1: return [tuple(__UpperCAmelCase )] UpperCAmelCase_ = [] def generate(__UpperCAmelCase , __UpperCAmelCase ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , __UpperCAmelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even UpperCAmelCase_ , UpperCAmelCase_ = arr[k - 1], arr[i] else: # k is odd UpperCAmelCase_ , UpperCAmelCase_ = arr[k - 1], arr[0] generate(k - 1 , __UpperCAmelCase ) generate(len(__UpperCAmelCase ) , __UpperCAmelCase ) return res if __name__ == "__main__": UpperCamelCase_ = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase_ = [int(item) for item in user_input.split(",")] print(heaps(arr))
344
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
from __future__ import annotations import requests UpperCamelCase_ = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def A ( __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = "new" , __UpperCAmelCase = None ) -> dict: '''simple docstring''' UpperCAmelCase_ = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__UpperCAmelCase ) - valid_terms ) ): UpperCAmelCase_ = f"Invalid search term: {invalid_search_terms}" raise ValueError(__UpperCAmelCase ) UpperCAmelCase_ = requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError UpperCAmelCase_ = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__UpperCAmelCase )} UpperCAmelCase_ = {} for id_ in range(__UpperCAmelCase ): UpperCAmelCase_ = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
344
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] ="blenderbot-small" UpperCamelCase__ : Any =["past_key_values"] UpperCamelCase__ : Optional[Any] ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self :Union[str, Any] , _lowercase :List[str]=50265 , _lowercase :Any=512 , _lowercase :str=8 , _lowercase :Union[str, Any]=2048 , _lowercase :Union[str, Any]=16 , _lowercase :Tuple=8 , _lowercase :Tuple=2048 , _lowercase :str=16 , _lowercase :Any=0.0 , _lowercase :Optional[int]=0.0 , _lowercase :Union[str, Any]=True , _lowercase :int=True , _lowercase :int="gelu" , _lowercase :List[Any]=512 , _lowercase :Tuple=0.1 , _lowercase :Dict=0.0 , _lowercase :Dict=0.0 , _lowercase :Optional[int]=0.02 , _lowercase :str=1 , _lowercase :Optional[int]=False , _lowercase :Optional[Any]=0 , _lowercase :Any=1 , _lowercase :str=2 , _lowercase :Any=2 , **_lowercase :Optional[int] , ) -> List[str]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = use_cache UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class a_ ( _snake_case ): @property def __a ( self :Optional[int]) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: UpperCAmelCase_ = {0: '''batch'''} UpperCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''') elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers for i in range(_lowercase): UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ]) return common_inputs @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = super().outputs else: UpperCAmelCase_ = super(_lowercase , self).outputs if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers for i in range(_lowercase): UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __a ( self :List[str] , _lowercase :PreTrainedTokenizer , _lowercase :int = -1 , _lowercase :int = -1 , _lowercase :bool = False , _lowercase :Optional[TensorType] = None , ) -> Mapping[str, Any]: UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) # Generate decoder inputs UpperCAmelCase_ = seq_length if not self.use_past else 1 UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) UpperCAmelCase_ = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase_ = dict(**_lowercase , **_lowercase) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape UpperCAmelCase_ = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads UpperCAmelCase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ = decoder_seq_length + 3 UpperCAmelCase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase_ = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase)] , dim=1) UpperCAmelCase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers UpperCAmelCase_ = min(_lowercase , _lowercase) UpperCAmelCase_ = max(_lowercase , _lowercase) - min_num_layers UpperCAmelCase_ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowercase): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase), torch.zeros(_lowercase), torch.zeros(_lowercase), torch.zeros(_lowercase), )) # TODO: test this. UpperCAmelCase_ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowercase , _lowercase): common_inputs["past_key_values"].append((torch.zeros(_lowercase), torch.zeros(_lowercase))) return common_inputs def __a ( self :List[Any] , _lowercase :PreTrainedTokenizer , _lowercase :int = -1 , _lowercase :int = -1 , _lowercase :bool = False , _lowercase :Optional[TensorType] = None , ) -> Mapping[str, Any]: UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase_ = seqlen + 2 UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads UpperCAmelCase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ = common_inputs['''attention_mask'''].dtype UpperCAmelCase_ = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase)] , dim=1) UpperCAmelCase_ = [ (torch.zeros(_lowercase), torch.zeros(_lowercase)) for _ in range(_lowercase) ] return common_inputs def __a ( self :Optional[int] , _lowercase :PreTrainedTokenizer , _lowercase :int = -1 , _lowercase :int = -1 , _lowercase :bool = False , _lowercase :Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ = tokenizer.num_special_tokens_to_add(_lowercase) UpperCAmelCase_ = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ = [''' '''.join([tokenizer.unk_token]) * seq_length] * batch_size UpperCAmelCase_ = dict(tokenizer(_lowercase , return_tensors=_lowercase)) return common_inputs def __a ( self :Optional[Any] , _lowercase :PreTrainedTokenizer , _lowercase :int = -1 , _lowercase :int = -1 , _lowercase :bool = False , _lowercase :Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase) elif self.task == "causal-lm": UpperCAmelCase_ = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase) else: UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase) return common_inputs def __a ( self :Tuple , _lowercase :int , _lowercase :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Optional[Any]) -> List[str]: if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase) else: UpperCAmelCase_ = super(_lowercase , self)._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase)
344
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self :Dict , _lowercase :Tuple=2 , _lowercase :str=3 , _lowercase :Optional[Any]=64 , _lowercase :Optional[int]=None) -> List[str]: UpperCAmelCase_ = np.random.default_rng(_lowercase) UpperCAmelCase_ = length UpperCAmelCase_ = rng.normal(size=(length,)).astype(np.floataa) UpperCAmelCase_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,)).astype(np.floataa) def __len__( self :Union[str, Any]) -> List[Any]: return self.length def __getitem__( self :int , _lowercase :Optional[int]) -> Union[str, Any]: return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self :Dict , _lowercase :str=0 , _lowercase :Optional[Any]=0 , _lowercase :Optional[int]=False) -> Optional[int]: super().__init__() UpperCAmelCase_ = torch.nn.Parameter(torch.tensor([2, 3]).float()) UpperCAmelCase_ = torch.nn.Parameter(torch.tensor([2, 3]).float()) UpperCAmelCase_ = True def __a ( self :Tuple , _lowercase :Tuple=None) -> str: if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") UpperCAmelCase_ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self :Union[str, Any] , _lowercase :int=0 , _lowercase :List[Any]=0 , _lowercase :Optional[Any]=False) -> Optional[int]: super().__init__() UpperCAmelCase_ = torch.nn.Parameter(torch.tensor(_lowercase).float()) UpperCAmelCase_ = torch.nn.Parameter(torch.tensor(_lowercase).float()) UpperCAmelCase_ = True def __a ( self :List[Any] , _lowercase :List[Any]=None) -> Dict: if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") UpperCAmelCase_ = False return x * self.a + self.b def A ( __UpperCAmelCase , __UpperCAmelCase = 16 ) -> List[str]: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer UpperCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCAmelCase_ = load_dataset('''csv''' , data_files=__UpperCAmelCase ) UpperCAmelCase_ = datasets['''train'''].unique('''label''' ) UpperCAmelCase_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) if "label" in examples: UpperCAmelCase_ = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader(tokenized_datasets['''train'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) UpperCAmelCase_ = DataLoader(tokenized_datasets['''validation'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
344
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
from __future__ import annotations def A ( __UpperCAmelCase ) -> int: '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCAmelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCAmelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def A ( __UpperCAmelCase ) -> str: '''simple docstring''' class a_ : def __init__( self :Union[str, Any] , _lowercase :Dict) -> List[Any]: UpperCAmelCase_ = metric_id class a_ : UpperCamelCase__ : Dict =[MetricMock(_snake_case ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def __a ( self :Optional[Any]) -> List[str]: return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if "tmp_path" in args: UpperCAmelCase_ = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(__UpperCAmelCase , match='''https://huggingface.co/docs/evaluate''' ): func(*__UpperCAmelCase )
344
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCamelCase_ = sys.version_info >= (3, 10) def A ( __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' return field(default_factory=lambda: default , metadata=__UpperCAmelCase ) @dataclass class a_ : UpperCamelCase__ : int UpperCamelCase__ : float UpperCamelCase__ : str UpperCamelCase__ : bool @dataclass class a_ : UpperCamelCase__ : int =42 UpperCamelCase__ : str =field(default="toto" , metadata={"help": "help message"} ) @dataclass class a_ : UpperCamelCase__ : bool =False UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[bool] =None class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] ="titi" UpperCamelCase__ : int ="toto" class a_ ( _snake_case ): UpperCamelCase__ : Dict ="titi" UpperCamelCase__ : Tuple ="toto" UpperCamelCase__ : Dict =42 @dataclass class a_ : UpperCamelCase__ : BasicEnum ="toto" def __a ( self :List[Any]) -> int: UpperCAmelCase_ = BasicEnum(self.foo) @dataclass class a_ : UpperCamelCase__ : MixedTypeEnum ="toto" def __a ( self :Any) -> Optional[int]: UpperCAmelCase_ = MixedTypeEnum(self.foo) @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[float] =field(default=_snake_case , metadata={"help": "help message"} ) UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[List[str]] =list_field(default=[] ) UpperCamelCase__ : Optional[List[int]] =list_field(default=[] ) @dataclass class a_ : UpperCamelCase__ : List[int] =list_field(default=[] ) UpperCamelCase__ : List[int] =list_field(default=[1, 2, 3] ) UpperCamelCase__ : List[str] =list_field(default=["Hallo", "Bonjour", "Hello"] ) UpperCamelCase__ : List[float] =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class a_ : UpperCamelCase__ : List[int] =field() UpperCamelCase__ : str =field() UpperCamelCase__ : BasicEnum =field() def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = BasicEnum(self.required_enum) @dataclass class a_ : UpperCamelCase__ : int UpperCamelCase__ : "BasicEnum" =field() UpperCamelCase__ : "Optional[bool]" =None UpperCamelCase__ : "str" =field(default="toto" , metadata={"help": "help message"} ) UpperCamelCase__ : "List[str]" =list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class a_ : UpperCamelCase__ : bool =False UpperCamelCase__ : bool =True UpperCamelCase__ : bool | None =None @dataclass class a_ : UpperCamelCase__ : int | None =None UpperCamelCase__ : float | None =field(default=_snake_case , metadata={"help": "help message"} ) UpperCamelCase__ : str | None =None UpperCamelCase__ : list[str] | None =list_field(default=[] ) UpperCamelCase__ : list[int] | None =list_field(default=[] ) class a_ ( unittest.TestCase ): def __a ( self :List[str] , _lowercase :argparse.ArgumentParser , _lowercase :argparse.ArgumentParser) -> Optional[int]: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): UpperCAmelCase_ = {k: v for k, v in vars(_lowercase).items() if k != '''container'''} UpperCAmelCase_ = {k: v for k, v in vars(_lowercase).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowercase) and yy.get('''choices''' , _lowercase): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowercase) , yy['''type'''](_lowercase)) del xx["type"], yy["type"] self.assertEqual(_lowercase , _lowercase) def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase) expected.add_argument('''--bar''' , type=_lowercase , required=_lowercase) expected.add_argument('''--baz''' , type=_lowercase , required=_lowercase) expected.add_argument('''--flag''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''') self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((UpperCAmelCase_) , ) = parser.parse_args_into_dataclasses(_lowercase , look_for_args_file=_lowercase) self.assertFalse(example.flag) def __a ( self :int) -> int: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowercase) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''') self.argparsersEqual(_lowercase , _lowercase) def __a ( self :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''') expected.add_argument('''--baz''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowercase , dest='''baz''') expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase) UpperCAmelCase_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase) for dataclass_type in dataclass_types: UpperCAmelCase_ = HfArgumentParser(_lowercase) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''--no_baz''']) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''--baz''']) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True''']) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False''']) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) def __a ( self :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42]) , ) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual(args.foo , '''toto''') UpperCAmelCase_ = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''titi''']) self.assertEqual(args.foo , '''titi''') UpperCAmelCase_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''42''']) self.assertEqual(args.foo , 42) UpperCAmelCase_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __a ( self :Optional[int]) -> Tuple: @dataclass class a_ : UpperCamelCase__ : Literal["titi", "toto", 42] ="toto" UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42]) , ) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual(args.foo , '''toto''') UpperCAmelCase_ = parser.parse_args(['''--foo''', '''titi''']) self.assertEqual(args.foo , '''titi''') UpperCAmelCase_ = parser.parse_args(['''--foo''', '''42''']) self.assertEqual(args.foo , 42) def __a ( self :Union[str, Any]) -> str: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowercase) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowercase) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowercase) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual( _lowercase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3]) , ) UpperCAmelCase_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split()) self.assertEqual(_lowercase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7])) def __a ( self :Optional[Any]) -> List[Any]: UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowercase , type=_lowercase) expected.add_argument('''--bar''' , default=_lowercase , type=_lowercase , help='''help message''') expected.add_argument('''--baz''' , default=_lowercase , type=_lowercase) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowercase) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowercase) UpperCAmelCase_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase) for dataclass_type in dataclass_types: UpperCAmelCase_ = HfArgumentParser(_lowercase) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual(_lowercase , Namespace(foo=_lowercase , bar=_lowercase , baz=_lowercase , ces=[] , des=[])) UpperCAmelCase_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split()) self.assertEqual(_lowercase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3])) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowercase , required=_lowercase) expected.add_argument('''--required_str''' , type=_lowercase , required=_lowercase) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto''']) , choices=['''titi''', '''toto'''] , required=_lowercase , ) self.argparsersEqual(_lowercase , _lowercase) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto''']) , choices=['''titi''', '''toto'''] , required=_lowercase , ) expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''') expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase) self.argparsersEqual(_lowercase , _lowercase) def __a ( self :Tuple) -> int: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } UpperCAmelCase_ = parser.parse_dict(_lowercase)[0] UpperCAmelCase_ = BasicExample(**_lowercase) self.assertEqual(_lowercase , _lowercase) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowercase , parser.parse_dict , _lowercase , allow_extra_keys=_lowercase) def __a ( self :Optional[Any]) -> Optional[int]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_lowercase , '''temp_json''') os.mkdir(_lowercase) with open(temp_local_path + '''.json''' , '''w+''') as f: json.dump(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_yaml_file(Path(temp_local_path + '''.json'''))[0] UpperCAmelCase_ = BasicExample(**_lowercase) self.assertEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_lowercase , '''temp_yaml''') os.mkdir(_lowercase) with open(temp_local_path + '''.yaml''' , '''w+''') as f: yaml.dump(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml'''))[0] UpperCAmelCase_ = BasicExample(**_lowercase) self.assertEqual(_lowercase , _lowercase) def __a ( self :Optional[int]) -> List[str]: UpperCAmelCase_ = HfArgumentParser(_lowercase) self.assertIsNotNone(_lowercase)
344
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class a_ : def __init__( self :int , _lowercase :List[str] , _lowercase :Union[str, Any] , _lowercase :bool = True , _lowercase :bool = False) -> Any: UpperCAmelCase_ = scheduler UpperCAmelCase_ = optimizers if isinstance(_lowercase , (list, tuple)) else [optimizers] UpperCAmelCase_ = split_batches UpperCAmelCase_ = step_with_optimizer UpperCAmelCase_ = GradientState() def __a ( self :str , *_lowercase :Optional[int] , **_lowercase :Union[str, Any]) -> List[str]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowercase , **_lowercase) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowercase , **_lowercase) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase_ = AcceleratorState().num_processes for _ in range(_lowercase): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps'''): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowercase , **_lowercase) else: self.scheduler.step(*_lowercase , **_lowercase) def __a ( self :Dict) -> Dict: return self.scheduler.get_last_lr() def __a ( self :str) -> List[str]: return self.scheduler.state_dict() def __a ( self :Any , _lowercase :int) -> int: self.scheduler.load_state_dict(_lowercase) def __a ( self :str) -> Tuple: return self.scheduler.get_lr() def __a ( self :Optional[int] , *_lowercase :Optional[int] , **_lowercase :Union[str, Any]) -> List[str]: return self.scheduler.print_lr(*_lowercase , **_lowercase)
344
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : int ="blip_2_vision_model" def __init__( self :str , _lowercase :int=1408 , _lowercase :Union[str, Any]=6144 , _lowercase :str=39 , _lowercase :str=16 , _lowercase :int=224 , _lowercase :List[str]=14 , _lowercase :List[Any]="gelu" , _lowercase :str=0.00_001 , _lowercase :Optional[Any]=0.0 , _lowercase :Optional[int]=1E-1_0 , _lowercase :str=True , **_lowercase :Tuple , ) -> List[str]: super().__init__(**_lowercase) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = patch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = hidden_act UpperCAmelCase_ = qkv_bias @classmethod def __a ( cls :List[str] , _lowercase :Union[str, os.PathLike] , **_lowercase :Dict) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_lowercase , **_lowercase) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''') == "blip-2": UpperCAmelCase_ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(_lowercase , **_lowercase) class a_ ( _snake_case ): UpperCamelCase__ : int ="blip_2_qformer" def __init__( self :Optional[int] , _lowercase :str=30522 , _lowercase :Tuple=768 , _lowercase :Optional[int]=12 , _lowercase :List[Any]=12 , _lowercase :List[str]=3072 , _lowercase :Any="gelu" , _lowercase :Optional[int]=0.1 , _lowercase :Any=0.1 , _lowercase :Any=512 , _lowercase :List[str]=0.02 , _lowercase :List[Any]=1E-1_2 , _lowercase :List[Any]=0 , _lowercase :List[Any]="absolute" , _lowercase :List[str]=2 , _lowercase :Optional[Any]=1408 , **_lowercase :Optional[Any] , ) -> Union[str, Any]: super().__init__(pad_token_id=_lowercase , **_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = cross_attention_frequency UpperCAmelCase_ = encoder_hidden_size @classmethod def __a ( cls :List[str] , _lowercase :Union[str, os.PathLike] , **_lowercase :Any) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_lowercase , **_lowercase) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''') == "blip-2": UpperCAmelCase_ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(_lowercase , **_lowercase) class a_ ( _snake_case ): UpperCamelCase__ : List[Any] ="blip-2" UpperCamelCase__ : List[str] =True def __init__( self :Optional[Any] , _lowercase :Optional[int]=None , _lowercase :List[str]=None , _lowercase :Tuple=None , _lowercase :Any=32 , **_lowercase :Dict) -> Any: super().__init__(**_lowercase) if vision_config is None: UpperCAmelCase_ = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''') if qformer_config is None: UpperCAmelCase_ = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''') if text_config is None: UpperCAmelCase_ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') UpperCAmelCase_ = BlipaVisionConfig(**_lowercase) UpperCAmelCase_ = BlipaQFormerConfig(**_lowercase) UpperCAmelCase_ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' UpperCAmelCase_ = CONFIG_MAPPING[text_model_type](**_lowercase) UpperCAmelCase_ = self.text_config.tie_word_embeddings UpperCAmelCase_ = self.text_config.is_encoder_decoder UpperCAmelCase_ = num_query_tokens UpperCAmelCase_ = self.vision_config.hidden_size UpperCAmelCase_ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase_ = 1.0 UpperCAmelCase_ = 0.02 @classmethod def __a ( cls :str , _lowercase :BlipaVisionConfig , _lowercase :BlipaQFormerConfig , _lowercase :PretrainedConfig , **_lowercase :Union[str, Any] , ) -> Dict: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowercase , ) def __a ( self :Dict) -> List[Any]: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.qformer_config.to_dict() UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "x" , __UpperCAmelCase = 10**-10 , __UpperCAmelCase = 1 , ) -> complex: '''simple docstring''' UpperCAmelCase_ = symbols(__UpperCAmelCase ) UpperCAmelCase_ = lambdify(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = lambdify(__UpperCAmelCase , diff(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase_ = starting_point while True: if diff_function(__UpperCAmelCase ) != 0: UpperCAmelCase_ = prev_guess - multiplicity * func(__UpperCAmelCase ) / diff_function( __UpperCAmelCase ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCAmelCase_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(f"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}", ) # Find root of cos(x) print(f"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
344
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
1
def A ( __UpperCAmelCase = 100 ) -> int: '''simple docstring''' UpperCAmelCase_ = n * (n + 1) * (2 * n + 1) / 6 UpperCAmelCase_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"{solution() = }")
344
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
1
from manim import * class a_ ( _snake_case ): def __a ( self :Any) -> List[str]: UpperCAmelCase_ = Rectangle(height=0.5 , width=0.5) UpperCAmelCase_ = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_lowercase).arrange(_lowercase , buff=0) UpperCAmelCase_ = VGroup(*_lowercase).arrange(_lowercase , buff=0) UpperCAmelCase_ = VGroup(_lowercase , _lowercase).arrange(_lowercase , buff=0) UpperCAmelCase_ = Text('''CPU''' , font_size=24) UpperCAmelCase_ = Group(_lowercase , _lowercase).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase) cpu.move_to([-2.5, -0.5, 0]) self.add(_lowercase) UpperCAmelCase_ = [mem.copy() for i in range(4)] UpperCAmelCase_ = VGroup(*_lowercase).arrange(_lowercase , buff=0) UpperCAmelCase_ = Text('''GPU''' , font_size=24) UpperCAmelCase_ = Group(_lowercase , _lowercase).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase) gpu.move_to([-1, -1, 0]) self.add(_lowercase) UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_lowercase).arrange(_lowercase , buff=0) UpperCAmelCase_ = Text('''Model''' , font_size=24) UpperCAmelCase_ = Group(_lowercase , _lowercase).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase) model.move_to([3, -1.0, 0]) self.add(_lowercase) UpperCAmelCase_ = [] for i, rect in enumerate(_lowercase): rect.set_stroke(_lowercase) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase_ = Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(_lowercase , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=_lowercase) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_lowercase , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_lowercase , buff=0.0) self.add(_lowercase) cpu_targs.append(_lowercase) UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_lowercase).arrange(_lowercase , buff=0) UpperCAmelCase_ = Text('''Loaded Checkpoint''' , font_size=24) UpperCAmelCase_ = Group(_lowercase , _lowercase).arrange(_lowercase , aligned_edge=_lowercase , buff=0.4) checkpoint.move_to([3, 0.5, 0]) UpperCAmelCase_ = Square(side_length=2.2) key.move_to([-5, 2, 0]) UpperCAmelCase_ = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(_lowercase , _lowercase) UpperCAmelCase_ = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left()) UpperCAmelCase_ = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(_lowercase) , Write(_lowercase)) self.play(Write(_lowercase , run_time=1) , Create(_lowercase , run_time=1)) UpperCAmelCase_ = [] UpperCAmelCase_ = [] for i, rect in enumerate(_lowercase): UpperCAmelCase_ = fill.copy().set_fill(_lowercase , opacity=0.7) target.move_to(_lowercase) first_animations.append(GrowFromCenter(_lowercase , run_time=1)) UpperCAmelCase_ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(_lowercase , run_time=1.5)) self.play(*_lowercase) self.play(*_lowercase) self.wait()
344
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): UpperCAmelCase_ = timeit.default_timer() UpperCAmelCase_ = func(*__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_ = timeit.default_timer() - starttime return delta UpperCAmelCase_ = func.__name__ return wrapper def A ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = seq_shapes or {} for i in range(__UpperCAmelCase ): UpperCAmelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): UpperCAmelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: UpperCAmelCase_ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): UpperCAmelCase_ = v.feature UpperCAmelCase_ = seq_shapes[k] UpperCAmelCase_ = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) UpperCAmelCase_ = data dummy_data.append((i, example) ) return dummy_data def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase_ = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase_ = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
344
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
1
def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
344
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCamelCase_ = None UpperCamelCase_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCamelCase_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class a_ : UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="PIL.Image.Image" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Image" , init=_snake_case , repr=_snake_case ) def __call__( self :Optional[int]) -> Dict: return self.pa_type def __a ( self :str , _lowercase :Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''') if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = np.array(_lowercase) if isinstance(_lowercase , _lowercase): return {"path": value, "bytes": None} elif isinstance(_lowercase , _lowercase): return {"path": None, "bytes": value} elif isinstance(_lowercase , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowercase) elif isinstance(_lowercase , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowercase) elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :List[Any] , _lowercase :dict , _lowercase :Any=None) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''') if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''') if token_per_repo_id is None: UpperCAmelCase_ = {} UpperCAmelCase_ , UpperCAmelCase_ = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}.") else: if is_local_path(_lowercase): UpperCAmelCase_ = PIL.Image.open(_lowercase) else: UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id.get(_lowercase) except ValueError: UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ = BytesIO(f.read()) UpperCAmelCase_ = PIL.Image.open(bytes_) else: UpperCAmelCase_ = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def __a ( self :str) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary'''), "path": Value('''string'''), } ) def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_list(storage.type): UpperCAmelCase_ = pa.array( [encode_np_array(np.array(_lowercase))['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :List[Any] , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :List[Any]): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type) def A ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def A ( __UpperCAmelCase ) -> bytes: '''simple docstring''' UpperCAmelCase_ = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ = image.format else: UpperCAmelCase_ = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(__UpperCAmelCase , format=__UpperCAmelCase ) return buffer.getvalue() def A ( __UpperCAmelCase ) -> dict: '''simple docstring''' if hasattr(__UpperCAmelCase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__UpperCAmelCase )} def A ( __UpperCAmelCase ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase_ = array.dtype UpperCAmelCase_ = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase_ = dtype.kind UpperCAmelCase_ = dtype.itemsize UpperCAmelCase_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ = dtype_byteorder + dtype_kind + str(__UpperCAmelCase ) UpperCAmelCase_ = np.dtype(__UpperCAmelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) UpperCAmelCase_ = PIL.Image.fromarray(array.astype(__UpperCAmelCase ) ) return {"path": None, "bytes": image_to_bytes(__UpperCAmelCase )} def A ( __UpperCAmelCase ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase_ , UpperCAmelCase_ = first_non_null_value(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__UpperCAmelCase , np.ndarray ): UpperCAmelCase_ = no_op_if_value_is_null(__UpperCAmelCase ) return [obj_to_image_dict_func(__UpperCAmelCase ) for obj in objs] elif isinstance(__UpperCAmelCase , PIL.Image.Image ): UpperCAmelCase_ = no_op_if_value_is_null(__UpperCAmelCase ) return [obj_to_image_dict_func(__UpperCAmelCase ) for obj in objs] else: return objs else: return objs
344
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self :List[str] , _lowercase :List[Any] , _lowercase :List[Any]=3 , _lowercase :Any=32 , _lowercase :int=3 , _lowercase :List[Any]=10 , _lowercase :Any=[10, 20, 30, 40] , _lowercase :Tuple=[1, 1, 2, 1] , _lowercase :Tuple=True , _lowercase :Tuple=True , _lowercase :Optional[Any]="relu" , _lowercase :str=3 , _lowercase :Optional[Any]=None , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_lowercase) def __a ( self :Tuple) -> Optional[Any]: UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self :Optional[Any]) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __a ( self :Dict , _lowercase :List[Any] , _lowercase :List[str] , _lowercase :Dict) -> Dict: UpperCAmelCase_ = TFRegNetModel(config=_lowercase) UpperCAmelCase_ = model(_lowercase , training=_lowercase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self :Union[str, Any] , _lowercase :int , _lowercase :List[str] , _lowercase :int) -> Union[str, Any]: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFRegNetForImageClassification(_lowercase) UpperCAmelCase_ = model(_lowercase , labels=_lowercase , training=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __a ( self :Tuple) -> Optional[Any]: UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Any =(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCamelCase__ : str =( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : List[Any] =False UpperCamelCase__ : str =False UpperCamelCase__ : List[Any] =False UpperCamelCase__ : str =False def __a ( self :Any) -> List[str]: UpperCAmelCase_ = TFRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase) def __a ( self :Optional[int]) -> int: return @unittest.skip(reason='''RegNet does not use inputs_embeds''') def __a ( self :Union[str, Any]) -> List[str]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''')) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def __a ( self :List[str]) -> int: super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''') def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Union[str, Any]) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase) def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def __a ( self :int) -> Optional[int]: def check_hidden_states_output(_lowercase :List[str] , _lowercase :Tuple , _lowercase :Tuple): UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase) , training=_lowercase) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_lowercase) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ = layer_type UpperCAmelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) def __a ( self :Union[str, Any]) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowercase :Union[str, Any] , _lowercase :str , _lowercase :int , _lowercase :Any={}): UpperCAmelCase_ = model(_lowercase , return_dict=_lowercase , **_lowercase) UpperCAmelCase_ = model(_lowercase , return_dict=_lowercase , **_lowercase).to_tuple() def recursive_check(_lowercase :Dict , _lowercase :Union[str, Any]): if isinstance(_lowercase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase): recursive_check(_lowercase , _lowercase) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowercase , _lowercase)) , msg=( '''Tuple and dict output are not equal. Difference:''' f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" ) , ) recursive_check(_lowercase , _lowercase) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) check_equivalence(_lowercase , _lowercase , _lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) check_equivalence(_lowercase , _lowercase , _lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True}) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True}) def __a ( self :Any) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase) @slow def __a ( self :Optional[int]) -> List[str]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFRegNetModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) def A ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def __a ( self :Optional[int]) -> Any: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __a ( self :int) -> Union[str, Any]: UpperCAmelCase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_lowercase , return_tensors='''tf''') # forward pass UpperCAmelCase_ = model(**_lowercase , training=_lowercase) # verify the logits UpperCAmelCase_ = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , _lowercase) UpperCAmelCase_ = tf.constant([-0.4_180, -1.5_051, -3.4_836]) tf.debugging.assert_near(outputs.logits[0, :3] , _lowercase , atol=1E-4)
344
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =StableDiffusionInstructPixaPixPipeline UpperCamelCase__ : List[str] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} UpperCamelCase__ : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase__ : int =IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ : Optional[int] =IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self :List[Any]) -> Any: torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=_lowercase) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_lowercase) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __a ( self :Tuple , _lowercase :Optional[int] , _lowercase :int=0) -> Union[str, Any]: UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_lowercase)).convert('''RGB''') if str(_lowercase).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_lowercase) else: UpperCAmelCase_ = torch.Generator(device=_lowercase).manual_seed(_lowercase) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __a ( self :List[Any]) -> Any: UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = sd_pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __a ( self :Optional[int]) -> int: UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = '''french fries''' UpperCAmelCase_ = sd_pipe(**_lowercase , negative_prompt=_lowercase) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __a ( self :List[str]) -> Union[str, Any]: UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = [inputs['''prompt''']] * 2 UpperCAmelCase_ = np.array(inputs['''image''']).astype(np.floataa) / 255.0 UpperCAmelCase_ = torch.from_numpy(_lowercase).unsqueeze(0).to(_lowercase) UpperCAmelCase_ = image / 2 + 0.5 UpperCAmelCase_ = image.permute(0 , 3 , 1 , 2) UpperCAmelCase_ = image.repeat(2 , 1 , 1 , 1) UpperCAmelCase_ = sd_pipe(**_lowercase).images UpperCAmelCase_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCAmelCase_ = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''') UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = sd_pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = [round(_lowercase , 4) for x in image_slice.flatten().tolist()] print(''','''.join([str(_lowercase) for x in slice])) assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __a ( self :Dict) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3) def __a ( self :Dict) -> int: UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = VaeImageProcessor(do_resize=_lowercase , do_normalize=_lowercase) UpperCAmelCase_ = pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = pipe(**self.get_dummy_inputs_by_type(_lowercase , input_image_type='''pt'''))[0] UpperCAmelCase_ = components['''vae'''] UpperCAmelCase_ = self.get_dummy_inputs_by_type(_lowercase , input_image_type='''pt''') for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCAmelCase_ = vae.encode(inputs[image_param]).latent_dist.mode() UpperCAmelCase_ = pipe(**_lowercase)[0] UpperCAmelCase_ = np.abs(out - out_latents_inputs).max() self.assertLess(_lowercase , 1E-4 , '''passing latents as image input generate different result from passing image''') @slow @require_torch_gpu class a_ ( unittest.TestCase ): def __a ( self :Optional[int]) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[str] , _lowercase :List[str]=0) -> Optional[Any]: UpperCAmelCase_ = torch.manual_seed(_lowercase) UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''') UpperCAmelCase_ = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __a ( self :List[str]) -> Union[str, Any]: UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def __a ( self :Dict) -> str: UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase) UpperCAmelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase) UpperCAmelCase_ = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def __a ( self :Tuple) -> str: UpperCAmelCase_ = 0 def callback_fn(_lowercase :int , _lowercase :int , _lowercase :torch.FloatTensor) -> None: UpperCAmelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 elif step == 2: UpperCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 UpperCAmelCase_ = False UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase , torch_dtype=torch.floataa) UpperCAmelCase_ = pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() pipe(**_lowercase , callback=_lowercase , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def __a ( self :int) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase , torch_dtype=torch.floataa) UpperCAmelCase_ = pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_lowercase) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __a ( self :Any) -> Optional[int]: UpperCAmelCase_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase_ = inputs['''image'''].resize((504, 504)) UpperCAmelCase_ = '''timbrooks/instruct-pix2pix''' UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( _lowercase , safety_checker=_lowercase , ) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = pipe(**_lowercase) UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) UpperCAmelCase_ = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3
344
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = args.log_outputs UpperCAmelCase_ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric UpperCAmelCase_ = load_metric('''wer''' ) UpperCAmelCase_ = load_metric('''cer''' ) # compute metrics UpperCAmelCase_ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) UpperCAmelCase_ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results UpperCAmelCase_ = f"WER: {wer_result}\nCER: {cer_result}" print(__UpperCAmelCase ) with open(f"{dataset_id}_eval_results.txt" , '''w''' ) as f: f.write(__UpperCAmelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase_ = f"log_{dataset_id}_predictions.txt" UpperCAmelCase_ = f"log_{dataset_id}_targets.txt" with open(__UpperCAmelCase , '''w''' ) as p, open(__UpperCAmelCase , '''w''' ) as t: # mapping function to write output def write_to_file(__UpperCAmelCase , __UpperCAmelCase ): p.write(f"{i}" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"{i}" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(__UpperCAmelCase , with_indices=__UpperCAmelCase ) def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase_ = re.sub(__UpperCAmelCase , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase_ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: UpperCAmelCase_ = ''' '''.join(text.split(__UpperCAmelCase ) ) return text def A ( __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__UpperCAmelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase_ = feature_extractor.sampling_rate # resample audio UpperCAmelCase_ = dataset.cast_column('''audio''' , Audio(sampling_rate=__UpperCAmelCase ) ) # load eval pipeline if args.device is None: UpperCAmelCase_ = 0 if torch.cuda.is_available() else -1 UpperCAmelCase_ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__UpperCAmelCase ): UpperCAmelCase_ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase_ = prediction['''text'''] UpperCAmelCase_ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples UpperCAmelCase_ = dataset.map(__UpperCAmelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCamelCase_ = parser.parse_args() main(args)
344
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( __UpperCAmelCase = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(__UpperCAmelCase ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) UpperCAmelCase_ = QuantumRegister(__UpperCAmelCase , '''qr''' ) UpperCAmelCase_ = ClassicalRegister(__UpperCAmelCase , '''cr''' ) UpperCAmelCase_ = QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = number_of_qubits for i in range(__UpperCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__UpperCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __UpperCAmelCase , __UpperCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__UpperCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__UpperCAmelCase , __UpperCAmelCase ) # simulate with 10000 shots UpperCAmelCase_ = Aer.get_backend('''qasm_simulator''' ) UpperCAmelCase_ = execute(__UpperCAmelCase , __UpperCAmelCase , shots=1_0000 ) return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
344
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets UpperCamelCase_ = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCamelCase_ = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" UpperCamelCase_ = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def __a ( self :Any) -> List[str]: if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def __a ( self :Dict , _lowercase :Tuple , _lowercase :str , _lowercase :int = CHRF.CHAR_ORDER , _lowercase :int = CHRF.WORD_ORDER , _lowercase :int = CHRF.BETA , _lowercase :bool = False , _lowercase :bool = False , _lowercase :bool = False , ) -> Any: UpperCAmelCase_ = len(references[0]) if any(len(_lowercase) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_lowercase)] UpperCAmelCase_ = CHRF(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) UpperCAmelCase_ = sb_chrf.corpus_score(_lowercase , _lowercase) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
344
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
1