code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''lxmert''' UpperCamelCase_ = {} def __init__( self : Optional[Any] , UpperCAmelCase : Dict=3_0522 , UpperCAmelCase : int=768 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Tuple=9500 , UpperCAmelCase : List[str]=1600 , UpperCAmelCase : Union[str, Any]=400 , UpperCAmelCase : Optional[int]=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[Any]=0.0_2 , UpperCAmelCase : int=1e-12 , UpperCAmelCase : int=9 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : int=2048 , UpperCAmelCase : Dict=4 , UpperCAmelCase : int=6.6_7 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=True , **UpperCAmelCase : Tuple , ) -> List[str]: '''simple docstring''' lowercase : Dict =vocab_size lowercase : Optional[int] =hidden_size lowercase : int =num_attention_heads lowercase : int =hidden_act lowercase : List[Any] =intermediate_size lowercase : str =hidden_dropout_prob lowercase : Optional[Any] =attention_probs_dropout_prob lowercase : Union[str, Any] =max_position_embeddings lowercase : int =type_vocab_size lowercase : Tuple =initializer_range lowercase : Optional[Any] =layer_norm_eps lowercase : Dict =num_qa_labels lowercase : List[str] =num_object_labels lowercase : Optional[Any] =num_attr_labels lowercase : Tuple =l_layers lowercase : Optional[Any] =x_layers lowercase : List[str] =r_layers lowercase : List[Any] =visual_feat_dim lowercase : List[str] =visual_pos_dim lowercase : Tuple =visual_loss_normalizer lowercase : Optional[int] =task_matched lowercase : Tuple =task_mask_lm lowercase : Union[str, Any] =task_obj_predict lowercase : List[Any] =task_qa lowercase : Dict =visual_obj_loss lowercase : int =visual_attr_loss lowercase : List[Any] =visual_feat_loss lowercase : Union[str, Any] ={'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCAmelCase )
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE = object() def lowercase_ ( __A : str , __A : int ) -> Optional[Any]: """simple docstring""" lowercase : str =tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__A ) - len(__A ) + 1 ): lowercase : Optional[int] =[x.match(__A ) for x, y in zip(__A , ks[i:] )] if matches and all(__A ): return True return False def lowercase_ ( __A : Optional[int] ) -> Dict: """simple docstring""" def replace(__A : str , __A : Tuple ): for rule, replacement in rules: if _match(__A , __A ): return replacement return val return replace def lowercase_ ( ) -> Dict: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __A )), (("transformer", "wte", "embedding"), P('''mp''' , __A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__A , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__A , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowercase_ ( __A : Any ) -> Optional[Any]: """simple docstring""" lowercase : int =_get_partition_rules() lowercase : Optional[int] =_replacement_rules(__A ) lowercase : Dict ={k: _unmatched for k in flatten_dict(__A )} lowercase : int ={k: replace(__A , __A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__A ) )
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE = { 'Salesforce/codegen-350M-mono': 2_048, } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ = CodeGenTokenizer def __init__( self : Any , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str="<|endoftext|>" , UpperCAmelCase : Dict="<|endoftext|>" , UpperCAmelCase : Any="<|endoftext|>" , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Union[str, Any] , ) -> List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) if kwargs.pop('''add_bos_token''' , UpperCAmelCase ): lowercase : List[str] =kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' f'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) lowercase : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase ) != add_prefix_space: lowercase : List[Any] =getattr(UpperCAmelCase , pre_tok_state.pop('''type''' ) ) lowercase : Tuple =add_prefix_space lowercase : Union[str, Any] =pre_tok_class(**UpperCAmelCase ) lowercase : str =add_prefix_space def A__ ( self : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ) -> BatchEncoding: '''simple docstring''' lowercase : List[str] =kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : str ) -> BatchEncoding: '''simple docstring''' lowercase : str =kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : Union[str, Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , UpperCAmelCase : bool = False , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[List[str]] = None , **UpperCAmelCase : Dict , ) -> str: '''simple docstring''' lowercase : str =super().decode( token_ids=UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , **UpperCAmelCase , ) if truncate_before_pattern is not None and len(UpperCAmelCase ) > 0: lowercase : List[str] =self.truncate(UpperCAmelCase , UpperCAmelCase ) return decoded_text def A__ ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' def find_re(UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): lowercase : Union[str, Any] =pattern.search(UpperCAmelCase , UpperCAmelCase ) return m.start() if m else -1 lowercase : str =[re.compile(UpperCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] lowercase : Any =list(re.finditer('''^print''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowercase : List[str] =completion[: prints[1].start()] lowercase : Optional[int] =list(re.finditer('''^def''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowercase : Optional[Any] =completion[: defs[1].start()] lowercase : Any =0 lowercase : int =[ pos for pos in [find_re(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for terminal in terminals] if pos != -1 ] if len(UpperCAmelCase ) > 0: return completion[: min(UpperCAmelCase )] else: return completion
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : str , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : bool = True , **UpperCAmelCase : Tuple , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Union[str, Any] =size if size is not None else {'''shortest_edge''': 224} lowercase : List[str] =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase : Union[str, Any] =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : int =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase , param_name='''crop_size''' ) lowercase : List[str] =do_resize lowercase : Dict =size lowercase : Any =resample lowercase : str =do_center_crop lowercase : Optional[int] =crop_size lowercase : List[str] =do_rescale lowercase : List[str] =rescale_factor lowercase : Optional[Any] =do_normalize lowercase : str =image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else OPENAI_CLIP_STD lowercase : str =do_convert_rgb def A__ ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ): '''simple docstring''' lowercase : str =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase : Optional[int] =get_resize_output_image_size(UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ): '''simple docstring''' lowercase : Dict =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : str , ): '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ): '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : int = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase : Dict , ): '''simple docstring''' lowercase : int =do_resize if do_resize is not None else self.do_resize lowercase : Any =size if size is not None else self.size lowercase : List[str] =get_size_dict(UpperCAmelCase , param_name='''size''' , default_to_square=UpperCAmelCase ) lowercase : Tuple =resample if resample is not None else self.resample lowercase : Any =do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str =crop_size if crop_size is not None else self.crop_size lowercase : Tuple =get_size_dict(UpperCAmelCase , param_name='''crop_size''' , default_to_square=UpperCAmelCase ) lowercase : Optional[int] =do_rescale if do_rescale is not None else self.do_rescale lowercase : Dict =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] =do_normalize if do_normalize is not None else self.do_normalize lowercase : int =image_mean if image_mean is not None else self.image_mean lowercase : Dict =image_std if image_std is not None else self.image_std lowercase : Any =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase : Optional[int] =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase : Dict =[convert_to_rgb(UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase : Union[str, Any] =[to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowercase : Optional[Any] =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: lowercase : Optional[int] =[self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : Dict =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Tuple =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Optional[Any] ={'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE = get_tests_dir('fixtures') class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[int] =mock.Mock() lowercase : Dict =500 lowercase : Union[str, Any] ={} lowercase : Optional[int] =HTTPError lowercase : List[Any] ={} # Download this model to make sure it's in the cache. lowercase : str =WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase ) as mock_head: lowercase : Any =WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self : str ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def A__ ( cls : List[str] ) -> Dict: '''simple docstring''' lowercase : Any =TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def A__ ( cls : List[str] ) -> Dict: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : Tuple =WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) lowercase : List[Any] =WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCAmelCase , repo_id='''test-feature-extractor''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowercase : Union[str, Any] =WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[int] =WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) lowercase : int =WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowercase : str =WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() lowercase : List[str] =CustomFeatureExtractor.from_pretrained(UpperCAmelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) lowercase : Dict =AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''dandelin/vilt-b32-finetuned-vqa''' UpperCamelCase_ = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) UpperCamelCase_ = '''image_qa''' UpperCamelCase_ = AutoProcessor UpperCamelCase_ = AutoModelForVisualQuestionAnswering UpperCamelCase_ = ['''image''', '''text'''] UpperCamelCase_ = ['''text'''] def __init__( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Tuple , UpperCAmelCase : "Image" , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' return self.pre_processor(UpperCAmelCase , UpperCAmelCase , return_tensors='''pt''' ) def A__ ( self : Dict , UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): return self.model(**UpperCAmelCase ).logits def A__ ( self : Dict , UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' lowercase : str =outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from __future__ import annotations import math class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : int ) -> None: '''simple docstring''' lowercase : int =size # approximate the overall size of segment tree with given value lowercase : int =[0 for i in range(0 , 4 * size )] # create array to store lazy update lowercase : Dict =[0 for i in range(0 , 4 * size )] lowercase : Optional[Any] =[0 for i in range(0 , 4 * size )] # flag for lazy update def A__ ( self : Any , UpperCAmelCase : int ) -> int: '''simple docstring''' return idx * 2 def A__ ( self : int , UpperCAmelCase : int ) -> int: '''simple docstring''' return idx * 2 + 1 def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[int] ) -> None: '''simple docstring''' if left_element == right_element: lowercase : int =a[left_element - 1] else: lowercase : Union[str, Any] =(left_element + right_element) // 2 self.build(self.left(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.build(self.right(UpperCAmelCase ) , mid + 1 , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =max( self.segment_tree[self.left(UpperCAmelCase )] , self.segment_tree[self.right(UpperCAmelCase )] ) def A__ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> bool: '''simple docstring''' if self.flag[idx] is True: lowercase : Any =self.lazy[idx] lowercase : Any =False if left_element != right_element: lowercase : Tuple =self.lazy[idx] lowercase : Dict =self.lazy[idx] lowercase : Tuple =True lowercase : int =True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowercase : str =val if left_element != right_element: lowercase : Optional[int] =val lowercase : Any =val lowercase : int =True lowercase : int =True return True lowercase : Optional[int] =(left_element + right_element) // 2 self.update(self.left(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.update(self.right(UpperCAmelCase ) , mid + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : List[Any] =max( self.segment_tree[self.left(UpperCAmelCase )] , self.segment_tree[self.right(UpperCAmelCase )] ) return True def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> int | float: '''simple docstring''' if self.flag[idx] is True: lowercase : Union[str, Any] =self.lazy[idx] lowercase : int =False if left_element != right_element: lowercase : List[str] =self.lazy[idx] lowercase : Tuple =self.lazy[idx] lowercase : Dict =True lowercase : Tuple =True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowercase : Any =(left_element + right_element) // 2 lowercase : int =self.query(self.left(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : str =self.query(self.right(UpperCAmelCase ) , mid + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return max(UpperCAmelCase , UpperCAmelCase ) def __str__( self : Tuple ) -> str: '''simple docstring''' return str([self.query(1 , 1 , self.size , UpperCAmelCase , UpperCAmelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] SCREAMING_SNAKE_CASE = 15 SCREAMING_SNAKE_CASE = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : Tuple , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : List[Any] =[label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' if len(UpperCAmelCase ) == 0 or len(UpperCAmelCase ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(UpperCAmelCase ) ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : int =[sequences] lowercase : Tuple =[] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(UpperCAmelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__A ) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : Optional[int]=ZeroShotClassificationArgumentHandler() , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' lowercase : Union[str, Any] =args_parser super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[int]=TruncationStrategy.ONLY_FIRST , **UpperCAmelCase : str ) -> int: '''simple docstring''' lowercase : int =self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) lowercase : Optional[int] =self.tokenizer.eos_token try: lowercase : int =self.tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , ) except Exception as e: if "too short" in str(UpperCAmelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowercase : List[str] =self.tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def A__ ( self : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' if kwargs.get('''multi_class''' , UpperCAmelCase ) is not None: lowercase : Dict =kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) lowercase : str ={} if "candidate_labels" in kwargs: lowercase : List[Any] =self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: lowercase : str =kwargs['''hypothesis_template'''] lowercase : Tuple ={} if "multi_label" in kwargs: lowercase : Any =kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , UpperCAmelCase : Union[str, List[str]] , *UpperCAmelCase : Dict , **UpperCAmelCase : Tuple , ) -> Optional[int]: '''simple docstring''' if len(UpperCAmelCase ) == 0: pass elif len(UpperCAmelCase ) == 1 and "candidate_labels" not in kwargs: lowercase : Optional[Any] =args[0] else: raise ValueError(f'Unable to understand extra arguments {args}' ) return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="This example is {}." ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =self._args_parser(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(UpperCAmelCase , UpperCAmelCase ) ): lowercase : Tuple =self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(UpperCAmelCase ) - 1, **model_input, } def A__ ( self : int , UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[int] =inputs['''candidate_label'''] lowercase : Union[str, Any] =inputs['''sequence'''] lowercase : Union[str, Any] ={k: inputs[k] for k in self.tokenizer.model_input_names} lowercase : List[str] =self.model(**UpperCAmelCase ) lowercase : List[str] ={ '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=False ) -> Union[str, Any]: '''simple docstring''' lowercase : int =[outputs['''candidate_label'''] for outputs in model_outputs] lowercase : int =[outputs['''sequence'''] for outputs in model_outputs] lowercase : Tuple =np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) lowercase : Union[str, Any] =logits.shape[0] lowercase : Tuple =len(UpperCAmelCase ) lowercase : Optional[Any] =N // n lowercase : int =logits.reshape((num_sequences, n, -1) ) if multi_label or len(UpperCAmelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowercase : Union[str, Any] =self.entailment_id lowercase : Tuple =-1 if entailment_id == 0 else 0 lowercase : Optional[int] =reshaped_outputs[..., [contradiction_id, entailment_id]] lowercase : int =np.exp(UpperCAmelCase ) / np.exp(UpperCAmelCase ).sum(-1 , keepdims=UpperCAmelCase ) lowercase : Union[str, Any] =scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowercase : Union[str, Any] =reshaped_outputs[..., self.entailment_id] lowercase : List[str] =np.exp(UpperCAmelCase ) / np.exp(UpperCAmelCase ).sum(-1 , keepdims=UpperCAmelCase ) lowercase : List[Any] =list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowercase_ ( __A : str , __A : Any ) -> Union[str, Any]: """simple docstring""" if os.path.exists(__A ): if os.path.exists(os.path.join(__A , '''config.json''' ) ) and os.path.isfile( os.path.join(__A , '''config.json''' ) ): os.remove(os.path.join(__A , '''config.json''' ) ) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''' ) ): os.remove(os.path.join(__A , '''pytorch_model.bin''' ) ) else: os.makedirs(__A ) model.save_pretrained(__A ) def lowercase_ ( __A : int , __A : Any=False ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] =2 if unlogit: lowercase : str =torch.pow(__A , __A ) lowercase : str =p * torch.log(__A ) lowercase : List[str] =0 return -plogp.sum(dim=-1 ) def lowercase_ ( __A : List[str] ) -> int: """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'{x + 1}' for x in range(len(__A ) ) ) ) for row in range(len(__A ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:d}' for x in tensor[row].cpu().data ) ) def lowercase_ ( __A : Tuple , __A : Union[str, Any] , __A : List[str] , __A : Optional[Any]=True , __A : int=True , __A : List[Any]=None , __A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : Dict =model.config.num_hidden_layers, model.config.num_attention_heads lowercase : Optional[int] =torch.zeros(__A , __A ).to(args.device ) lowercase : Dict =torch.zeros(__A , __A ).to(args.device ) if head_mask is None: lowercase : List[Any] =torch.ones(__A , __A ).to(args.device ) head_mask.requires_grad_(requires_grad=__A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase : int =None lowercase : str =0.0 lowercase : Dict =0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowercase : Dict =tuple(t.to(args.device ) for t in inputs ) (lowercase ) : int =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase : Union[str, Any] =model(__A , labels=__A , head_mask=__A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase : int =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A ): lowercase : Any =entropy(attn.detach() , __A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase : Tuple =2 lowercase : Any =torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: lowercase : List[str] =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(__A ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(__A ) logger.info('''Head ranked by importance scores''' ) lowercase : Any =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowercase : Union[str, Any] =torch.arange( head_importance.numel() , device=args.device ) lowercase : int =head_ranks.view_as(__A ) print_ad_tensor(__A ) return attn_entropy, head_importance, total_loss def lowercase_ ( __A : Any , __A : Dict , __A : Optional[Any] ) -> Tuple: """simple docstring""" lowercase : List[Any] =compute_heads_importance(__A , __A , __A , compute_entropy=__A ) lowercase : Tuple =1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold ) lowercase : Tuple =torch.ones_like(__A ) lowercase : str =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowercase : Any =original_score while current_score >= original_score * args.masking_threshold: lowercase : Optional[int] =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase : Dict =float('''Inf''' ) lowercase : List[Any] =head_importance.view(-1 ).sort()[1] if len(__A ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowercase : List[Any] =current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowercase : Optional[int] =new_head_mask.view(-1 ) lowercase : Optional[Any] =0.0 lowercase : Dict =new_head_mask.view_as(__A ) lowercase : Any =new_head_mask.clone().detach() print_ad_tensor(__A ) # Compute metric and head importance again lowercase : List[Any] =compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A ) lowercase : Optional[int] =1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('''Final head mask''' ) print_ad_tensor(__A ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowercase_ ( __A : Dict , __A : int , __A : Dict , __A : int ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] =datetime.now() lowercase : int =compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A ) lowercase : Tuple =1 / loss lowercase : Union[str, Any] =datetime.now() - before_time lowercase : Dict =sum(p.numel() for p in model.parameters() ) lowercase : Tuple ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) ) } for k, v in heads_to_prune.items(): if isinstance(__A , __A ): lowercase : Optional[int] =[ v, ] assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__A ) lowercase : str =sum(p.numel() for p in model.parameters() ) lowercase : Optional[Any] =datetime.now() lowercase : List[str] =compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) lowercase : Any =1 / loss lowercase : List[str] =datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_0_0 ) save_model(__A , args.output_dir ) def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=__A , default=4_2 ) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) lowercase : str =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase : Optional[Any] =torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowercase : Dict =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowercase : Dict =torch.device('''cuda''' , args.local_rank ) lowercase : Dict =1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowercase : int =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowercase : Union[str, Any] =nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A ) elif args.n_gpu > 1: lowercase : Any =nn.DataParallel(__A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A ) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , __A ) # Prepare dataset lowercase : Union[str, Any] =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowercase : Dict =(torch.from_numpy(__A ),) lowercase : Dict =TensorDataset(*__A ) lowercase : Optional[Any] =RandomSampler(__A ) lowercase : List[Any] =DataLoader(__A , sampler=__A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase : Tuple =mask_heads(__A , __A , __A ) prune_heads(__A , __A , __A , __A ) if __name__ == "__main__": main()
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' def lowercase_ ( __A : Optional[Any] ) -> int: """simple docstring""" lowercase : Optional[int] =[0] * len(__A ) lowercase : List[str] =[] lowercase : List[str] =[1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: lowercase : List[Any] =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase : Dict =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow SCREAMING_SNAKE_CASE = False class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : str , UpperCAmelCase : Optional[Any]=32 ) -> List[str]: '''simple docstring''' set_seed(0 ) lowercase : str =UNetaDModel(sample_size=UpperCAmelCase , in_channels=3 , out_channels=3 ) lowercase : int =torch.optim.SGD(model.parameters() , lr=0.0_0_0_1 ) return model, optimizer @slow def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : int ='''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase : Tuple =DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=UpperCAmelCase , ) lowercase : Union[str, Any] =DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=UpperCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase : Any =[torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCAmelCase ) for _ in range(4 )] lowercase : Tuple =[torch.randn((4, 3, 32, 32) ).to(UpperCAmelCase ) for _ in range(4 )] lowercase : str =[torch.randint(0 , 1000 , (4,) ).long().to(UpperCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler lowercase : List[str] =self.get_model_optimizer(resolution=32 ) model.train().to(UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase : Any =ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase : List[Any] =model(UpperCAmelCase , timesteps[i] ).sample lowercase : Any =torch.nn.functional.mse_loss(UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase : Union[str, Any] =self.get_model_optimizer(resolution=32 ) model.train().to(UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase : Dict =ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase : Any =model(UpperCAmelCase , timesteps[i] ).sample lowercase : Optional[Any] =torch.nn.functional.mse_loss(UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) )
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import os from pathlib import Path def lowercase_ ( ) -> str: """simple docstring""" from torch.utils.cpp_extension import load lowercase : Dict =Path(__A ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' lowercase : int =[ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __A , with_cuda=__A , extra_include_paths=[str(__A )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' import enum import shutil import sys SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shutil.get_terminal_size() SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCamelCase_ = 0 UpperCamelCase_ = 1 def lowercase_ ( __A : Optional[Any] , __A : Optional[int]="" ) -> List[str]: """simple docstring""" sys.stdout.write(str(__A ) + end ) sys.stdout.flush() def lowercase_ ( __A : Union[str, Any] , __A : Tuple , __A : Optional[Any]="" ) -> List[Any]: """simple docstring""" forceWrite(F'\u001b[{color}m{content}\u001b[0m' , __A ) def lowercase_ ( ) -> int: """simple docstring""" forceWrite('''\r''' ) def lowercase_ ( __A : int , __A : str ) -> Optional[int]: """simple docstring""" forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def lowercase_ ( ) -> int: """simple docstring""" forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def lowercase_ ( ) -> Any: """simple docstring""" reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''imagegpt''' UpperCamelCase_ = ['''past_key_values'''] UpperCamelCase_ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[str] , UpperCAmelCase : Union[str, Any]=512 + 1 , UpperCAmelCase : str=32 * 32 , UpperCAmelCase : Union[str, Any]=512 , UpperCAmelCase : Optional[int]=24 , UpperCAmelCase : List[str]=8 , UpperCAmelCase : Dict=None , UpperCAmelCase : Dict="quick_gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=1e-5 , UpperCAmelCase : Tuple=0.0_2 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=False , UpperCAmelCase : Any=False , UpperCAmelCase : Any=False , **UpperCAmelCase : int , ) -> Any: '''simple docstring''' lowercase : Optional[Any] =vocab_size lowercase : str =n_positions lowercase : Dict =n_embd lowercase : Optional[Any] =n_layer lowercase : Union[str, Any] =n_head lowercase : List[str] =n_inner lowercase : Dict =activation_function lowercase : List[Any] =resid_pdrop lowercase : Optional[Any] =embd_pdrop lowercase : Optional[Any] =attn_pdrop lowercase : Any =layer_norm_epsilon lowercase : List[str] =initializer_range lowercase : int =scale_attn_weights lowercase : Optional[int] =use_cache lowercase : Optional[Any] =scale_attn_by_inverse_layer_idx lowercase : List[str] =reorder_and_upcast_attn lowercase : Optional[int] =tie_word_embeddings super().__init__(tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class UpperCAmelCase_ ( __A ): """simple docstring""" @property def A__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def A__ ( self : Union[str, Any] , UpperCAmelCase : "FeatureExtractionMixin" , UpperCAmelCase : int = 1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 32 , ) -> Mapping[str, Any]: '''simple docstring''' lowercase : Union[str, Any] =self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : List[Any] =dict(preprocessor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) ) return inputs
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : str , __A : str ) -> List[str]: """simple docstring""" lowercase : List[Any] =RobertaPreLayerNormConfig.from_pretrained( __A , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict lowercase : List[str] =torch.load(hf_hub_download(repo_id=__A , filename='''pytorch_model.bin''' ) ) lowercase : int ={} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): lowercase : List[Any] ='''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue lowercase : str =tensor_value lowercase : List[Any] =RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__A , config=__A , state_dict=__A ) model.save_pretrained(__A ) # convert tokenizer lowercase : List[str] =AutoTokenizer.from_pretrained(__A ) tokenizer.save_pretrained(__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =inspect.getfile(accelerate.test_utils ) lowercase : Any =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowercase : Union[str, Any] =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) lowercase : Union[str, Any] =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def A__ ( self : str ) -> Optional[int]: '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.' ) lowercase : int =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.' ) lowercase : List[str] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(f'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : Optional[int] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self : str ) -> List[Any]: '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices, using 2 devices only' ) lowercase : List[str] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = (accelerator.state.process_index + 2, 10) SCREAMING_SNAKE_CASE = torch.randint(0, 10, shape).to(accelerator.device) SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : str =1 lowercase : Any =3 lowercase : Dict =(32, 32) lowercase : str =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase : Any =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def A__ ( self : List[str] ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowercase : Dict =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(UpperCAmelCase ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : List[str] =self.dummy_cond_unet_upscale lowercase : Optional[int] =DDPMScheduler() lowercase : Tuple =DDIMScheduler(prediction_type='''v_prediction''' ) lowercase : Optional[int] =self.dummy_vae lowercase : Any =self.dummy_text_encoder lowercase : Tuple =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : Any =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : int =Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase : List[str] =StableDiffusionUpscalePipeline( unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , max_noise_level=350 , ) lowercase : List[Any] =sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Optional[Any] ='''A painting of a squirrel eating a burger''' lowercase : str =torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase : Dict =sd_pipe( [prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase : int =output.images lowercase : Union[str, Any] =torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase : Union[str, Any] =sd_pipe( [prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCAmelCase , )[0] lowercase : int =image[0, -3:, -3:, -1] lowercase : Optional[int] =image_from_tuple[0, -3:, -3:, -1] lowercase : Union[str, Any] =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowercase : Optional[int] =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : List[Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : List[str] =self.dummy_cond_unet_upscale lowercase : Optional[Any] =DDPMScheduler() lowercase : int =DDIMScheduler(prediction_type='''v_prediction''' ) lowercase : int =self.dummy_vae lowercase : Optional[int] =self.dummy_text_encoder lowercase : List[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : str =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : Dict =Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase : Union[str, Any] =StableDiffusionUpscalePipeline( unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , max_noise_level=350 , ) lowercase : str =sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Optional[Any] ='''A painting of a squirrel eating a burger''' lowercase : List[str] =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase : Optional[Any] =output.images assert image.shape[0] == 2 lowercase : List[str] =torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase : Tuple =sd_pipe( [prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase : List[Any] =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def A__ ( self : Any ) -> Dict: '''simple docstring''' lowercase : List[Any] =self.dummy_cond_unet_upscale lowercase : List[str] =DDPMScheduler() lowercase : Union[str, Any] =DDIMScheduler(prediction_type='''v_prediction''' ) lowercase : List[str] =self.dummy_vae lowercase : Optional[Any] =self.dummy_text_encoder lowercase : Any =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : List[Any] =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : Optional[int] =Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowercase : Union[str, Any] =unet.half() lowercase : Union[str, Any] =text_encoder.half() # make sure here that pndm scheduler skips prk lowercase : Dict =StableDiffusionUpscalePipeline( unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , max_noise_level=350 , ) lowercase : int =sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : List[Any] ='''A painting of a squirrel eating a burger''' lowercase : List[str] =torch.manual_seed(0 ) lowercase : Union[str, Any] =sd_pipe( [prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , ).images lowercase : List[str] =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase : List[str] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) lowercase : List[str] ='''stabilityai/stable-diffusion-x4-upscaler''' lowercase : Tuple =StableDiffusionUpscalePipeline.from_pretrained(UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase : List[str] ='''a cat sitting on a park bench''' lowercase : Any =torch.manual_seed(0 ) lowercase : Dict =pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , output_type='''np''' , ) lowercase : List[Any] =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase : Any =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) lowercase : Optional[Any] ='''stabilityai/stable-diffusion-x4-upscaler''' lowercase : Union[str, Any] =StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase : Union[str, Any] ='''a cat sitting on a park bench''' lowercase : Any =torch.manual_seed(0 ) lowercase : Optional[Any] =pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , output_type='''np''' , ) lowercase : Any =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : List[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase : Optional[int] ='''stabilityai/stable-diffusion-x4-upscaler''' lowercase : Union[str, Any] =StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase : Any ='''a cat sitting on a park bench''' lowercase : Union[str, Any] =torch.manual_seed(0 ) lowercase : Tuple =pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , output_type='''np''' , ) lowercase : Any =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowercase_ ( __A : str , __A : str , **__A : Optional[Any] ) -> List[str]: """simple docstring""" lowercase : int =AutoConfig.from_pretrained(__A , **__A ) lowercase : int =AutoModelForSeqaSeqLM.from_config(__A ) model.save_pretrained(__A ) AutoTokenizer.from_pretrained(__A ).save_pretrained(__A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' from manim import * class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : List[Any] ) -> int: '''simple docstring''' lowercase : Tuple =Rectangle(height=0.5 , width=0.5 ) lowercase : str =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowercase : Any =Rectangle(height=0.2_5 , width=0.2_5 ) lowercase : Tuple =[mem.copy() for i in range(6 )] lowercase : Tuple =[mem.copy() for i in range(6 )] lowercase : Optional[int] =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : List[str] =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : Dict =VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : Any =Text('''CPU''' , font_size=24 ) lowercase : Tuple =Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase ) lowercase : Tuple =[mem.copy() for i in range(4 )] lowercase : Dict =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : List[Any] =Text('''GPU''' , font_size=24 ) lowercase : Union[str, Any] =Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase ) lowercase : List[str] =[mem.copy() for i in range(6 )] lowercase : str =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : Any =Text('''Model''' , font_size=24 ) lowercase : Dict =Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase ) lowercase : List[str] =[] lowercase : int =[] for i, rect in enumerate(UpperCAmelCase ): lowercase : List[Any] =fill.copy().set_fill(UpperCAmelCase , opacity=0.8 ) target.move_to(UpperCAmelCase ) model_arr.append(UpperCAmelCase ) lowercase : Union[str, Any] =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase ) self.add(*UpperCAmelCase , *UpperCAmelCase ) lowercase : List[Any] =[meta_mem.copy() for i in range(6 )] lowercase : Any =[meta_mem.copy() for i in range(6 )] lowercase : Optional[int] =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : str =VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : Optional[Any] =VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowercase : List[str] =Text('''Disk''' , font_size=24 ) lowercase : Optional[int] =Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) disk.move_to([-4, -1.2_5, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) lowercase : List[str] =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase : List[str] =MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) lowercase : str =MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase ) lowercase : List[Any] =MarkupText( f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase ) ) lowercase : Optional[int] =Square(0.3 ) input.set_fill(UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase , buff=0.5 ) self.play(Write(UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase , buff=0.0_2 ) self.play(MoveToTarget(UpperCAmelCase ) ) self.play(FadeOut(UpperCAmelCase ) ) lowercase : str =Arrow(start=UpperCAmelCase , end=UpperCAmelCase , color=UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowercase : Optional[int] =MarkupText( f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=3 ) ) lowercase : int ={'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.0_2} self.play( Write(UpperCAmelCase ) , Circumscribe(model_arr[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowercase : Union[str, Any] =a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) lowercase : Union[str, Any] =AnimationGroup( FadeOut(UpperCAmelCase , run_time=0.5 ) , MoveToTarget(UpperCAmelCase , run_time=0.5 ) , FadeIn(UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowercase : str =0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase , **UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowercase : Tuple =a_c lowercase : Union[str, Any] =a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase ) , FadeOut(UpperCAmelCase , run_time=0.5 ) , ) lowercase : Tuple =MarkupText(f'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=3 ) , MoveToTarget(UpperCAmelCase ) ) self.wait()
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : str=1 , UpperCAmelCase : str=0 , UpperCAmelCase : Any=2 , UpperCAmelCase : Optional[Any]=512 , UpperCAmelCase : int="cls" , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : List[str]=True , **UpperCAmelCase : int , ) -> int: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowercase : List[str] =project_dim lowercase : int =pooler_fn lowercase : int =learn_encoder lowercase : List[Any] =use_attention_mask class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = [r'''pooler''', r'''logit_scale'''] UpperCamelCase_ = [r'''position_ids''', r'''predictions.decoder.bias'''] UpperCamelCase_ = '''roberta''' UpperCamelCase_ = RobertaSeriesConfig def __init__( self : List[Any] , UpperCAmelCase : int ) -> Any: '''simple docstring''' super().__init__(UpperCAmelCase ) lowercase : Tuple =XLMRobertaModel(UpperCAmelCase ) lowercase : Optional[Any] =nn.Linear(config.hidden_size , config.project_dim ) lowercase : Tuple =getattr(UpperCAmelCase , '''has_pre_transformation''' , UpperCAmelCase ) if self.has_pre_transformation: lowercase : Optional[int] =nn.Linear(config.hidden_size , config.project_dim ) lowercase : List[Any] =nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def A__ ( self : Optional[int] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , ) -> Optional[int]: '''simple docstring''' lowercase : Dict =return_dict if return_dict is not None else self.config.use_return_dict lowercase : Optional[Any] =self.base_model( input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_attentions=UpperCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCAmelCase , ) if self.has_pre_transformation: lowercase : Any =outputs['''hidden_states'''][-2] lowercase : Dict =self.pre_LN(UpperCAmelCase ) lowercase : str =self.transformation_pre(UpperCAmelCase ) return TransformationModelOutput( projection_state=UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: lowercase : Dict =self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } SCREAMING_SNAKE_CASE = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } SCREAMING_SNAKE_CASE = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } SCREAMING_SNAKE_CASE = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } SCREAMING_SNAKE_CASE = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } SCREAMING_SNAKE_CASE = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = DPRContextEncoderTokenizer class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = DPRQuestionEncoderTokenizer SCREAMING_SNAKE_CASE = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) SCREAMING_SNAKE_CASE = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) SCREAMING_SNAKE_CASE = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__A ) class UpperCAmelCase_ : """simple docstring""" def __call__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Union[bool, str] = False , UpperCAmelCase : Union[bool, str] = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[bool] = None , **UpperCAmelCase : Optional[Any] , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) elif titles is None or texts is None: lowercase : Optional[int] =titles if texts is None else texts return super().__call__( UpperCAmelCase , UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) lowercase : int =titles if not isinstance(UpperCAmelCase , UpperCAmelCase ) else [titles] lowercase : List[str] =texts if not isinstance(UpperCAmelCase , UpperCAmelCase ) else [texts] lowercase : Optional[int] =len(UpperCAmelCase ) lowercase : Dict =questions if not isinstance(UpperCAmelCase , UpperCAmelCase ) else [questions] * n_passages assert len(UpperCAmelCase ) == len( UpperCAmelCase ), f'There should be as many titles than texts but got {len(UpperCAmelCase )} titles and {len(UpperCAmelCase )} texts.' lowercase : Any =super().__call__(UpperCAmelCase , UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase )['''input_ids'''] lowercase : Union[str, Any] =super().__call__(UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase )['''input_ids'''] lowercase : Optional[Any] ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase , UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase : Any =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase : Optional[int] =attention_mask return self.pad(UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors=UpperCAmelCase ) def A__ ( self : Dict , UpperCAmelCase : BatchEncoding , UpperCAmelCase : DPRReaderOutput , UpperCAmelCase : int = 16 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' lowercase : str =reader_input['''input_ids'''] lowercase : str =reader_output[:3] lowercase : Optional[Any] =len(UpperCAmelCase ) lowercase : List[str] =sorted(range(UpperCAmelCase ) , reverse=UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase : List[DPRReaderOutput] =[] for doc_id in sorted_docs: lowercase : Optional[int] =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase : Any =sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase : Tuple =sequence_ids.index(self.pad_token_id ) else: lowercase : Union[str, Any] =len(UpperCAmelCase ) lowercase : str =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase , top_spans=UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase , start_index=UpperCAmelCase , end_index=UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def A__ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : List[int] , UpperCAmelCase : int , UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' lowercase : Optional[Any] =[] for start_index, start_score in enumerate(UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase : List[str] =sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] , reverse=UpperCAmelCase ) lowercase : Optional[Any] =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' lowercase : Optional[Any] =end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__A ) class UpperCAmelCase_ ( __A , __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ = DPRReaderTokenizer
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : str , __A : Any=False ) -> Dict: """simple docstring""" lowercase : Tuple =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Dict =[(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowercase_ ( __A : Tuple , __A : str , __A : Tuple=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowercase : List[str] ='''''' else: lowercase : str ='''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Dict =state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowercase : int =state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase : int =in_proj_weight[ : config.hidden_size, : ] lowercase : Any =in_proj_bias[: config.hidden_size] lowercase : List[str] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Optional[int] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Tuple =in_proj_weight[ -config.hidden_size :, : ] lowercase : int =in_proj_bias[-config.hidden_size :] def lowercase_ ( __A : str ) -> Dict: """simple docstring""" lowercase : int =['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__A , __A ) def lowercase_ ( __A : Optional[Any] , __A : str , __A : Any ) -> Any: """simple docstring""" lowercase : Tuple =dct.pop(__A ) lowercase : Any =val def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : Union[str, Any] ='''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : List[Any] =Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def lowercase_ ( __A : Tuple , __A : str ) -> Union[str, Any]: """simple docstring""" lowercase : str =ViTConfig() lowercase : Optional[int] =False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowercase : Dict =True lowercase : Union[str, Any] =int(vit_name[-1_2:-1_0] ) lowercase : Tuple =int(vit_name[-9:-6] ) else: lowercase : Dict =1_0_0_0 lowercase : int ='''huggingface/label-files''' lowercase : Optional[Any] ='''imagenet-1k-id2label.json''' lowercase : Any =json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) lowercase : List[str] ={int(__A ): v for k, v in idalabel.items()} lowercase : List[Any] =idalabel lowercase : Tuple ={v: k for k, v in idalabel.items()} lowercase : Optional[int] =int(vit_name[-6:-4] ) lowercase : int =int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowercase : str =1_9_2 lowercase : List[str] =7_6_8 lowercase : int =1_2 lowercase : List[str] =3 elif vit_name[9:].startswith('''small''' ): lowercase : Tuple =3_8_4 lowercase : Tuple =1_5_3_6 lowercase : Dict =1_2 lowercase : int =6 else: pass else: if vit_name[4:].startswith('''small''' ): lowercase : Union[str, Any] =7_6_8 lowercase : Optional[int] =2_3_0_4 lowercase : List[Any] =8 lowercase : Union[str, Any] =8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowercase : Optional[Any] =1_0_2_4 lowercase : List[Any] =4_0_9_6 lowercase : Union[str, Any] =2_4 lowercase : int =1_6 elif vit_name[4:].startswith('''huge''' ): lowercase : Dict =1_2_8_0 lowercase : int =5_1_2_0 lowercase : Optional[int] =3_2 lowercase : int =1_6 # load original model from timm lowercase : int =timm.create_model(__A , pretrained=__A ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase : Optional[int] =timm_model.state_dict() if base_model: remove_classification_head_(__A ) lowercase : Union[str, Any] =create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , __A ) # load HuggingFace model if vit_name[-5:] == "in21k": lowercase : Tuple =ViTModel(__A ).eval() else: lowercase : Union[str, Any] =ViTForImageClassification(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowercase : Optional[int] =DeiTImageProcessor(size=config.image_size ) else: lowercase : int =ViTImageProcessor(size=config.image_size ) lowercase : str =image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase : Dict =encoding['''pixel_values'''] lowercase : Optional[Any] =model(__A ) if base_model: lowercase : str =timm_model.forward_features(__A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__A , outputs.pooler_output , atol=1E-3 ) else: lowercase : str =timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1E-3 ) Path(__A ).mkdir(exist_ok=__A ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCAmelCase_ ( __A , __A ): """simple docstring""" @register_to_config def __init__( self : str , UpperCAmelCase : int = 128 , UpperCAmelCase : int = 256 , UpperCAmelCase : float = 2000.0 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2048 , UpperCAmelCase : float = 0.1 , ) -> int: '''simple docstring''' super().__init__() lowercase : Optional[int] =nn.Sequential( nn.Linear(UpperCAmelCase , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , ) lowercase : Any =nn.Embedding(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[Any] =False lowercase : Optional[int] =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowercase : Optional[int] =nn.Dropout(p=UpperCAmelCase ) lowercase : Tuple =nn.ModuleList() for lyr_num in range(UpperCAmelCase ): # FiLM conditional T5 decoder lowercase : Dict =DecoderLayer(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) self.decoders.append(UpperCAmelCase ) lowercase : Optional[int] =TaLayerNorm(UpperCAmelCase ) lowercase : str =nn.Dropout(p=UpperCAmelCase ) lowercase : Dict =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase : int =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowercase : int =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowercase : int =self.conditioning_emb(UpperCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowercase : int =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowercase : str =torch.broadcast_to( torch.arange(UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowercase : Tuple =self.position_encoding(UpperCAmelCase ) lowercase : Any =self.continuous_inputs_projection(UpperCAmelCase ) inputs += position_encodings lowercase : Optional[int] =self.dropout(UpperCAmelCase ) # decoder: No padding present. lowercase : List[Any] =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowercase : Any =[(x, self.encoder_decoder_mask(UpperCAmelCase , UpperCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowercase : Optional[Any] =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowercase : str =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowercase : List[str] =lyr( UpperCAmelCase , conditioning_emb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )[0] lowercase : Any =self.decoder_norm(UpperCAmelCase ) lowercase : List[Any] =self.post_dropout(UpperCAmelCase ) lowercase : Any =self.spec_out(UpperCAmelCase ) return spec_out class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : int=1e-6 ) -> Any: '''simple docstring''' super().__init__() lowercase : str =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase ) ) def A__ ( self : Any , UpperCAmelCase : int , UpperCAmelCase : int=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=None , ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =self.layer[0]( UpperCAmelCase , conditioning_emb=UpperCAmelCase , attention_mask=UpperCAmelCase , ) if encoder_hidden_states is not None: lowercase : Union[str, Any] =torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) lowercase : List[str] =self.layer[1]( UpperCAmelCase , key_value_states=UpperCAmelCase , attention_mask=UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer lowercase : List[str] =self.layer[-1](UpperCAmelCase , UpperCAmelCase ) return (hidden_states,) class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase : Optional[int] =TaLayerNorm(UpperCAmelCase ) lowercase : List[str] =TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) lowercase : Optional[Any] =Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) lowercase : Any =nn.Dropout(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[int] =self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: lowercase : Tuple =self.FiLMLayer(UpperCAmelCase , UpperCAmelCase ) # Self-attention block lowercase : Tuple =self.attention(UpperCAmelCase ) lowercase : Dict =hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' super().__init__() lowercase : str =Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) lowercase : Any =TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) lowercase : Any =nn.Dropout(UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str]=None , UpperCAmelCase : Any=None , ) -> int: '''simple docstring''' lowercase : List[str] =self.layer_norm(UpperCAmelCase ) lowercase : List[Any] =self.attention( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) lowercase : Tuple =hidden_states + self.dropout(UpperCAmelCase ) return layer_output class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' super().__init__() lowercase : List[str] =TaDenseGatedActDense(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) lowercase : str =TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) lowercase : Optional[Any] =TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) lowercase : Any =nn.Dropout(UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=None ) -> int: '''simple docstring''' lowercase : List[Any] =self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: lowercase : Tuple =self.film(UpperCAmelCase , UpperCAmelCase ) lowercase : List[Any] =self.DenseReluDense(UpperCAmelCase ) lowercase : List[str] =hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' super().__init__() lowercase : List[str] =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowercase : Dict =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowercase : Optional[Any] =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowercase : Optional[int] =nn.Dropout(UpperCAmelCase ) lowercase : Union[str, Any] =NewGELUActivation() def A__ ( self : List[str] , UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : int =self.act(self.wi_a(UpperCAmelCase ) ) lowercase : Optional[Any] =self.wi_a(UpperCAmelCase ) lowercase : Dict =hidden_gelu * hidden_linear lowercase : Optional[int] =self.dropout(UpperCAmelCase ) lowercase : Union[str, Any] =self.wo(UpperCAmelCase ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : Tuple=1e-6 ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase : str =nn.Parameter(torch.ones(UpperCAmelCase ) ) lowercase : Union[str, Any] =eps def A__ ( self : List[Any] , UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCAmelCase ) lowercase : Dict =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowercase : Union[str, Any] =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def A__ ( self : Union[str, Any] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(UpperCAmelCase , 3.0 )) )) class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' super().__init__() lowercase : Any =nn.Linear(UpperCAmelCase , out_features * 2 , bias=UpperCAmelCase ) def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Union[str, Any] =self.scale_bias(UpperCAmelCase ) lowercase : Dict =torch.chunk(UpperCAmelCase , 2 , -1 ) lowercase : Optional[int] =x * (1 + scale) + shift return x
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Callable , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[dict] = None , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : str , ) -> str: '''simple docstring''' super().__init__( features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Tuple =Generator( cache_dir=UpperCAmelCase , features=UpperCAmelCase , generator=UpperCAmelCase , gen_kwargs=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : Dict ) -> Dict: '''simple docstring''' if self.streaming: lowercase : Optional[Any] =self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: lowercase : Union[str, Any] =None lowercase : Dict =None lowercase : Union[str, Any] =None lowercase : Tuple =None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) lowercase : Optional[Any] =self.builder.as_dataset( split='''train''' , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): '''simple docstring''' super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase : List[str] ): '''simple docstring''' return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , **UpperCAmelCase : Optional[Any] ): '''simple docstring''' return {}, {}, {} def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] ): '''simple docstring''' lowercase : List[Any] =load_image(UpperCAmelCase ) lowercase : Optional[Any] =image.size lowercase : int =self.image_processor(images=UpperCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self : str , UpperCAmelCase : Optional[Any] ): '''simple docstring''' lowercase : List[str] =self.model(**UpperCAmelCase ) return model_outputs def A__ ( self : Tuple , UpperCAmelCase : List[str] ): '''simple docstring''' lowercase : List[str] =model_outputs.predicted_depth lowercase : List[str] =torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=UpperCAmelCase ) lowercase : List[Any] =prediction.squeeze().cpu().numpy() lowercase : Union[str, Any] =(output * 255 / np.max(UpperCAmelCase )).astype('''uint8''' ) lowercase : Dict =Image.fromarray(UpperCAmelCase ) lowercase : Optional[Any] ={} lowercase : Union[str, Any] =predicted_depth lowercase : int =depth return output_dict
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( lowercase ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : Dict=[30, 30] , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int=32 , UpperCAmelCase : Any=5 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : str=37 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[int]=0.0_2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : Union[str, Any]=10 , ) -> Optional[int]: '''simple docstring''' lowercase : int =parent lowercase : str =batch_size lowercase : List[Any] =image_size lowercase : Tuple =patch_size lowercase : str =num_channels lowercase : int =is_training lowercase : Dict =use_labels lowercase : Dict =hidden_size lowercase : Any =num_hidden_layers lowercase : Optional[Any] =num_attention_heads lowercase : Optional[int] =intermediate_size lowercase : int =hidden_act lowercase : Dict =hidden_dropout_prob lowercase : int =attention_probs_dropout_prob lowercase : List[str] =type_sequence_label_size lowercase : Any =initializer_range lowercase : str =num_labels lowercase : str =scope lowercase : Dict =n_targets lowercase : Any =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase : int =(image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase : Tuple =num_patches + 1 + self.num_detection_tokens def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase : Dict =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase : Union[str, Any] =[] for i in range(self.batch_size ): lowercase : Tuple ={} lowercase : str =torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCAmelCase ) lowercase : List[Any] =torch.rand(self.n_targets , 4 , device=UpperCAmelCase ) labels.append(UpperCAmelCase ) lowercase : Any =self.get_config() return config, pixel_values, labels def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def A__ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =YolosModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def A__ ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Tuple =YolosForObjectDetection(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Tuple =model(pixel_values=UpperCAmelCase ) lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase : str =model(pixel_values=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : Dict =self.prepare_config_and_inputs() lowercase : Union[str, Any] =config_and_inputs lowercase : Union[str, Any] ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCamelCase_ = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : int=False ) -> Any: '''simple docstring''' lowercase : Dict =super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase : Any =[] for i in range(self.model_tester.batch_size ): lowercase : Optional[Any] ={} lowercase : int =torch.ones( size=(self.model_tester.n_targets,) , device=UpperCAmelCase , dtype=torch.long ) lowercase : Tuple =torch.ones( self.model_tester.n_targets , 4 , device=UpperCAmelCase , dtype=torch.float ) labels.append(UpperCAmelCase ) lowercase : int =labels return inputs_dict def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' lowercase : List[str] =YolosModelTester(self ) lowercase : Optional[Any] =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Dict ) -> List[str]: '''simple docstring''' pass def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] =model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self : List[Any] ) -> Any: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any =model_class(UpperCAmelCase ) lowercase : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : str =[*signature.parameters.keys()] lowercase : Optional[int] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any =True # in YOLOS, the seq_len is different lowercase : Union[str, Any] =self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase : Optional[int] =True lowercase : int =False lowercase : Any =True lowercase : Optional[Any] =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Optional[int] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : List[Any] =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase : Dict =True lowercase : List[Any] =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : List[str] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : int =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase : Dict =len(UpperCAmelCase ) # Check attention is always last and order is fine lowercase : Optional[int] =True lowercase : Tuple =True lowercase : Dict =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Tuple =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Optional[int] =1 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase ) ) lowercase : Optional[int] =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] ): lowercase : List[Any] =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Dict =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Optional[Any] =outputs.hidden_states lowercase : Any =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # YOLOS has a different seq_length lowercase : int =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Dict =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCAmelCase ) @slow def A__ ( self : Any ) -> int: '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : str =YolosModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : Optional[int] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCAmelCase ) lowercase : Optional[int] =self.default_image_processor lowercase : Optional[Any] =prepare_img() lowercase : Tuple =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase : Optional[Any] =model(inputs.pixel_values ) # verify outputs lowercase : Dict =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase : Optional[int] =torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=UpperCAmelCase , ) lowercase : str =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify postprocessing lowercase : int =image_processor.post_process_object_detection( UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase : Union[str, Any] =torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCAmelCase ) lowercase : List[Any] =[75, 75, 17, 63, 17] lowercase : Union[str, Any] =torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(UpperCAmelCase ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCAmelCase , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCAmelCase ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCAmelCase ) )
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' def lowercase_ ( __A : str ) -> Tuple: # noqa: E741 """simple docstring""" lowercase : Optional[int] =len(__A ) lowercase : Optional[Any] =0 lowercase : Any =[0] * n lowercase : List[Any] =[False] * n lowercase : List[Any] =[False] * n def dfs(__A : Any , __A : int , __A : Tuple , __A : Any ): if parent == root: out_edge_count += 1 lowercase : List[str] =True lowercase : Tuple =at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase : int =dfs(__A , __A , __A , __A ) lowercase : Optional[int] =min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase : List[str] =True # AP found via cycle if at == low[to]: lowercase : Optional[int] =True else: lowercase : int =min(low[at] , __A ) return out_edge_count for i in range(__A ): if not visited[i]: lowercase : Optional[Any] =0 lowercase : List[str] =dfs(__A , __A , -1 , __A ) lowercase : Dict =out_edge_count > 1 for x in range(len(__A ) ): if is_art[x] is True: print(__A ) # Adjacency list of graph SCREAMING_SNAKE_CASE = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : List[Any] , UpperCAmelCase : Any ) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): lowercase : str =model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase ) def A__ ( self : List[Any] ) -> int: '''simple docstring''' lowercase : Any ='''sshleifer/tiny-gpt2''' lowercase : int =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , ) lowercase : List[Any] =TensorFlowBenchmark(UpperCAmelCase ) lowercase : int =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : List[str] ) -> int: '''simple docstring''' lowercase : Dict ='''sgugger/tiny-distilbert-classification''' lowercase : Tuple =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , ) lowercase : List[str] =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] ='''sshleifer/tiny-gpt2''' lowercase : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : int =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Dict =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : List[Any] ='''sshleifer/tiny-gpt2''' lowercase : Dict =AutoConfig.from_pretrained(UpperCAmelCase ) lowercase : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , ) lowercase : Union[str, Any] =TensorFlowBenchmark(UpperCAmelCase , [config] ) lowercase : Optional[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Any ) -> Dict: '''simple docstring''' lowercase : List[str] ='''sshleifer/tiny-gpt2''' lowercase : Any =AutoConfig.from_pretrained(UpperCAmelCase ) lowercase : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : Optional[Any] =TensorFlowBenchmark(UpperCAmelCase , [config] ) lowercase : Dict =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : Optional[int] ='''sshleifer/tiny-gpt2''' lowercase : Union[str, Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : Tuple =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowercase : str ='''sshleifer/tiny-gpt2''' lowercase : int =AutoConfig.from_pretrained(UpperCAmelCase ) lowercase : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : Any =TensorFlowBenchmark(UpperCAmelCase , [config] ) lowercase : Dict =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : Union[str, Any] ='''patrickvonplaten/t5-tiny-random''' lowercase : str =AutoConfig.from_pretrained(UpperCAmelCase ) lowercase : Optional[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : int =TensorFlowBenchmark(UpperCAmelCase , configs=[config] ) lowercase : int =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def A__ ( self : int ) -> Dict: '''simple docstring''' lowercase : List[Any] ='''sshleifer/tiny-gpt2''' lowercase : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCAmelCase , multi_process=UpperCAmelCase , ) lowercase : int =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str ='''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[str] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(UpperCAmelCase , '''env.csv''' ) , multi_process=UpperCAmelCase , ) lowercase : Optional[Any] =TensorFlowBenchmark(UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , '''env.csv''' ) ).exists() ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase : int ='''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(UpperCAmelCase : List[Any] ): self.assertTrue(hasattr(UpperCAmelCase , '''sequential''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''cumulative''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''current''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , '''log.txt''' ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , ) lowercase : Any =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Optional[int] =benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCAmelCase , '''log.txt''' ) ).exists() )
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): SCREAMING_SNAKE_CASE = 'pt' elif is_tf_available(): SCREAMING_SNAKE_CASE = 'tf' else: SCREAMING_SNAKE_CASE = 'jax' class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ByTaTokenizer UpperCamelCase_ = False def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() lowercase : str =ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def A__ ( self : str , **UpperCAmelCase : Any ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=20 , UpperCAmelCase : Union[str, Any]=5 ) -> Tuple[str, list]: '''simple docstring''' lowercase : int =[] for i in range(len(UpperCAmelCase ) ): try: lowercase : Any =tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase : Any =list(filter(lambda UpperCAmelCase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , UpperCAmelCase ) ) lowercase : Union[str, Any] =list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: lowercase : Dict =toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: lowercase : Dict =toks + toks # toks_str = [t[1] for t in toks] lowercase : Union[str, Any] =[t[0] for t in toks] # Ensure consistency lowercase : Optional[Any] =tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: lowercase : List[str] =( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: lowercase : Any =''' ''' + output_txt lowercase : Optional[int] =tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def A__ ( self : Optional[int] ) -> str: '''simple docstring''' lowercase : Any =self.ta_base_tokenizer lowercase : str =tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) lowercase : int =tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] =self.ta_base_tokenizer lowercase : List[str] ='''Unicode €.''' lowercase : Optional[Any] =tokenizer(UpperCAmelCase ) lowercase : List[Any] =[88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , UpperCAmelCase ) # decoding lowercase : List[str] =tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , '''Unicode €.</s>''' ) lowercase : Dict =tokenizer('''e è é ê ë''' ) lowercase : List[str] =[104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , UpperCAmelCase ) # decoding lowercase : str =tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def A__ ( self : Optional[int] ) -> str: '''simple docstring''' lowercase : Tuple =self.ta_base_tokenizer lowercase : Optional[Any] =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowercase : int =[68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase : Dict =tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": lowercase : List[Any] =list(batch.input_ids.numpy()[0] ) else: lowercase : int =list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def A__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowercase : Union[str, Any] =self.ta_base_tokenizer lowercase : Any =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase : Dict =tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , UpperCAmelCase ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertNotIn('''decoder_input_ids''' , UpperCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : int =self.ta_base_tokenizer lowercase : Dict =[ '''Summary of the text.''', '''Another summary.''', ] lowercase : List[Any] =tokenizer( text_target=UpperCAmelCase , max_length=32 , padding='''max_length''' , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : List[Any] =self.ta_base_tokenizer lowercase : Union[str, Any] =['''A long paragraph for summarization. </s>'''] lowercase : Dict =['''Summary of the text. </s>'''] # fmt: off lowercase : Tuple =[68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase : Optional[int] =[86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase : Tuple =tokenizer(UpperCAmelCase , text_target=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , batch['''input_ids'''][0] ) self.assertEqual(UpperCAmelCase , batch['''labels'''][0] ) def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase : Optional[int] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowercase : Any =tempfile.mkdtemp() lowercase : Dict =''' He is very happy, UNwant\u00E9d,running''' lowercase : Optional[int] =tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) lowercase : str =tokenizer.__class__.from_pretrained(UpperCAmelCase ) lowercase : Dict =after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) lowercase : Tuple =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowercase : Optional[int] =tempfile.mkdtemp() lowercase : Dict =''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowercase : Optional[Any] =tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowercase : str =tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) lowercase : Tuple =tokenizer.__class__.from_pretrained(UpperCAmelCase ) lowercase : Optional[int] =after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase : List[Any] =tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Optional[int] =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowercase : List[Any] =json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowercase : int =json.load(UpperCAmelCase ) lowercase : List[str] =[f'<extra_id_{i}>' for i in range(125 )] lowercase : Dict =added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowercase : List[Any] =added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(UpperCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase : Optional[int] =tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase : List[Any] =added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=UpperCAmelCase )] lowercase : int =tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : Optional[Any] =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) lowercase : Union[str, Any] =tokenizer_class.from_pretrained(UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def A__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def A__ ( self : Any ) -> List[str]: '''simple docstring''' pass def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass def A__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowercase : Tuple =self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowercase : Dict =['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] lowercase : Optional[int] =tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : Dict =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowercase : List[str] =[ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowercase : Dict =0 lowercase : Any =tokenizer.convert_ids_to_tokens( UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) for attr in attributes_list: setattr(UpperCAmelCase , attr + '''_id''' , UpperCAmelCase ) self.assertEqual(getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(getattr(UpperCAmelCase , attr + '''_id''' ) , UpperCAmelCase ) setattr(UpperCAmelCase , attr + '''_id''' , UpperCAmelCase ) self.assertEqual(getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(getattr(UpperCAmelCase , attr + '''_id''' ) , UpperCAmelCase ) setattr(UpperCAmelCase , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(UpperCAmelCase , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(UpperCAmelCase , '''additional_special_tokens_ids''' ) , [] ) setattr(UpperCAmelCase , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCAmelCase , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCAmelCase , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' def lowercase_ ( __A : int ) -> list: """simple docstring""" if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence lowercase : int =gray_code_sequence_string(__A ) # # convert them to integers for i in range(len(__A ) ): lowercase : Tuple =int(sequence[i] , 2 ) return sequence def lowercase_ ( __A : int ) -> list: """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowercase : Tuple =1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowercase : Union[str, Any] =gray_code_sequence_string(bit_count - 1 ) lowercase : Optional[Any] =[] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowercase : Union[str, Any] ='''0''' + smaller_sequence[i] sequence.append(__A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowercase : Tuple ='''1''' + smaller_sequence[i] sequence.append(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' def lowercase_ ( __A : int , __A : int , __A : int ) -> float: """simple docstring""" lowercase : Union[str, Any] =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" print(sum_of_series(1 , 1 , 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' from __future__ import annotations import pandas as pd def lowercase_ ( __A : list[int] , __A : list[int] , __A : int ) -> list[int]: """simple docstring""" lowercase : Tuple =[0] * no_of_processes lowercase : Any =[0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__A ): lowercase : List[str] =burst_time[i] lowercase : Any =0 lowercase : Optional[Any] =0 lowercase : str =9_9_9_9_9_9_9_9_9 lowercase : List[str] =0 lowercase : Tuple =False # Process until all processes are completed while complete != no_of_processes: for j in range(__A ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowercase : Optional[Any] =remaining_time[j] lowercase : Optional[int] =j lowercase : Union[str, Any] =True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowercase : Optional[int] =remaining_time[short] if minm == 0: lowercase : Optional[Any] =9_9_9_9_9_9_9_9_9 if remaining_time[short] == 0: complete += 1 lowercase : Optional[int] =False # Find finish time of current process lowercase : Dict =increment_time + 1 # Calculate waiting time lowercase : Tuple =finish_time - arrival_time[short] lowercase : int =finar - burst_time[short] if waiting_time[short] < 0: lowercase : List[Any] =0 # Increment time increment_time += 1 return waiting_time def lowercase_ ( __A : list[int] , __A : int , __A : list[int] ) -> list[int]: """simple docstring""" lowercase : List[Any] =[0] * no_of_processes for i in range(__A ): lowercase : Union[str, Any] =burst_time[i] + waiting_time[i] return turn_around_time def lowercase_ ( __A : list[int] , __A : list[int] , __A : int ) -> None: """simple docstring""" lowercase : Tuple =0 lowercase : Tuple =0 for i in range(__A ): lowercase : Any =total_waiting_time + waiting_time[i] lowercase : Tuple =total_turn_around_time + turn_around_time[i] print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') SCREAMING_SNAKE_CASE = int(input()) SCREAMING_SNAKE_CASE = [0] * no_of_processes SCREAMING_SNAKE_CASE = [0] * no_of_processes SCREAMING_SNAKE_CASE = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = map(int, input().split()) SCREAMING_SNAKE_CASE = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE = burst_time SCREAMING_SNAKE_CASE = no_of_processes SCREAMING_SNAKE_CASE = waiting_time SCREAMING_SNAKE_CASE = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) SCREAMING_SNAKE_CASE = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCamelCase_ = field( default=__A , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) UpperCamelCase_ = field( default=__A , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) UpperCamelCase_ = field( default=__A , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] =super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : List[str] =v.to_dict() return d
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' def lowercase_ ( __A : list , __A : int , __A : int = 0 , __A : int = 0 ) -> int: """simple docstring""" lowercase : List[Any] =right or len(__A ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__A , __A , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : Tuple =mock.Mock() lowercase : Optional[Any] =500 lowercase : Optional[Any] ={} lowercase : List[str] =HTTPError lowercase : List[str] ={} # Download this model to make sure it's in the cache. lowercase : Optional[Any] =BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase ) as mock_head: lowercase : Optional[int] =BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self : Any ) -> Dict: '''simple docstring''' lowercase : int =mock.Mock() lowercase : Dict =500 lowercase : List[Any] ={} lowercase : Union[str, Any] =HTTPError lowercase : str ={} # Download this model to make sure it's in the cache. lowercase : Optional[Any] =GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase ) as mock_head: lowercase : Any =GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self : Dict ) -> Any: '''simple docstring''' try: lowercase : int =tempfile.mktemp() with open(UpperCAmelCase , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , UpperCAmelCase ) lowercase : Optional[int] =AlbertTokenizer.from_pretrained(UpperCAmelCase ) finally: os.remove(UpperCAmelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , UpperCAmelCase ) lowercase : Tuple =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowercase : Dict =AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def A__ ( cls : Any ) -> Optional[int]: '''simple docstring''' lowercase : Any =TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def A__ ( cls : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def A__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] =os.path.join(UpperCAmelCase , '''vocab.txt''' ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase : Optional[Any] =BertTokenizer(UpperCAmelCase ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) lowercase : Any =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase , repo_id='''test-tokenizer''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowercase : Any =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase : str =os.path.join(UpperCAmelCase , '''vocab.txt''' ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase : str =BertTokenizer(UpperCAmelCase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) lowercase : List[Any] =BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowercase : Optional[int] =BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[Any] =os.path.join(UpperCAmelCase , '''vocab.txt''' ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase : List[str] =CustomTokenizer(UpperCAmelCase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) lowercase : Any =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowercase : int =os.path.join(UpperCAmelCase , '''vocab.txt''' ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowercase : Union[str, Any] =BertTokenizerFast.from_pretrained(UpperCAmelCase ) bert_tokenizer.save_pretrained(UpperCAmelCase ) lowercase : Optional[Any] =CustomTokenizerFast.from_pretrained(UpperCAmelCase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) lowercase : List[Any] =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) lowercase : Dict =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' , use_fast=UpperCAmelCase , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase : List[str] =Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : int =Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase : str =Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def A__ ( self : Dict ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def A__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : List[str] =Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =Trie() lowercase : Optional[int] =trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCAmelCase , ['''AB''', '''C'''] )
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowercase_ ( __A : int ) -> Optional[int]: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowercase_ ( ) -> Any: """simple docstring""" with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowercase : List[str] =[1, 2, 3] with pytest.raises(__A ): with parallel_backend('''unsupported backend''' ): map_nested(__A , __A , num_proc=2 ) with pytest.raises(__A ): with parallel_backend('''unsupported backend''' ): map_nested(__A , __A , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def lowercase_ ( __A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any =[1, 2] lowercase : Dict ={'''a''': 1, '''b''': 2} lowercase : str ={'''a''': [1, 2], '''b''': [3, 4]} lowercase : List[str] ={'''a''': {'''1''': 1}, '''b''': 2} lowercase : Union[str, Any] ={'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowercase : str =[2, 3] lowercase : Dict ={'''a''': 2, '''b''': 3} lowercase : int ={'''a''': [2, 3], '''b''': [4, 5]} lowercase : Tuple ={'''a''': {'''1''': 2}, '''b''': 3} lowercase : Tuple ={'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''input_features''', '''attention_mask'''] def __init__( self : Dict , UpperCAmelCase : List[str]=80 , UpperCAmelCase : Optional[int]=1_6000 , UpperCAmelCase : Tuple=80 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : str=True , **UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , **UpperCAmelCase ) lowercase : Dict =num_mel_bins lowercase : str =do_ceptral_normalize lowercase : Union[str, Any] =normalize_means lowercase : Optional[Any] =normalize_vars lowercase : List[str] =True def A__ ( self : List[str] , UpperCAmelCase : np.ndarray , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowercase : List[str] =torch.from_numpy(UpperCAmelCase ).unsqueeze(0 ) lowercase : Dict =ta_kaldi.fbank(UpperCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def A__ ( UpperCAmelCase : np.ndarray , UpperCAmelCase : int , UpperCAmelCase : Optional[bool] = True , UpperCAmelCase : Optional[bool] = True , UpperCAmelCase : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: lowercase : str =x[:input_length].mean(axis=0 ) lowercase : Union[str, Any] =np.subtract(UpperCAmelCase , UpperCAmelCase ) if normalize_vars: lowercase : List[str] =x[:input_length].std(axis=0 ) lowercase : Optional[int] =np.divide(UpperCAmelCase , UpperCAmelCase ) if input_length < x.shape[0]: lowercase : Any =padding_value # make sure array is in float32 lowercase : Any =x.astype(np.floataa ) return x def A__ ( self : Optional[Any] , UpperCAmelCase : List[np.ndarray] , UpperCAmelCase : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' lowercase : Union[str, Any] =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCAmelCase , UpperCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCAmelCase , UpperCAmelCase ) ] def __call__( self : Optional[Any] , UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , **UpperCAmelCase : List[Any] , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Optional[Any] =isinstance(UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowercase : Optional[int] =is_batched_numpy or ( isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] =[np.asarray(UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ): lowercase : int =np.asarray(UpperCAmelCase , dtype=np.floataa ) elif isinstance(UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Tuple =raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : Any =[raw_speech] # extract fbank features lowercase : Any =[self._extract_fbank_features(UpperCAmelCase ) for waveform in raw_speech] # convert into correct format for padding lowercase : Optional[Any] =BatchFeature({'''input_features''': features} ) lowercase : List[str] =self.pad( UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) # make sure list is in array format lowercase : Any =padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , UpperCAmelCase ): lowercase : Optional[Any] =[np.asarray(UpperCAmelCase , dtype=np.floataa ) for feature in input_features] lowercase : Union[str, Any] =padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase : int =[np.asarray(UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowercase : List[str] =( np.array(UpperCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCAmelCase , max_length=UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase : int =self.normalize( padded_inputs['''input_features'''] , attention_mask=UpperCAmelCase ) if return_tensors is not None: lowercase : Dict =padded_inputs.convert_to_tensors(UpperCAmelCase ) return padded_inputs
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
'''simple docstring''' import os SCREAMING_SNAKE_CASE = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : str =0 lowercase : List[Any] =0 while index < len(__A ) - 1: lowercase : List[Any] =SYMBOLS[numerals[index]] lowercase : Tuple =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowercase_ ( __A : int ) -> str: """simple docstring""" lowercase : Optional[Any] ='''''' lowercase : List[Any] =num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 lowercase : List[Any] =num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 lowercase : int =num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowercase_ ( __A : str = "/p089_roman.txt" ) -> int: """simple docstring""" lowercase : List[str] =0 with open(os.path.dirname(__A ) + roman_numerals_filename ) as filea: lowercase : List[Any] =filea.readlines() for line in lines: lowercase : List[Any] =line.strip() lowercase : Optional[int] =parse_roman_numerals(__A ) lowercase : int =generate_roman_numerals(__A ) savings += len(__A ) - len(__A ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' from PIL import Image def lowercase_ ( __A : Image , __A : float ) -> Image: """simple docstring""" def brightness(__A : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__A ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''sew-d''' def __init__( self : Optional[Any] , UpperCAmelCase : Any=32 , UpperCAmelCase : str=768 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : List[Any]=3072 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : str=256 , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : str=("p2c", "c2p") , UpperCAmelCase : Optional[Any]="layer_norm" , UpperCAmelCase : Dict="gelu_python" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[str]=1e-7 , UpperCAmelCase : Dict=1e-5 , UpperCAmelCase : Optional[Any]="group" , UpperCAmelCase : str="gelu" , UpperCAmelCase : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Dict=128 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=0.0_5 , UpperCAmelCase : Tuple=10 , UpperCAmelCase : Any=2 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Tuple=10 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Optional[Any]="mean" , UpperCAmelCase : Any=False , UpperCAmelCase : int=False , UpperCAmelCase : List[str]=256 , UpperCAmelCase : str=0 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Tuple=2 , **UpperCAmelCase : int , ) -> str: '''simple docstring''' super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowercase : Union[str, Any] =hidden_size lowercase : Optional[Any] =feat_extract_norm lowercase : Dict =feat_extract_activation lowercase : Optional[Any] =list(UpperCAmelCase ) lowercase : Optional[int] =list(UpperCAmelCase ) lowercase : List[Any] =list(UpperCAmelCase ) lowercase : Dict =conv_bias lowercase : Any =num_conv_pos_embeddings lowercase : Tuple =num_conv_pos_embedding_groups lowercase : List[Any] =len(self.conv_dim ) lowercase : Any =num_hidden_layers lowercase : List[Any] =intermediate_size lowercase : Any =squeeze_factor lowercase : Dict =max_position_embeddings lowercase : Union[str, Any] =position_buckets lowercase : List[Any] =share_att_key lowercase : Optional[int] =relative_attention lowercase : List[Any] =norm_rel_ebd lowercase : List[str] =list(UpperCAmelCase ) lowercase : Optional[Any] =hidden_act lowercase : Optional[int] =num_attention_heads lowercase : int =hidden_dropout lowercase : Optional[Any] =attention_dropout lowercase : Optional[Any] =activation_dropout lowercase : Union[str, Any] =feat_proj_dropout lowercase : Union[str, Any] =final_dropout lowercase : Dict =layer_norm_eps lowercase : Tuple =feature_layer_norm_eps lowercase : Optional[Any] =initializer_range lowercase : Optional[int] =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase : str =apply_spec_augment lowercase : str =mask_time_prob lowercase : int =mask_time_length lowercase : Tuple =mask_time_min_masks lowercase : Dict =mask_feature_prob lowercase : Any =mask_feature_length lowercase : Dict =mask_feature_min_masks # ctc loss lowercase : List[str] =ctc_loss_reduction lowercase : Dict =ctc_zero_infinity # sequence classification lowercase : int =use_weighted_layer_sum lowercase : Dict =classifier_proj_size @property def A__ ( self : int ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ViTImageProcessor if is_vision_available() else None @property def A__ ( self : Optional[int] ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : int ) -> str: '''simple docstring''' lowercase : Tuple =(3, 32, 128) lowercase : str =tempfile.mkdtemp() # fmt: off lowercase : Tuple =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase : Union[str, Any] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) lowercase : Any ={ '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase : List[Any] =os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Dict , **UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : str , **UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : Any =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) lowercase : List[Any] =Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) return image_input def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Tuple =self.get_tokenizer() lowercase : Dict =self.get_image_processor() lowercase : Tuple =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase : str =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =self.get_tokenizer() lowercase : List[Any] =self.get_image_processor() lowercase : Dict =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase : str =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase : str =self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowercase : Any =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =self.get_image_processor() lowercase : Dict =self.get_tokenizer() lowercase : List[Any] =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Any =self.prepare_image_inputs() lowercase : List[Any] =image_processor(UpperCAmelCase , return_tensors='''np''' ) lowercase : str =processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =self.get_image_processor() lowercase : List[Any] =self.get_tokenizer() lowercase : str =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : List[str] ='''test''' lowercase : Optional[int] =processor(text=UpperCAmelCase ) lowercase : Union[str, Any] =tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : Optional[Any] =self.get_image_processor() lowercase : Optional[int] =self.get_tokenizer() lowercase : Optional[Any] =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Any ='''test''' lowercase : Any =self.prepare_image_inputs() lowercase : str =processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def A__ ( self : List[str] ) -> str: '''simple docstring''' lowercase : str =self.get_image_processor() lowercase : Optional[Any] =self.get_tokenizer() lowercase : Dict =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[int] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase : Optional[int] =processor.char_decode(UpperCAmelCase ) lowercase : Union[str, Any] =tokenizer.batch_decode(UpperCAmelCase ) lowercase : Tuple =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' lowercase : str =self.get_image_processor() lowercase : List[Any] =self.get_tokenizer() lowercase : Any =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : str =None lowercase : Optional[int] =self.prepare_image_inputs() lowercase : Optional[int] =processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =self.get_image_processor() lowercase : Dict =self.get_tokenizer() lowercase : int =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : str =torch.randn(1 , 27 , 38 ) lowercase : List[Any] =torch.randn(1 , 27 , 5_0257 ) lowercase : Union[str, Any] =torch.randn(1 , 27 , 3_0522 ) lowercase : Union[str, Any] =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' from math import pi def lowercase_ ( __A : int , __A : int ) -> float: """simple docstring""" return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[str] ) -> None: '''simple docstring''' lowercase : dict[str, TrieNode] ={} # Mapping from char to TrieNode lowercase : Optional[int] =False def A__ ( self : Tuple , UpperCAmelCase : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(UpperCAmelCase ) def A__ ( self : str , UpperCAmelCase : str ) -> None: '''simple docstring''' lowercase : Optional[int] =self for char in word: if char not in curr.nodes: lowercase : Union[str, Any] =TrieNode() lowercase : List[Any] =curr.nodes[char] lowercase : Union[str, Any] =True def A__ ( self : Union[str, Any] , UpperCAmelCase : str ) -> bool: '''simple docstring''' lowercase : List[Any] =self for char in word: if char not in curr.nodes: return False lowercase : Tuple =curr.nodes[char] return curr.is_leaf def A__ ( self : Dict , UpperCAmelCase : str ) -> None: '''simple docstring''' def _delete(UpperCAmelCase : TrieNode , UpperCAmelCase : str , UpperCAmelCase : int ) -> bool: if index == len(UpperCAmelCase ): # If word does not exist if not curr.is_leaf: return False lowercase : Union[str, Any] =False return len(curr.nodes ) == 0 lowercase : Dict =word[index] lowercase : Dict =curr.nodes.get(UpperCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowercase : Optional[int] =_delete(UpperCAmelCase , UpperCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCAmelCase , 0 ) def lowercase_ ( __A : TrieNode , __A : str ) -> None: """simple docstring""" if node.is_leaf: print(__A , end=''' ''' ) for key, value in node.nodes.items(): print_words(__A , word + key ) def lowercase_ ( ) -> bool: """simple docstring""" lowercase : Union[str, Any] ='''banana bananas bandana band apple all beast'''.split() lowercase : Dict =TrieNode() root.insert_many(__A ) # print_words(root, "") assert all(root.find(__A ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowercase_ ( __A : str , __A : bool ) -> None: """simple docstring""" print(str(__A ) , '''works!''' if passes else '''doesn\'t work :(''' ) def lowercase_ ( ) -> None: """simple docstring""" assert test_trie() def lowercase_ ( ) -> None: """simple docstring""" print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' def lowercase_ ( __A : float ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__A , __A ): raise ValueError('''Length must be a positive.''' ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowercase_ ( __A : float ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__A , __A ): raise ValueError('''Length must be a positive.''' ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() (lowercase) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : UNetaDModel , UpperCAmelCase : UNetaDModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Optional[int] , ) -> str: '''simple docstring''' super().__init__() lowercase : str =value_function lowercase : Union[str, Any] =unet lowercase : List[str] =scheduler lowercase : Optional[Any] =env lowercase : Any =env.get_dataset() lowercase : Tuple ={} for key in self.data.keys(): try: lowercase : Any =self.data[key].mean() except: # noqa: E722 pass lowercase : Tuple ={} for key in self.data.keys(): try: lowercase : Tuple =self.data[key].std() except: # noqa: E722 pass lowercase : Optional[int] =env.observation_space.shape[0] lowercase : Dict =env.action_space.shape[0] def A__ ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> Dict: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def A__ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def A__ ( self : str , UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' if type(UpperCAmelCase ) is dict: return {k: self.to_torch(UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(UpperCAmelCase , device=self.unet.device ) def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple ) -> str: '''simple docstring''' for key, val in cond.items(): lowercase : Dict =val.clone() return x_in def A__ ( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =x.shape[0] lowercase : str =None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase : List[Any] =torch.full((batch_size,) , UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase : Dict =self.value_function(x.permute(0 , 2 , 1 ) , UpperCAmelCase ).sample lowercase : List[Any] =torch.autograd.grad([y.sum()] , [x] )[0] lowercase : Union[str, Any] =self.scheduler._get_variance(UpperCAmelCase ) lowercase : Any =torch.exp(0.5 * posterior_variance ) lowercase : str =model_std * grad lowercase : Any =0 lowercase : List[Any] =x.detach() lowercase : Optional[Any] =x + scale * grad lowercase : Any =self.reset_xa(UpperCAmelCase , UpperCAmelCase , self.action_dim ) lowercase : Dict =self.unet(x.permute(0 , 2 , 1 ) , UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase : Optional[int] =self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , predict_epsilon=UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase : Tuple =self.reset_xa(UpperCAmelCase , UpperCAmelCase , self.action_dim ) lowercase : Any =self.to_torch(UpperCAmelCase ) return x, y def __call__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str]=64 , UpperCAmelCase : Dict=32 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : List[str]=0.1 ) -> Any: '''simple docstring''' lowercase : Tuple =self.normalize(UpperCAmelCase , '''observations''' ) lowercase : Dict =obs[None].repeat(UpperCAmelCase , axis=0 ) lowercase : str ={0: self.to_torch(UpperCAmelCase )} lowercase : Any =(batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase : Tuple =randn_tensor(UpperCAmelCase , device=self.unet.device ) lowercase : Optional[Any] =self.reset_xa(UpperCAmelCase , UpperCAmelCase , self.action_dim ) lowercase : Dict =self.to_torch(UpperCAmelCase ) # run the diffusion process lowercase : Tuple =self.run_diffusion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # sort output trajectories by value lowercase : int =y.argsort(0 , descending=UpperCAmelCase ).squeeze() lowercase : Union[str, Any] =x[sorted_idx] lowercase : Optional[int] =sorted_values[:, :, : self.action_dim] lowercase : str =actions.detach().cpu().numpy() lowercase : List[Any] =self.de_normalize(UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: lowercase : List[str] =0 else: # if we didn't run value guiding, select a random action lowercase : List[str] =np.random.randint(0 , UpperCAmelCase ) lowercase : List[Any] =denorm_actions[selected_index, 0] return denorm_actions
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''CLIPImageProcessor''' UpperCamelCase_ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Tuple =kwargs.pop('''feature_extractor''' ) lowercase : List[str] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : int=None , UpperCAmelCase : str=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase : int =self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: lowercase : Union[str, Any] =self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: lowercase : Optional[Any] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def A__ ( self : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> str: '''simple docstring''' lowercase : Union[str, Any] =self.tokenizer.model_input_names lowercase : List[str] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ ( self : Dict ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Any ) -> Dict: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE = logging.getLogger() def lowercase_ ( __A : Path , __A : list ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] ='''\n'''.join(__A ) Path(__A ).open('''w''' ).writelines(__A ) SCREAMING_SNAKE_CASE = 'patrickvonplaten/t5-tiny-random' SCREAMING_SNAKE_CASE = 'sshleifer/bart-tiny-random' SCREAMING_SNAKE_CASE = 'sshleifer/tiny-mbart' SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( __A ): """simple docstring""" def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' lowercase : List[str] =Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' lowercase : Optional[int] =input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() lowercase : List[str] =[''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) lowercase : Tuple ='''translation_en_to_de''' if model == T5_TINY else '''summarization''' lowercase : int =f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(UpperCAmelCase , '''argv''' , UpperCAmelCase ): run_generate() assert Path(UpperCAmelCase ).exists() # os.remove(Path(output_file_name)) def A__ ( self : Dict ) -> int: '''simple docstring''' self.run_eval_tester(UpperCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def A__ ( self : Any , UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.run_eval_tester(UpperCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def A__ ( self : List[str] , UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : Any =Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' lowercase : Optional[Any] =input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() lowercase : Union[str, Any] ={ '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } lowercase : List[str] =Path(self.get_auto_remove_tmp_dir() ) lowercase : Any =str(tmp_dir / '''scores.json''' ) lowercase : Union[str, Any] =str(tmp_dir / '''val.target''' ) _dump_articles(UpperCAmelCase , text['''en'''] ) _dump_articles(UpperCAmelCase , text['''de'''] ) lowercase : Tuple ='''translation_en_to_de''' if model == T5_TINY else '''summarization''' lowercase : str =f'\n run_eval_search.py\n {model}\n {str(UpperCAmelCase )}\n {str(UpperCAmelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(UpperCAmelCase , '''argv''' , UpperCAmelCase ): with CaptureStdout() as cs: run_search() lowercase : List[Any] =[''' num_beams | length_penalty''', model, '''Best score args'''] lowercase : List[Any] =['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(UpperCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(UpperCAmelCase ).exists() os.remove(Path(UpperCAmelCase ) )
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' import torch from torch import nn class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : List[str]=False ) -> int: '''simple docstring''' super().__init__() lowercase : Optional[Any] =n_token lowercase : List[Any] =d_embed lowercase : Dict =d_proj lowercase : Dict =cutoffs + [n_token] lowercase : List[str] =[0] + self.cutoffs lowercase : Union[str, Any] =div_val lowercase : int =self.cutoffs[0] lowercase : Dict =len(self.cutoffs ) - 1 lowercase : Dict =self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase : Any =nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowercase : Any =nn.Parameter(torch.zeros(self.n_clusters ) ) lowercase : int =nn.ModuleList() lowercase : str =nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) else: self.out_projs.append(UpperCAmelCase ) self.out_layers.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): lowercase : Union[str, Any] =self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase : Optional[int] =d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(UpperCAmelCase , r_idx - l_idx ) ) lowercase : Optional[Any] =keep_order def A__ ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' if proj is None: lowercase : Any =nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase : Dict =nn.functional.linear(UpperCAmelCase , proj.t().contiguous() ) lowercase : Dict =nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A__ ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=False ) -> str: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowercase : Dict =hidden[..., :-1, :].contiguous() lowercase : Dict =labels[..., 1:].contiguous() lowercase : int =hidden.view(-1 , hidden.size(-1 ) ) lowercase : Optional[Any] =labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: lowercase : Tuple =hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowercase : Any =self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowercase : List[str] =labels != -100 lowercase : List[Any] =torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowercase : Optional[int] =( -nn.functional.log_softmax(UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowercase : Tuple =nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowercase : List[str] =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase : Any =self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase : Optional[Any] =self.out_layers[0].weight[l_idx:r_idx] lowercase : str =self.out_layers[0].bias[l_idx:r_idx] else: lowercase : Union[str, Any] =self.out_layers[i].weight lowercase : Dict =self.out_layers[i].bias if i == 0: lowercase : List[str] =torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase : List[str] =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) lowercase : Any =weights[0], biases[0], self.out_projs[0] lowercase : Optional[int] =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : str =nn.functional.log_softmax(UpperCAmelCase , dim=1 ) if labels is None: lowercase : Any =hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowercase : List[Any] =torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowercase : Dict =0 lowercase : List[Any] =[0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): lowercase : List[Any] =cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase : List[str] =(labels >= l_idx) & (labels < r_idx) lowercase : Optional[Any] =mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase : Any =labels.index_select(0 , UpperCAmelCase ) - l_idx lowercase : str =head_logprob.index_select(0 , UpperCAmelCase ) lowercase : int =hidden.index_select(0 , UpperCAmelCase ) else: lowercase : Dict =hidden if i == 0: if labels is not None: lowercase : Optional[int] =head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowercase : Union[str, Any] =head_logprob[:, : self.cutoffs[0]] else: lowercase : int =weights[i], biases[i], self.out_projs[i] lowercase : Union[str, Any] =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowercase : Any =self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase : Any =head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowercase : int =head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase : Union[str, Any] =logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A__ ( self : List[Any] , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if self.n_clusters == 0: lowercase : str =self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowercase : Union[str, Any] =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase : Union[str, Any] =self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase : int =self.out_layers[0].weight[l_idx:r_idx] lowercase : int =self.out_layers[0].bias[l_idx:r_idx] else: lowercase : str =self.out_layers[i].weight lowercase : Union[str, Any] =self.out_layers[i].bias if i == 0: lowercase : str =torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase : Dict =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) lowercase : Optional[int] =weights[0], biases[0], self.out_projs[0] lowercase : str =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : int =hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowercase : List[str] =nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowercase : str =[0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): lowercase : Any =cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase : Optional[int] =head_logprob[:, : self.cutoffs[0]] else: lowercase : List[str] =weights[i], biases[i], self.out_projs[i] lowercase : str =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Dict =nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowercase : Optional[int] =head_logprob[:, -i] + tail_logprob_i lowercase : str =logprob_i return out
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCamelCase : Optional[Any] = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=True ): if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowerCamelCase__ = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) lowerCamelCase__ = config_class.from_json_file(__lowerCAmelCase ) lowerCamelCase__ = True lowerCamelCase__ = True print(F'''Building TensorFlow model from configuration: {config}''' ) lowerCamelCase__ = model_class(__lowerCAmelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowerCamelCase__ = cached_file( __lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowerCamelCase__ = load_pytorch_checkpoint_in_tfa_model(__lowerCAmelCase , __lowerCAmelCase ) if compare_with_pt_model: lowerCamelCase__ = tf_model(tf_model.dummy_inputs , training=__lowerCAmelCase ) # build the network lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowerCamelCase__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=__lowerCAmelCase , config=__lowerCAmelCase , state_dict=__lowerCAmelCase ) with torch.no_grad(): lowerCamelCase__ = pt_model(**pt_model.dummy_inputs ) lowerCamelCase__ = pto[0].numpy() lowerCamelCase__ = tfo[0].numpy() lowerCamelCase__ = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__lowerCAmelCase , save_format="""h5""" ) def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Any=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[Any]=False , ): if args_model_type is None: lowerCamelCase__ = list(MODEL_CLASSES.keys() ) else: lowerCamelCase__ = [args_model_type] for j, model_type in enumerate(__lowerCAmelCase , start=1 ): print("""=""" * 100 ) print(F''' Converting model type {j}/{len(__lowerCAmelCase )}: {model_type}''' ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowerCamelCase__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowerCamelCase__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__lowerCAmelCase , __lowerCAmelCase ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue lowerCamelCase__ = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(__lowerCAmelCase )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: lowerCamelCase__ = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) else: lowerCamelCase__ = config_shortcut_name if model_shortcut_name in aws_model_maps: lowerCamelCase__ = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) else: lowerCamelCase__ = model_shortcut_name if os.path.isfile(__lowerCAmelCase ): lowerCamelCase__ = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__lowerCAmelCase , pytorch_checkpoint_path=__lowerCAmelCase , config_file=__lowerCAmelCase , tf_dump_path=os.path.join(__lowerCAmelCase , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__lowerCAmelCase , ) if remove_cached_files: os.remove(__lowerCAmelCase ) os.remove(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( F'Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ' 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') UpperCamelCase : str = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
9
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,): lowerCamelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } lowerCamelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase__ = token_dict["""token"""] lowerCamelCase__ = Tokenizer(Unigram() ) lowerCamelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ), normalizers.Lowercase(), ] ) lowerCamelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ), pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,) lowerCamelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [files] self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ): lowerCamelCase__ = json.loads(self._tokenizer.to_str() ) lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""] lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
9
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): super().__init__() self.register_modules( vae=_lowerCAmelCase ,text_encoder=_lowerCAmelCase ,tokenizer=_lowerCAmelCase ,unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,safety_checker=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,) def UpperCamelCase_ ( self ,_lowerCAmelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.enable_attention_slicing(_lowerCAmelCase ) @torch.no_grad() def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 50 ,_lowerCAmelCase = 7.5 ,_lowerCAmelCase = None ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = 1 ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = 1 elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = len(_lowerCAmelCase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_lowerCAmelCase )}.''' ) # get prompt text embeddings lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) lowerCamelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = text_embeddings.shape lowerCamelCase__ = text_embeddings.repeat(1 ,_lowerCAmelCase ,1 ) lowerCamelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt ,_lowerCAmelCase ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ = 42 if negative_prompt is None: lowerCamelCase__ = [""""""] elif type(_lowerCAmelCase ) is not type(_lowerCAmelCase ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase )} !=''' F''' {type(_lowerCAmelCase )}.''' ) elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [negative_prompt] elif batch_size != len(_lowerCAmelCase ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowerCamelCase__ = negative_prompt lowerCamelCase__ = text_input_ids.shape[-1] lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=_lowerCAmelCase ,truncation=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ = uncond_embeddings.shape[1] lowerCamelCase__ = uncond_embeddings.repeat(_lowerCAmelCase ,_lowerCAmelCase ,1 ) lowerCamelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt ,_lowerCAmelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCamelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase__ = torch.randn( _lowerCAmelCase ,generator=_lowerCAmelCase ,device="""cpu""" ,dtype=_lowerCAmelCase ).to(self.device ) lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device="""cpu""" ,dtype=_lowerCAmelCase ).to( self.device ) else: lowerCamelCase__ = torch.randn( _lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ,dtype=_lowerCAmelCase ) lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ,dtype=_lowerCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase__ = latents_reference.to(self.device ) lowerCamelCase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase__ = 0 if dx < 0 else dx lowerCamelCase__ = 0 if dy < 0 else dy lowerCamelCase__ = max(-dx ,0 ) lowerCamelCase__ = max(-dy ,0 ) # import pdb # pdb.set_trace() lowerCamelCase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase__ = {} if accepts_eta: lowerCamelCase__ = eta for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase ) # predict the noise residual lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ = self.scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 1 / 0.1_8215 * latents lowerCamelCase__ = self.vae.decode(_lowerCAmelCase ).sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase__ = self.feature_extractor(self.numpy_to_pil(_lowerCAmelCase ) ,return_tensors="""pt""" ).to( self.device ) lowerCamelCase__ , lowerCamelCase__ = self.safety_checker( images=_lowerCAmelCase ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase__ = None if output_type == "pil": lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_lowerCAmelCase ,nsfw_content_detected=_lowerCAmelCase )
9
'''simple docstring''' from __future__ import annotations import math def A__ ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCamelCase__ = [] for num in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ = odd_composites[num] - 2 * i * i if is_prime(__lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__lowerCAmelCase ) == n: return list_nums return [] def A__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
9
1
'''simple docstring''' import os import numpy import onnx def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Dict ): lowerCamelCase__ = a.name lowerCamelCase__ = b.name lowerCamelCase__ = """""" lowerCamelCase__ = """""" lowerCamelCase__ = a == b lowerCamelCase__ = name_a lowerCamelCase__ = name_b return res def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__lowerCAmelCase , __lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCAmelCase , __lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __lowerCAmelCase , __lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): for n in graph_proto.node: _node_replace_input_with(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ): lowerCamelCase__ = list(model.graph.initializer ) lowerCamelCase__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowerCamelCase__ = inits[i].name lowerCamelCase__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[Any] ): lowerCamelCase__ = os.path.dirname(__lowerCAmelCase ) lowerCamelCase__ = os.path.basename(__lowerCAmelCase ) lowerCamelCase__ = onnx.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ = list(model.graph.initializer ) lowerCamelCase__ = set() lowerCamelCase__ = {} lowerCamelCase__ = [] lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__lowerCAmelCase ) dup_set.add(__lowerCAmelCase ) lowerCamelCase__ = inits[j].data_type lowerCamelCase__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , __lowerCAmelCase ) total_reduced_size += mem_size lowerCamelCase__ = inits[i].name lowerCamelCase__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(__lowerCAmelCase ) else: lowerCamelCase__ = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowerCamelCase__ = sorted(__lowerCAmelCase ) _remove_dup_initializers_from_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = """optimized_""" + model_file_name lowerCamelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) onnx.save(__lowerCAmelCase , __lowerCAmelCase ) return new_model
9
'''simple docstring''' def A__ ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
9
1
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=7 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=99 ,_lowerCAmelCase=64 ,_lowerCAmelCase=32 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=16 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=4 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = embedding_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def UpperCamelCase_ ( self ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ): return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForNextSentencePrediction(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model( _lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model( _lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ,next_sentence_label=_lowerCAmelCase ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model( _lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,start_positions=_lowerCAmelCase ,end_positions=_lowerCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_choices lowerCamelCase__ = MegatronBertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCamelCase__ = model( _lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = True # test_resize_embeddings = False _UpperCamelCase = False def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=False ): lowerCamelCase__ = super()._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=_lowerCAmelCase ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_lowerCAmelCase ) return inputs_dict def UpperCamelCase_ ( self ): lowerCamelCase__ = MegatronBertModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[int] ): return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCamelCase : Dict = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowerCamelCase__ = os.path.join(os.environ["""MYDIR"""] ,_lowerCAmelCase ) lowerCamelCase__ = MegatronBertModel.from_pretrained(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.half() lowerCamelCase__ = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): lowerCamelCase__ = model(_lowerCAmelCase )[0] lowerCamelCase__ = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape ,_lowerCAmelCase ) lowerCamelCase__ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowerCamelCase__ = output[0, ii, jj] lowerCamelCase__ = expected[3 * ii + jj] lowerCamelCase__ = """ii={} jj={} a={} b={}""".format(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) self.assertTrue(math.isclose(_lowerCAmelCase ,_lowerCAmelCase ,rel_tol=_lowerCAmelCase ,abs_tol=_lowerCAmelCase ) ,msg=_lowerCAmelCase )
9
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCamelCase : Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } UpperCamelCase : List[Any] = { 'camembert-base': 5_12, } UpperCamelCase : List[str] = '▁' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowerCamelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = [] lowerCamelCase__ = """""" lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase : Tuple = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = R"""\w+[.]\d+""" lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowerCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) lowerCamelCase__ = flatten_dict(__lowerCAmelCase ) lowerCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowerCamelCase__ = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Any = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ): lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
9
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = 42 def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ): super().__init__() self.register_modules(unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 50 ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,**_lowerCAmelCase ,): lowerCamelCase__ = self.unet.config.sample_size lowerCamelCase__ = (batch_size, 3, img_size, img_size) lowerCamelCase__ = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowerCamelCase__ = randn_tensor(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowerCamelCase__ = self.scheduler.schedule[t] lowerCamelCase__ = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowerCamelCase__ , lowerCamelCase__ = self.scheduler.add_noise_to_input(_lowerCAmelCase ,_lowerCAmelCase ,generator=_lowerCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCamelCase__ = (sigma_hat / 2) * model((sample_hat + 1) / 2 ,sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowerCamelCase__ = self.scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCamelCase__ = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 ,sigma_prev / 2 ).sample lowerCamelCase__ = self.scheduler.step_correct( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,step_output.prev_sample ,step_output["""derivative"""] ,) lowerCamelCase__ = step_output.prev_sample lowerCamelCase__ = (sample / 2 + 0.5).clamp(0 ,1 ) lowerCamelCase__ = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
9
'''simple docstring''' from math import factorial UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 , __lowerCAmelCase ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCAmelCase ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
9
1
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline UpperCamelCase : List[Any] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": UpperCamelCase : int = 'hopper-medium-v2' UpperCamelCase : List[Any] = gym.make(env_name) UpperCamelCase : str = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) UpperCamelCase : List[str] = env.reset() UpperCamelCase : Any = 0 UpperCamelCase : Tuple = 0 UpperCamelCase : Optional[Any] = 10_00 UpperCamelCase : Dict = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy UpperCamelCase : List[Any] = pipeline(obs, planning_horizon=32) # execute action in environment UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = env.step(denorm_actions) UpperCamelCase : Tuple = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' F' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) UpperCamelCase : List[str] = next_observation except KeyboardInterrupt: pass print(F'Total reward: {total_reward}')
9
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase : Optional[Any] = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase : Optional[int] = '\n{0} = None\n' UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def A__ ( ): with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase__ = 0 lowerCamelCase__ = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[int]=None ): if backend_specific_objects is None: lowerCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) lowerCamelCase__ = dummy_file return dummy_files def A__ ( __lowerCAmelCase : List[str]=False ): lowerCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" ) lowerCamelCase__ = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
9
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' ,'False' ) ) is not True ,reason='Skipping test because should only be run when releasing minor transformers version' ,) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() ,encoding="""utf-8""" ,check=_lowerCAmelCase ,) assert hasattr(self ,"""env""" ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = F'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings lowerCamelCase__ = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=_lowerCAmelCase ,instance_count=_lowerCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=_lowerCAmelCase ,hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=_lowerCAmelCase ,py_version="""py36""" ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ): TrainingJobAnalytics(_lowerCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): # create estimator lowerCamelCase__ = self.create_estimator(_lowerCAmelCase ) # run training estimator.fit() # result dataframe lowerCamelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,_lowerCAmelCase )
9
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = GPTSwaTokenizer _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """This is a test""" lowerCamelCase__ = """This is a test""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = """<s>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(_lowerCAmelCase ) ,20_00 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,20_00 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,) # fmt: on lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCamelCase__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
9
1
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" ,revision="""bf16""" ,dtype=jnp.bfloataa ,) lowerCamelCase__ = """A painting of a squirrel eating a burger""" lowerCamelCase__ = jax.device_count() lowerCamelCase__ = num_samples * [prompt] lowerCamelCase__ = sd_pipe.prepare_inputs(_lowerCAmelCase ) lowerCamelCase__ = replicate(_lowerCAmelCase ) lowerCamelCase__ = shard(_lowerCAmelCase ) lowerCamelCase__ = jax.random.PRNGKey(0 ) lowerCamelCase__ = jax.random.split(_lowerCAmelCase ,jax.device_count() ) lowerCamelCase__ = sd_pipe(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,num_inference_steps=25 ,jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) lowerCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): lowerCamelCase__ = """stabilityai/stable-diffusion-2""" lowerCamelCase__ , lowerCamelCase__ = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase ,subfolder="""scheduler""" ) lowerCamelCase__ , lowerCamelCase__ = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase ,scheduler=_lowerCAmelCase ,revision="""bf16""" ,dtype=jnp.bfloataa ,) lowerCamelCase__ = scheduler_params lowerCamelCase__ = """A painting of a squirrel eating a burger""" lowerCamelCase__ = jax.device_count() lowerCamelCase__ = num_samples * [prompt] lowerCamelCase__ = sd_pipe.prepare_inputs(_lowerCAmelCase ) lowerCamelCase__ = replicate(_lowerCAmelCase ) lowerCamelCase__ = shard(_lowerCAmelCase ) lowerCamelCase__ = jax.random.PRNGKey(0 ) lowerCamelCase__ = jax.random.split(_lowerCAmelCase ,jax.device_count() ) lowerCamelCase__ = sd_pipe(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,num_inference_steps=25 ,jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) lowerCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
9
'''simple docstring''' from manim import * class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""CPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(1 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""GPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""Model""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,) lowerCamelCase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(_lowerCAmelCase ): lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() lowerCamelCase__ = 0.46 / 4 lowerCamelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
9
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=12 ,_lowerCAmelCase=7 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=99 ,_lowerCAmelCase=32 ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=0 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = projection_dim lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = scope lowerCamelCase__ = bos_token_id def UpperCamelCase_ ( self ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase__ = input_mask.numpy() lowerCamelCase__ , lowerCamelCase__ = input_mask.shape lowerCamelCase__ = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): lowerCamelCase__ = 1 lowerCamelCase__ = 0 lowerCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_lowerCAmelCase ) def UpperCamelCase_ ( self ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFBlipTextModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,training=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFBlipTextModel,) if is_tf_available() else () _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipTextModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFBlipTextModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_lowerCAmelCase )
9
'''simple docstring''' UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase : list[bool | None] = [None] * 10_00_00_00 UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = False def A__ ( __lowerCAmelCase : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) ) lowerCamelCase__ = number_chain while number < 1000_0000: lowerCamelCase__ = number_chain number *= 10 return number_chain def A__ ( __lowerCAmelCase : int = 1000_0000 ): for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
9
1
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A__ ( __lowerCAmelCase : Union[str, Any] ): if hor == 128: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 64, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase__ = model.state_dict() lowerCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase__ = model lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
9
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'donut-swin' _UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(_lowerCAmelCase ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
9
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Path , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , ): if config_name_or_path is None: lowerCamelCase__ = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: lowerCamelCase__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase__ = question_encoder_name_or_path lowerCamelCase__ = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. lowerCamelCase__ = RagConfig.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = gen_config lowerCamelCase__ = question_encoder_config lowerCamelCase__ = model_class.from_pretrained_question_encoder_generator( __lowerCAmelCase , __lowerCAmelCase , config=__lowerCAmelCase ) rag_model.save_pretrained(__lowerCAmelCase ) # Sanity check. model_class.from_pretrained(__lowerCAmelCase ) # Save tokenizers. lowerCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) lowerCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) UpperCamelCase : List[str] = parser.parse_args() UpperCamelCase : Any = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
9
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase : Optional[Any] = ['small', 'medium', 'large'] UpperCamelCase : Dict = 'lm_head.decoder.weight' UpperCamelCase : int = 'lm_head.weight' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = torch.load(__lowerCAmelCase ) lowerCamelCase__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) UpperCamelCase : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') UpperCamelCase : str = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
9
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCamelCase : Dict = 50_00_00 UpperCamelCase , UpperCamelCase : Optional[int] = os.path.split(__file__) UpperCamelCase : str = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def A__ ( __lowerCAmelCase : datasets.Dataset , **__lowerCAmelCase : Optional[Any] ): lowerCamelCase__ = dataset.map(**__lowerCAmelCase ) @get_duration def A__ ( __lowerCAmelCase : datasets.Dataset , **__lowerCAmelCase : Dict ): lowerCamelCase__ = dataset.filter(**__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowerCamelCase__ = generate_example_dataset( os.path.join(__lowerCAmelCase , """dataset.arrow""" ) , __lowerCAmelCase , num_examples=__lowerCAmelCase ) lowerCamelCase__ = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__lowerCAmelCase ) def tokenize(__lowerCAmelCase : Any ): return tokenizer(examples["""text"""] ) lowerCamelCase__ = map(__lowerCAmelCase ) lowerCamelCase__ = map(__lowerCAmelCase , batched=__lowerCAmelCase ) lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""numpy""" ): lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""pandas""" ): lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) lowerCamelCase__ = map(__lowerCAmelCase , function=__lowerCAmelCase , batched=__lowerCAmelCase ) lowerCamelCase__ = filter(__lowerCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__lowerCAmelCase , """wb""" ) as f: f.write(json.dumps(__lowerCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
9
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = mask_ratio lowerCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ = (image_size // patch_size) ** 2 lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) # expected sequence length = num_patches lowerCamelCase__ = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ = 1 lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) lowerCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = outputs_dict[0].numpy() lowerCamelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCAmelCase ): lowerCamelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCAmelCase ): lowerCamelCase__ = v.numpy() else: lowerCamelCase__ = np.array(_lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.constant(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ = tf_noise super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCAmelCase ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase ) } lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCamelCase__ = main_layer_class(_lowerCAmelCase ) lowerCamelCase__ = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) ) lowerCamelCase__ = model(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" ) model.save(_lowerCAmelCase ) lowerCamelCase__ = tf.keras.models.load_model( _lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCAmelCase ,tf.keras.Model ) lowerCamelCase__ = model(_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = outputs.last_hidden_state.numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = outputs.logits.numpy() lowerCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase ) lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = after_outputs["""logits"""].numpy() lowerCamelCase__ = 0 lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1E-5 ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCAmelCase ) lowerCamelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCamelCase__ = model_class.from_config(model.config ) lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ = ViTMAEConfig() lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
9
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Dict = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,): lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18} lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = min_resolution lowerCamelCase__ = max_resolution lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean lowerCamelCase__ = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowerCamelCase__ = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,Image.Image ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,np.ndarray ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,torch.Tensor ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
9
1
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase : Tuple = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=8 ): lowerCamelCase__ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowerCamelCase__ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): super().__init__() self.register_modules( text_encoder=_lowerCAmelCase ,tokenizer=_lowerCAmelCase ,unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,movq=_lowerCAmelCase ,) lowerCamelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): if latents is None: lowerCamelCase__ = randn_tensor(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowerCamelCase__ = latents.to(_lowerCAmelCase ) lowerCamelCase__ = latents * scheduler.init_noise_sigma return latents def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,): lowerCamelCase__ = len(_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else 1 # get prompt text embeddings lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,truncation=_lowerCAmelCase ,max_length=77 ,return_attention_mask=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = text_inputs.input_ids lowerCamelCase__ = self.tokenizer(_lowerCAmelCase ,padding="""longest""" ,return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase__ = text_input_ids.to(_lowerCAmelCase ) lowerCamelCase__ = text_inputs.attention_mask.to(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = self.text_encoder( input_ids=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) lowerCamelCase__ = prompt_embeds.repeat_interleave(_lowerCAmelCase ,dim=0 ) lowerCamelCase__ = text_encoder_hidden_states.repeat_interleave(_lowerCAmelCase ,dim=0 ) lowerCamelCase__ = text_mask.repeat_interleave(_lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ = 42 if negative_prompt is None: lowerCamelCase__ = [""""""] * batch_size elif type(_lowerCAmelCase ) is not type(_lowerCAmelCase ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase )} !=''' F''' {type(_lowerCAmelCase )}.''' ) elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [negative_prompt] elif batch_size != len(_lowerCAmelCase ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowerCamelCase__ = negative_prompt lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=77 ,truncation=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = uncond_input.input_ids.to(_lowerCAmelCase ) lowerCamelCase__ = uncond_input.attention_mask.to(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = self.text_encoder( input_ids=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ = negative_prompt_embeds.shape[1] lowerCamelCase__ = negative_prompt_embeds.repeat(1 ,_lowerCAmelCase ) lowerCamelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,_lowerCAmelCase ) lowerCamelCase__ = uncond_text_encoder_hidden_states.shape[1] lowerCamelCase__ = uncond_text_encoder_hidden_states.repeat(1 ,_lowerCAmelCase ,1 ) lowerCamelCase__ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,_lowerCAmelCase ,-1 ) lowerCamelCase__ = uncond_text_mask.repeat_interleave(_lowerCAmelCase ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowerCamelCase__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowerCamelCase__ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def UpperCamelCase_ ( self ,_lowerCAmelCase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCamelCase__ = torch.device(F'''cuda:{gpu_id}''' ) lowerCamelCase__ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" ,"""0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCamelCase__ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" ,silence_dtype_warnings=_lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase__ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowerCamelCase__ , lowerCamelCase__ = cpu_offload_with_hook(_lowerCAmelCase ,_lowerCAmelCase ,prev_module_hook=_lowerCAmelCase ) if self.safety_checker is not None: lowerCamelCase__ , lowerCamelCase__ = cpu_offload_with_hook(self.safety_checker ,_lowerCAmelCase ,prev_module_hook=_lowerCAmelCase ) # We'll offload the last model manually. lowerCamelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase_ ( self ): if not hasattr(self.unet ,"""_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase ,"""_hf_hook""" ) and hasattr(module._hf_hook ,"""execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 1_00 ,_lowerCAmelCase = 4.0 ,_lowerCAmelCase = 1 ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,): if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = 1 elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = len(_lowerCAmelCase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase )}''' ) lowerCamelCase__ = self._execution_device lowerCamelCase__ = batch_size * num_images_per_prompt lowerCamelCase__ = guidance_scale > 1.0 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._encode_prompt( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = torch.cat(_lowerCAmelCase ,dim=0 ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = torch.cat(_lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ = image_embeds.repeat_interleave(_lowerCAmelCase ,dim=0 ) lowerCamelCase__ = negative_image_embeds.repeat_interleave(_lowerCAmelCase ,dim=0 ) lowerCamelCase__ = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=_lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase ,device=_lowerCAmelCase ) lowerCamelCase__ = self.scheduler.timesteps lowerCamelCase__ = self.unet.config.in_channels lowerCamelCase__ , lowerCamelCase__ = get_new_h_w(_lowerCAmelCase ,_lowerCAmelCase ,self.movq_scale_factor ) # create initial latent lowerCamelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,self.scheduler ,) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} lowerCamelCase__ = self.unet( sample=_lowerCAmelCase ,timestep=_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ,added_cond_kwargs=_lowerCAmelCase ,return_dict=_lowerCAmelCase ,)[0] if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ = noise_pred.split(latents.shape[1] ,dim=1 ) lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ , lowerCamelCase__ = variance_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase__ = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"""variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase__ , lowerCamelCase__ = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ = self.scheduler.step( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,generator=_lowerCAmelCase ,).prev_sample # post-processing lowerCamelCase__ = self.movq.decode(_lowerCAmelCase ,force_not_quantize=_lowerCAmelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowerCamelCase__ = image * 0.5 + 0.5 lowerCamelCase__ = image.clamp(0 ,1 ) lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
9
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets UpperCamelCase : List[Any] = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCamelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' UpperCamelCase : Tuple = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCamelCase__ (datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" ,id="""sequence""" ) ,id="""references""" ), } ) ,codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] ,reference_urls=[ """https://github.com/m-popovic/chrF""", ] ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = CHRF.CHAR_ORDER ,_lowerCAmelCase = CHRF.WORD_ORDER ,_lowerCAmelCase = CHRF.BETA ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,): lowerCamelCase__ = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowerCamelCase__ = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] lowerCamelCase__ = CHRF(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = sb_chrf.corpus_score(_lowerCAmelCase ,_lowerCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
9
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase ) lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
1
'''simple docstring''' from datetime import datetime import requests def A__ ( __lowerCAmelCase : str ): lowerCamelCase__ = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" lowerCamelCase__ = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__lowerCAmelCase ).content if __name__ == "__main__": UpperCamelCase : str = input('Enter Video/IGTV url: ').strip() UpperCamelCase : str = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F'Done. Video saved to disk as {file_name}.')
9
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ): lowerCamelCase__ = "" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ): lowerCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowerCAmelCase ) return decoded def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = [] for key in product(__lowerCAmelCase , repeat=3 ): lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase ) if encoded is not None: possibles.append(__lowerCAmelCase ) return possibles def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ): return [possible for possible in possibles if common_word in possible.lower()] def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" ) lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )] lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: break lowerCamelCase__ = possibles[0] return sum(ord(__lowerCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
9
1
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): lowerCamelCase__ = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert("""RGB""" ) lowerCamelCase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) lowerCamelCase__ = transform(__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) return image def A__ ( __lowerCAmelCase : Tuple ): if "visual_encoder" in key: lowerCamelCase__ = re.sub("""visual_encoder*""" , """vision_model.encoder""" , __lowerCAmelCase ) if "blocks" in key: lowerCamelCase__ = re.sub(R"""blocks""" , """layers""" , __lowerCAmelCase ) if "attn" in key: lowerCamelCase__ = re.sub(R"""attn""" , """self_attn""" , __lowerCAmelCase ) if "norm1" in key: lowerCamelCase__ = re.sub(R"""norm1""" , """layer_norm1""" , __lowerCAmelCase ) if "norm2" in key: lowerCamelCase__ = re.sub(R"""norm2""" , """layer_norm2""" , __lowerCAmelCase ) if "encoder.norm" in key: lowerCamelCase__ = re.sub(R"""encoder.norm""" , """post_layernorm""" , __lowerCAmelCase ) if "encoder.patch_embed.proj" in key: lowerCamelCase__ = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , __lowerCAmelCase ) if "encoder.pos_embed" in key: lowerCamelCase__ = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , __lowerCAmelCase ) if "encoder.cls_token" in key: lowerCamelCase__ = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , __lowerCAmelCase ) if "self_attn" in key: lowerCamelCase__ = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , __lowerCAmelCase ) return key @torch.no_grad() def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=None ): if config_path is not None: lowerCamelCase__ = BlipConfig.from_pretrained(__lowerCAmelCase ) else: lowerCamelCase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowerCamelCase__ = BlipForConditionalGeneration(__lowerCAmelCase ).eval() lowerCamelCase__ = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" lowerCamelCase__ = blip_decoder(pretrained=__lowerCAmelCase , image_size=384 , vit="""base""" ) lowerCamelCase__ = pt_model.eval() lowerCamelCase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase__ = modified_state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = value hf_model.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = 384 lowerCamelCase__ = load_demo_image(image_size=__lowerCAmelCase , device="""cpu""" ) lowerCamelCase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCamelCase__ = tokenizer(["""a picture of"""] ).input_ids lowerCamelCase__ = hf_model.generate(__lowerCAmelCase , __lowerCAmelCase ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowerCamelCase__ = hf_model.generate(__lowerCAmelCase ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__lowerCAmelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowerCamelCase__ = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) lowerCamelCase__ = blip_vqa(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit="""base""" ) vqa_model.eval() lowerCamelCase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase__ = modified_state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = value lowerCamelCase__ = BlipForQuestionAnswering(__lowerCAmelCase ) hf_vqa_model.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = ["""How many dogs are in this image?"""] lowerCamelCase__ = tokenizer(__lowerCAmelCase , return_tensors="""pt""" ).input_ids lowerCamelCase__ = hf_vqa_model.generate(__lowerCAmelCase , __lowerCAmelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) lowerCamelCase__ = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" lowerCamelCase__ = blip_itm(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit="""base""" ) itm_model.eval() lowerCamelCase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase__ = modified_state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = value lowerCamelCase__ = BlipForImageTextRetrieval(__lowerCAmelCase ) lowerCamelCase__ = ["""A picture of a woman with a dog sitting in a beach"""] lowerCamelCase__ = tokenizer( __lowerCAmelCase , return_tensors="""pt""" , padding="""max_length""" , truncation=__lowerCAmelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__lowerCAmelCase ) hf_itm_model.eval() lowerCamelCase__ = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) lowerCamelCase__ = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCamelCase : int = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
9
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A__ ( __lowerCAmelCase : Dict ): lowerCamelCase__ = FileLock(str(tmpdir / """foo.lock""" ) ) lowerCamelCase__ = FileLock(str(tmpdir / """foo.lock""" ) ) lowerCamelCase__ = 0.01 with locka.acquire(): with pytest.raises(__lowerCAmelCase ): lowerCamelCase__ = time.time() locka.acquire(__lowerCAmelCase ) assert time.time() - _start > timeout def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = """a""" * 1000 + """.lock""" lowerCamelCase__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(__lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 lowerCamelCase__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCAmelCase ): locka.acquire(0 )
9
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Tuple ): lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) lowerCamelCase__ = emb.weight.data return lin_layer def A__ ( __lowerCAmelCase : Dict ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] lowerCamelCase__ = mam_aaa["""model"""] remove_ignore_keys_(__lowerCAmelCase ) lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowerCamelCase__ = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""] lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowerCamelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase : Tuple = parser.parse_args() UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
9
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = KandinskyInpaintPipeline _UpperCamelCase = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _UpperCamelCase = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _UpperCamelCase = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCamelCase = False @property def UpperCamelCase_ ( self ): return 32 @property def UpperCamelCase_ ( self ): return 32 @property def UpperCamelCase_ ( self ): return self.time_input_dim @property def UpperCamelCase_ ( self ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self ): return 1_00 @property def UpperCamelCase_ ( self ): lowerCamelCase__ = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowerCamelCase__ = MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=10_05 ,) lowerCamelCase__ = MultilingualCLIP(_lowerCAmelCase ) lowerCamelCase__ = text_encoder.eval() return text_encoder @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowerCamelCase__ = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCamelCase__ = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def UpperCamelCase_ ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowerCamelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase_ ( self ): lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = self.dummy_tokenizer lowerCamelCase__ = self.dummy_unet lowerCamelCase__ = self.dummy_movq lowerCamelCase__ = DDIMScheduler( num_train_timesteps=10_00 ,beta_schedule="""linear""" ,beta_start=0.0_0085 ,beta_end=0.012 ,clip_sample=_lowerCAmelCase ,set_alpha_to_one=_lowerCAmelCase ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_lowerCAmelCase ,) lowerCamelCase__ = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=0 ): lowerCamelCase__ = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(_lowerCAmelCase ) # create init_image lowerCamelCase__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask lowerCamelCase__ = np.ones((64, 64) ,dtype=np.floataa ) lowerCamelCase__ = 0 if str(_lowerCAmelCase ).startswith("""mps""" ): lowerCamelCase__ = torch.manual_seed(_lowerCAmelCase ) else: lowerCamelCase__ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCamelCase__ = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = """cpu""" lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**_lowerCAmelCase ) lowerCamelCase__ = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCamelCase__ = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) lowerCamelCase__ = output.images lowerCamelCase__ = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) ,return_dict=_lowerCAmelCase ,)[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def UpperCamelCase_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ): lowerCamelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCamelCase__ = np.ones((7_68, 7_68) ,dtype=np.floataa ) lowerCamelCase__ = 0 lowerCamelCase__ = """a hat""" lowerCamelCase__ = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) lowerCamelCase__ = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" ,torch_dtype=torch.floataa ) lowerCamelCase__ = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCamelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ = pipe_prior( _lowerCAmelCase ,generator=_lowerCAmelCase ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() lowerCamelCase__ = pipeline( _lowerCAmelCase ,image=_lowerCAmelCase ,mask_image=_lowerCAmelCase ,image_embeds=_lowerCAmelCase ,negative_image_embeds=_lowerCAmelCase ,generator=_lowerCAmelCase ,num_inference_steps=1_00 ,height=7_68 ,width=7_68 ,output_type="""np""" ,) lowerCamelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowerCAmelCase ,_lowerCAmelCase )
9
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( __lowerCAmelCase : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def A__ ( __lowerCAmelCase : str ): # word like '180' or '身高' or '神' for char in word: lowerCamelCase__ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = set() for token in tokens: lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowerCamelCase__ = list(__lowerCAmelCase ) return word_list def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ): if not chinese_word_set: return bert_tokens lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowerCamelCase__ = bert_tokens lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase ) while start < end: lowerCamelCase__ = True if is_chinese(bert_word[start] ): lowerCamelCase__ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowerCamelCase__ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase__ = """##""" + bert_word[j] lowerCamelCase__ = start + i lowerCamelCase__ = False break if single_word: start += 1 return bert_word def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ): lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = [] for id in input_ids: lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowerCamelCase__ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def A__ ( __lowerCAmelCase : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Tuple = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCamelCase : List[str] = parser.parse_args() main(args)
9
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A__ ( __lowerCAmelCase : Union[str, Any] ): if hor == 128: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 64, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase__ = model.state_dict() lowerCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase__ = model lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
9
1
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A__ ( __lowerCAmelCase : Any ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A__ ( ): with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase__ = [1, 2, 3] with pytest.raises(__lowerCAmelCase ): with parallel_backend("""unsupported backend""" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=2 ) with pytest.raises(__lowerCAmelCase ): with parallel_backend("""unsupported backend""" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = [1, 2] lowerCamelCase__ = {"""a""": 1, """b""": 2} lowerCamelCase__ = {"""a""": [1, 2], """b""": [3, 4]} lowerCamelCase__ = {"""a""": {"""1""": 1}, """b""": 2} lowerCamelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} lowerCamelCase__ = [2, 3] lowerCamelCase__ = {"""a""": 2, """b""": 3} lowerCamelCase__ = {"""a""": [2, 3], """b""": [4, 5]} lowerCamelCase__ = {"""a""": {"""1""": 2}, """b""": 3} lowerCamelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa
9
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,): lowerCamelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } lowerCamelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase__ = token_dict["""token"""] lowerCamelCase__ = Tokenizer(Unigram() ) lowerCamelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ), normalizers.Lowercase(), ] ) lowerCamelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ), pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,) lowerCamelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [files] self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ): lowerCamelCase__ = json.loads(self._tokenizer.to_str() ) lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""] lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
9
1
'''simple docstring''' from collections import deque def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = len(__lowerCAmelCase ) lowerCamelCase__ = deque() lowerCamelCase__ = [False for _ in range(__lowerCAmelCase )] lowerCamelCase__ = [-1 for _ in range(__lowerCAmelCase )] lowerCamelCase__ = index_of[:] def strong_connect(__lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ): lowerCamelCase__ = index # the number when this node is seen lowerCamelCase__ = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) lowerCamelCase__ = True for w in g[v]: if index_of[w] == -1: lowerCamelCase__ = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase__ = [] lowerCamelCase__ = stack.pop() lowerCamelCase__ = False component.append(__lowerCAmelCase ) while w != v: lowerCamelCase__ = stack.pop() lowerCamelCase__ = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index lowerCamelCase__ = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test UpperCamelCase : Dict = 7 UpperCamelCase : Dict = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCamelCase : str = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCamelCase : List[str] = [(u, v) for u, v in zip(source, target)] UpperCamelCase : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
9
'''simple docstring''' from __future__ import annotations import math def A__ ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCamelCase__ = [] for num in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ = odd_composites[num] - 2 * i * i if is_prime(__lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__lowerCAmelCase ) == n: return list_nums return [] def A__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
9
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,): lowerCamelCase__ = parent lowerCamelCase__ = 13 lowerCamelCase__ = 7 lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = 99 lowerCamelCase__ = 32 lowerCamelCase__ = 2 lowerCamelCase__ = 4 lowerCamelCase__ = 37 lowerCamelCase__ = """gelu""" lowerCamelCase__ = 0.1 lowerCamelCase__ = 0.1 lowerCamelCase__ = 5_12 lowerCamelCase__ = 16 lowerCamelCase__ = 2 lowerCamelCase__ = 0.02 lowerCamelCase__ = 3 lowerCamelCase__ = 4 lowerCamelCase__ = None def UpperCamelCase_ ( self ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_choices ) lowerCamelCase__ = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = self.prepare_config_and_inputs() lowerCamelCase__ = True lowerCamelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFEsmModel(config=_lowerCAmelCase ) lowerCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = [input_ids, input_mask] lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): lowerCamelCase__ = True lowerCamelCase__ = TFEsmModel(config=_lowerCAmelCase ) lowerCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = [input_ids, input_mask] lowerCamelCase__ = model(_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ) # Also check the case where encoder outputs are not passed lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFEsmForMaskedLM(config=_lowerCAmelCase ) lowerCamelCase__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFEsmForTokenClassification(config=_lowerCAmelCase ) lowerCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _UpperCamelCase = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFEsmModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFEsmModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase_ ( self ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase__ = model.get_bias() assert isinstance(_lowerCAmelCase ,_lowerCAmelCase ) for k, v in name.items(): assert isinstance(_lowerCAmelCase ,tf.Variable ) else: lowerCamelCase__ = model.get_output_embeddings() assert x is None lowerCamelCase__ = model.get_bias() assert name is None @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowerCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ = model(_lowerCAmelCase )[0] lowerCamelCase__ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,_lowerCAmelCase ) # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-2 ) ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowerCamelCase__ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase__ = model(_lowerCAmelCase )[0] # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
9
'''simple docstring''' def A__ ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
9
1
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,**_lowerCAmelCase ): super().__init__(**_lowerCAmelCase ) requires_backends(self ,"""vision""" ) requires_backends(self ,"""torch""" ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): lowerCamelCase__ = {} lowerCamelCase__ = {} lowerCamelCase__ = {} # preprocess args if "points_per_batch" in kwargs: lowerCamelCase__ = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: lowerCamelCase__ = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: lowerCamelCase__ = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: lowerCamelCase__ = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: lowerCamelCase__ = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: lowerCamelCase__ = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: lowerCamelCase__ = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: lowerCamelCase__ = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: lowerCamelCase__ = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: lowerCamelCase__ = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: lowerCamelCase__ = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: lowerCamelCase__ = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self ,_lowerCAmelCase ,*_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,**_lowerCAmelCase ): return super().__call__(_lowerCAmelCase ,*_lowerCAmelCase ,num_workers=_lowerCAmelCase ,batch_size=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=64 ,_lowerCAmelCase = 0 ,_lowerCAmelCase = 5_12 / 15_00 ,_lowerCAmelCase = 32 ,_lowerCAmelCase = 1 ,): lowerCamelCase__ = load_image(_lowerCAmelCase ) lowerCamelCase__ = self.image_processor.size["""longest_edge"""] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.image_processor.generate_crop_boxes( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": lowerCamelCase__ = self.get_inference_context() with inference_context(): lowerCamelCase__ = self._ensure_tensor_on_device(_lowerCAmelCase ,device=self.device ) lowerCamelCase__ = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) lowerCamelCase__ = image_embeddings lowerCamelCase__ = grid_points.shape[1] lowerCamelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = grid_points[:, i : i + points_per_batch, :, :] lowerCamelCase__ = input_labels[:, i : i + points_per_batch] lowerCamelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=0.88 ,_lowerCAmelCase=0.95 ,_lowerCAmelCase=0 ,_lowerCAmelCase=1 ,): lowerCamelCase__ = model_inputs.pop("""input_boxes""" ) lowerCamelCase__ = model_inputs.pop("""is_last""" ) lowerCamelCase__ = model_inputs.pop("""original_sizes""" ).tolist() lowerCamelCase__ = model_inputs.pop("""reshaped_input_sizes""" ).tolist() lowerCamelCase__ = self.model(**_lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowerCamelCase__ = model_outputs["""pred_masks"""] lowerCamelCase__ = self.image_processor.post_process_masks( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,binarize=_lowerCAmelCase ) lowerCamelCase__ = model_outputs["""iou_scores"""] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.image_processor.filter_masks( masks[0] ,iou_scores[0] ,original_sizes[0] ,input_boxes[0] ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=0.7 ,): lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) lowerCamelCase__ = torch.cat(_lowerCAmelCase ) lowerCamelCase__ = torch.cat(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.image_processor.post_process_for_mask_generation( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = defaultdict(_lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_lowerCAmelCase ) lowerCamelCase__ = {} if output_rle_mask: lowerCamelCase__ = rle_mask if output_bboxes_mask: lowerCamelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
9
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCamelCase : Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } UpperCamelCase : List[Any] = { 'camembert-base': 5_12, } UpperCamelCase : List[str] = '▁' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowerCamelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = [] lowerCamelCase__ = """""" lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : List[Any] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = R"""\w+[.]\d+""" lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowerCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) lowerCamelCase__ = flatten_dict(__lowerCAmelCase ) lowerCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowerCamelCase__ = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
9
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = ['pixel_values'] def __init__( self ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = PILImageResampling.BICUBIC ,_lowerCAmelCase = True ,_lowerCAmelCase = 1 / 2_55 ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = True ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = size if size is not None else {"""height""": 3_84, """width""": 3_84} lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = resample lowerCamelCase__ = do_rescale lowerCamelCase__ = rescale_factor lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase__ = do_convert_rgb def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = PILImageResampling.BICUBIC ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) lowerCamelCase__ = (size["""height"""], size["""width"""]) return resize(_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): return rescale(_lowerCAmelCase ,scale=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): return normalize(_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = ChannelDimension.FIRST ,**_lowerCAmelCase ,): lowerCamelCase__ = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ = resample if resample is not None else self.resample lowerCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ = image_std if image_std is not None else self.image_std lowerCamelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase__ = size if size is not None else self.size lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) lowerCamelCase__ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase__ = [convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase__ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase__ = [self.resize(image=_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ) for image in images] if do_rescale: lowerCamelCase__ = [self.rescale(image=_lowerCAmelCase ,scale=_lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase__ = [self.normalize(image=_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ) for image in images] lowerCamelCase__ = [to_channel_dimension_format(_lowerCAmelCase ,_lowerCAmelCase ) for image in images] lowerCamelCase__ = BatchFeature(data={"""pixel_values""": images} ,tensor_type=_lowerCAmelCase ) return encoded_outputs
9
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ): lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
9
1
'''simple docstring''' def A__ ( __lowerCAmelCase : list ): lowerCamelCase__ = 0 while len(__lowerCAmelCase ) > 1: lowerCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): lowerCamelCase__ = files.index(min(__lowerCAmelCase ) ) temp += files[min_index] files.pop(__lowerCAmelCase ) files.append(__lowerCAmelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' from math import factorial UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 , __lowerCAmelCase ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCAmelCase ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
9
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge UpperCamelCase : str = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] UpperCamelCase : List[str] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def A__ ( ): lowerCamelCase__ = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def A__ ( ): lowerCamelCase__ = """rougeLsum""" lowerCamelCase__ = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] lowerCamelCase__ = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def A__ ( ): lowerCamelCase__ = ["""rouge1""", """rouge2""", """rougeL"""] lowerCamelCase__ = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) lowerCamelCase__ = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) assert score_sep == score_no_sep def A__ ( ): lowerCamelCase__ = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] lowerCamelCase__ = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) == calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] lowerCamelCase__ = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] lowerCamelCase__ = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=["""rougeLsum"""] , newline_sep=__lowerCAmelCase )["""rougeLsum"""] lowerCamelCase__ = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def A__ ( ): lowerCamelCase__ = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) lowerCamelCase__ = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
9
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase : Optional[Any] = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase : Optional[int] = '\n{0} = None\n' UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def A__ ( ): with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase__ = 0 lowerCamelCase__ = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[int]=None ): if backend_specific_objects is None: lowerCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) lowerCamelCase__ = dummy_file return dummy_files def A__ ( __lowerCAmelCase : List[str]=False ): lowerCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" ) lowerCamelCase__ = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
9
1
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = inspect.getfile(accelerate.test_utils ) lowerCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) lowerCamelCase__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCamelCase_ ( self ): lowerCamelCase__ = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() lowerCamelCase__ = [sys.executable] + distributed_args execute_subprocess_async(_lowerCAmelCase ,env=os.environ.copy() )
9
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = GPTSwaTokenizer _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """This is a test""" lowerCamelCase__ = """This is a test""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = """<s>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(_lowerCAmelCase ) ,20_00 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,20_00 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,) # fmt: on lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCamelCase__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
9
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = [] lowerCamelCase__ = 11 lowerCamelCase__ = int("""1""" + """0""" * digit_len ) for num in range(__lowerCAmelCase , __lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 lowerCamelCase__ = 10 return solutions def A__ ( __lowerCAmelCase : int = 2 ): lowerCamelCase__ = 1.0 for fraction in fraction_list(__lowerCAmelCase ): lowerCamelCase__ = Fraction(__lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
9
'''simple docstring''' from manim import * class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""CPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(1 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""GPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""Model""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,) lowerCamelCase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(_lowerCAmelCase ): lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() lowerCamelCase__ = 0.46 / 4 lowerCamelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
9
1
'''simple docstring''' def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 0 while number > 0: lowerCamelCase__ = number % 10 sum_of_digits += last_digit lowerCamelCase__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def A__ ( __lowerCAmelCase : int = 100 ): lowerCamelCase__ = factorial(__lowerCAmelCase ) lowerCamelCase__ = split_and_add(__lowerCAmelCase ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
9
'''simple docstring''' UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase : list[bool | None] = [None] * 10_00_00_00 UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = False def A__ ( __lowerCAmelCase : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) ) lowerCamelCase__ = number_chain while number < 1000_0000: lowerCamelCase__ = number_chain number *= 10 return number_chain def A__ ( __lowerCAmelCase : int = 1000_0000 ): for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
9
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" ,_lowerCAmelCase ,) super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
9
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'donut-swin' _UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(_lowerCAmelCase ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
9
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase : Tuple = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_lowerCAmelCase ,) super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
9
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase : Optional[Any] = ['small', 'medium', 'large'] UpperCamelCase : Dict = 'lm_head.decoder.weight' UpperCamelCase : int = 'lm_head.weight' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = torch.load(__lowerCAmelCase ) lowerCamelCase__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) UpperCamelCase : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') UpperCamelCase : str = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
9
1
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCamelCase__ : '''simple docstring''' def __init__( self ): lowerCamelCase__ = """""" lowerCamelCase__ = """""" lowerCamelCase__ = [] lowerCamelCase__ = 0 lowerCamelCase__ = 2_56 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = cva.imread(_lowerCAmelCase ,0 ) lowerCamelCase__ = copy.deepcopy(self.img ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] ,label="""x""" ) lowerCamelCase__ = np.sum(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): lowerCamelCase__ = x[i] / self.k self.sk += prk lowerCamelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCamelCase__ = int(last % last ) lowerCamelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_lowerCAmelCase ) lowerCamelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCamelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCamelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCamelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" ,self.img ) def UpperCamelCase_ ( self ): plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] ) def UpperCamelCase_ ( self ): cva.imshow("""Output-Image""" ,self.img ) cva.imshow("""Input-Image""" ,self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase : int = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') UpperCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
9
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = mask_ratio lowerCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ = (image_size // patch_size) ** 2 lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) # expected sequence length = num_patches lowerCamelCase__ = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ = 1 lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) lowerCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = outputs_dict[0].numpy() lowerCamelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCAmelCase ): lowerCamelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCAmelCase ): lowerCamelCase__ = v.numpy() else: lowerCamelCase__ = np.array(_lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.constant(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ = tf_noise super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCAmelCase ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase ) } lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCamelCase__ = main_layer_class(_lowerCAmelCase ) lowerCamelCase__ = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) ) lowerCamelCase__ = model(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" ) model.save(_lowerCAmelCase ) lowerCamelCase__ = tf.keras.models.load_model( _lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCAmelCase ,tf.keras.Model ) lowerCamelCase__ = model(_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = outputs.last_hidden_state.numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = outputs.logits.numpy() lowerCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase ) lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = after_outputs["""logits"""].numpy() lowerCamelCase__ = 0 lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1E-5 ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCAmelCase ) lowerCamelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCamelCase__ = model_class.from_config(model.config ) lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ = ViTMAEConfig() lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
9
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
9
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,): lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18} lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = min_resolution lowerCamelCase__ = max_resolution lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean lowerCamelCase__ = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowerCamelCase__ = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,Image.Image ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,np.ndarray ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,torch.Tensor ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
9
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = R"""\w+[.]\d+""" lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowerCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) lowerCamelCase__ = flatten_dict(__lowerCAmelCase ) lowerCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowerCamelCase__ = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
9
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
1
'''simple docstring''' UpperCamelCase : Tuple = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
9
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase ) lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
1
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ): lowerCamelCase__ = "" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ): lowerCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowerCAmelCase ) return decoded def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = [] for key in product(__lowerCAmelCase , repeat=3 ): lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase ) if encoded is not None: possibles.append(__lowerCAmelCase ) return possibles def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ): return [possible for possible in possibles if common_word in possible.lower()] def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" ) lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )] lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: break lowerCamelCase__ = possibles[0] return sum(ord(__lowerCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
9
1
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = GPTSwaTokenizer _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """This is a test""" lowerCamelCase__ = """This is a test""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = """<s>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(_lowerCAmelCase ) ,20_00 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,20_00 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,) # fmt: on lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCamelCase__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
9
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
1