code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar SCREAMING_SNAKE_CASE = TypeVar('T') class UpperCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : bool = True ) -> None: '''simple docstring''' lowercase : dict[T, list[T]] ={} # dictionary of lists lowercase : Dict =directed def A__ ( self : List[str] , UpperCAmelCase : T , UpperCAmelCase : T ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase ) self.adj_list[destination_vertex].append(UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase ) lowercase : Tuple =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(UpperCAmelCase ) lowercase : Any =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase : int =[destination_vertex] lowercase : List[str] =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase ) lowercase : List[Any] =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase : Optional[int] =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase : Union[str, Any] =[destination_vertex] lowercase : int =[] return self def __repr__( self : str ) -> str: '''simple docstring''' return pformat(self.adj_list )
8
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
1
'''simple docstring''' def lowercase_ ( __A : int = 5_0 ) -> int: """simple docstring""" lowercase : str =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''imagegpt''' UpperCamelCase_ = ['''past_key_values'''] UpperCamelCase_ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[str] , UpperCAmelCase : Union[str, Any]=512 + 1 , UpperCAmelCase : str=32 * 32 , UpperCAmelCase : Union[str, Any]=512 , UpperCAmelCase : Optional[int]=24 , UpperCAmelCase : List[str]=8 , UpperCAmelCase : Dict=None , UpperCAmelCase : Dict="quick_gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=1e-5 , UpperCAmelCase : Tuple=0.0_2 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=False , UpperCAmelCase : Any=False , UpperCAmelCase : Any=False , **UpperCAmelCase : int , ) -> Any: '''simple docstring''' lowercase : Optional[Any] =vocab_size lowercase : str =n_positions lowercase : Dict =n_embd lowercase : Optional[Any] =n_layer lowercase : Union[str, Any] =n_head lowercase : List[str] =n_inner lowercase : Dict =activation_function lowercase : List[Any] =resid_pdrop lowercase : Optional[Any] =embd_pdrop lowercase : Optional[Any] =attn_pdrop lowercase : Any =layer_norm_epsilon lowercase : List[str] =initializer_range lowercase : int =scale_attn_weights lowercase : Optional[int] =use_cache lowercase : Optional[Any] =scale_attn_by_inverse_layer_idx lowercase : List[str] =reorder_and_upcast_attn lowercase : Optional[int] =tie_word_embeddings super().__init__(tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class UpperCAmelCase_ ( __A ): """simple docstring""" @property def A__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def A__ ( self : Union[str, Any] , UpperCAmelCase : "FeatureExtractionMixin" , UpperCAmelCase : int = 1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 32 , ) -> Mapping[str, Any]: '''simple docstring''' lowercase : Union[str, Any] =self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : List[Any] =dict(preprocessor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) ) return inputs
8
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''swinv2''' UpperCamelCase_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , UpperCAmelCase : str=224 , UpperCAmelCase : str=4 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Dict=96 , UpperCAmelCase : List[Any]=[2, 2, 6, 2] , UpperCAmelCase : Dict=[3, 6, 12, 24] , UpperCAmelCase : Tuple=7 , UpperCAmelCase : Tuple=4.0 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Dict=False , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : Union[str, Any]=1e-5 , UpperCAmelCase : List[Any]=32 , **UpperCAmelCase : Dict , ) -> Dict: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : int =image_size lowercase : Any =patch_size lowercase : List[str] =num_channels lowercase : Optional[int] =embed_dim lowercase : List[str] =depths lowercase : Tuple =len(UpperCAmelCase ) lowercase : List[Any] =num_heads lowercase : List[str] =window_size lowercase : Union[str, Any] =mlp_ratio lowercase : List[Any] =qkv_bias lowercase : List[Any] =hidden_dropout_prob lowercase : Optional[int] =attention_probs_dropout_prob lowercase : Tuple =drop_path_rate lowercase : List[Any] =hidden_act lowercase : List[str] =use_absolute_embeddings lowercase : List[str] =layer_norm_eps lowercase : Optional[int] =initializer_range lowercase : Any =encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase : str =int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) lowercase : str =(0, 0, 0, 0)
8
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def lowercase_ ( __A : Optional[int] , __A : Optional[int] , __A : Tuple=None ) -> List[str]: """simple docstring""" if rng is None: lowercase : str =random.Random() lowercase : str =1 for dim in shape: total_dims *= dim lowercase : int =[] for _ in range(__A ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowercase : Optional[int] =np.array(__A , dtype=jnp.intaa ).reshape(__A ) return output def lowercase_ ( __A : Optional[int] , __A : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] =ids_tensor(__A , vocab_size=2 , rng=__A ) # make sure that at least one token is attended to for each batch lowercase : Optional[int] =1 return attn_mask @require_flax class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = () def A__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase , lowercase : str =self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowercase : Dict =2 lowercase : List[str] =inputs['''input_ids'''].shape[-1] // 2 lowercase : Union[str, Any] =inputs['''input_ids'''][:max_batch_size, :sequence_length] lowercase : List[str] =jnp.ones_like(UpperCAmelCase ) lowercase : Optional[Any] =attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowercase : List[Any] =input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowercase : Union[str, Any] =config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : int =self._get_input_ids_and_config() lowercase : Tuple =False lowercase : Tuple =max_length lowercase : Any =0 for model_class in self.all_generative_model_classes: lowercase : List[Any] =model_class(UpperCAmelCase ) lowercase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase : List[Any] =getattr(UpperCAmelCase , UpperCAmelCase ) lowercase : str =pt_model_class(UpperCAmelCase ).eval() lowercase : Tuple =load_flax_weights_in_pytorch_model(UpperCAmelCase , flax_model.params ) lowercase : Any =flax_model.generate(UpperCAmelCase ).sequences lowercase : int =pt_model.generate(torch.tensor(UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowercase : Optional[int] =flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def A__ ( self : List[Any] ) -> int: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Union[str, Any] =self._get_input_ids_and_config() lowercase : Union[str, Any] =False lowercase : Any =max_length for model_class in self.all_generative_model_classes: lowercase : Dict =model_class(UpperCAmelCase ) lowercase : Optional[Any] =model.generate(UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase ) lowercase : Union[str, Any] =jit(model.generate ) lowercase : Optional[int] =jit_generate(UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A__ ( self : Any ) -> int: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : List[Any] =self._get_input_ids_and_config() lowercase : List[Any] =True lowercase : Tuple =max_length for model_class in self.all_generative_model_classes: lowercase : str =model_class(UpperCAmelCase ) lowercase : int =model.generate(UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase ) lowercase : List[Any] =jit(model.generate ) lowercase : Dict =jit_generate(UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : List[Any] =self._get_input_ids_and_config() lowercase : Optional[Any] =False lowercase : List[str] =max_length lowercase : List[str] =2 for model_class in self.all_generative_model_classes: lowercase : Union[str, Any] =model_class(UpperCAmelCase ) lowercase : int =model.generate(UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase ) lowercase : Tuple =jit(model.generate ) lowercase : Optional[Any] =jit_generate(UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A__ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : List[str] =self._get_input_ids_and_config() lowercase : int =False lowercase : List[Any] =max_length lowercase : str =2 lowercase : Optional[Any] =2 for model_class in self.all_generative_model_classes: lowercase : Any =model_class(UpperCAmelCase ) lowercase : Optional[int] =model.generate(UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Any =self._get_input_ids_and_config() lowercase : int =True lowercase : Any =max_length lowercase : str =0.8 lowercase : List[str] =10 lowercase : Any =0.3 lowercase : str =1 lowercase : Union[str, Any] =8 lowercase : Optional[Any] =9 for model_class in self.all_generative_model_classes: lowercase : str =model_class(UpperCAmelCase ) lowercase : Union[str, Any] =model.generate(UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase ) lowercase : int =jit(model.generate ) lowercase : List[Any] =jit_generate(UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Dict =self._get_input_ids_and_config() lowercase : Dict =max_length lowercase : Optional[int] =1 lowercase : Union[str, Any] =8 lowercase : Dict =9 for model_class in self.all_generative_model_classes: lowercase : int =model_class(UpperCAmelCase ) lowercase : Optional[Any] =model.generate(UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase ) lowercase : int =jit(model.generate ) lowercase : Tuple =jit_generate(UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Any =self._get_input_ids_and_config() lowercase : Any =max_length lowercase : int =2 lowercase : Any =1 lowercase : List[Any] =8 lowercase : Dict =9 for model_class in self.all_generative_model_classes: lowercase : int =model_class(UpperCAmelCase ) lowercase : List[Any] =model.generate(UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase ) lowercase : str =jit(model.generate ) lowercase : Dict =jit_generate(UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : List[str] =self._get_input_ids_and_config() # pad attention mask on the left lowercase : List[Any] =attention_mask.at[(0, 0)].set(0 ) lowercase : List[Any] =False lowercase : Any =max_length for model_class in self.all_generative_model_classes: lowercase : Any =model_class(UpperCAmelCase ) lowercase : Tuple =model.generate(UpperCAmelCase , attention_mask=UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase ) lowercase : Optional[Any] =jit(model.generate ) lowercase : Union[str, Any] =jit_generate(UpperCAmelCase , attention_mask=UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Optional[int] =self._get_input_ids_and_config() # pad attention mask on the left lowercase : List[str] =attention_mask.at[(0, 0)].set(0 ) lowercase : str =True lowercase : Any =max_length for model_class in self.all_generative_model_classes: lowercase : int =model_class(UpperCAmelCase ) lowercase : Union[str, Any] =model.generate(UpperCAmelCase , attention_mask=UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase ) lowercase : Union[str, Any] =jit(model.generate ) lowercase : Optional[Any] =jit_generate(UpperCAmelCase , attention_mask=UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Any =self._get_input_ids_and_config() # pad attention mask on the left lowercase : int =attention_mask.at[(0, 0)].set(0 ) lowercase : Union[str, Any] =2 lowercase : int =max_length for model_class in self.all_generative_model_classes: lowercase : Union[str, Any] =model_class(UpperCAmelCase ) lowercase : List[Any] =model.generate(UpperCAmelCase , attention_mask=UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase ) lowercase : List[Any] =jit(model.generate ) lowercase : Any =jit_generate(UpperCAmelCase , attention_mask=UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : List[Any] =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) lowercase : int =FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowercase : Optional[Any] ='''Hello world''' lowercase : Optional[int] =tokenizer(UpperCAmelCase , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(UpperCAmelCase , '''do_samples''' ): model.generate(UpperCAmelCase , do_samples=UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(UpperCAmelCase , '''foo''' ): lowercase : Optional[int] ={'''foo''': '''bar'''} model.generate(UpperCAmelCase , **UpperCAmelCase )
8
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from __future__ import annotations def lowercase_ ( __A : int , __A : int ) -> list[list[int]]: """simple docstring""" lowercase : list[list[int]] =[] create_all_state(1 , __A , __A , [] , __A ) return result def lowercase_ ( __A : int , __A : int , __A : int , __A : list[int] , __A : list[list[int]] , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(__A , total_number - level + 2 ): current_list.append(__A ) create_all_state(i + 1 , __A , level - 1 , __A , __A ) current_list.pop() def lowercase_ ( __A : list[list[int]] ) -> None: """simple docstring""" for i in total_list: print(*__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = generate_all_combinations(n, k) print_all_state(total_list)
8
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowercase_ ( __A : str , __A : Any ) -> Union[str, Any]: """simple docstring""" if os.path.exists(__A ): if os.path.exists(os.path.join(__A , '''config.json''' ) ) and os.path.isfile( os.path.join(__A , '''config.json''' ) ): os.remove(os.path.join(__A , '''config.json''' ) ) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''' ) ): os.remove(os.path.join(__A , '''pytorch_model.bin''' ) ) else: os.makedirs(__A ) model.save_pretrained(__A ) def lowercase_ ( __A : int , __A : Any=False ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] =2 if unlogit: lowercase : str =torch.pow(__A , __A ) lowercase : str =p * torch.log(__A ) lowercase : List[str] =0 return -plogp.sum(dim=-1 ) def lowercase_ ( __A : List[str] ) -> int: """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'{x + 1}' for x in range(len(__A ) ) ) ) for row in range(len(__A ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:d}' for x in tensor[row].cpu().data ) ) def lowercase_ ( __A : Tuple , __A : Union[str, Any] , __A : List[str] , __A : Optional[Any]=True , __A : int=True , __A : List[Any]=None , __A : int=False ) -> Optional[Any]: """simple docstring""" lowercase , lowercase : Dict =model.config.num_hidden_layers, model.config.num_attention_heads lowercase : Optional[int] =torch.zeros(__A , __A ).to(args.device ) lowercase : Dict =torch.zeros(__A , __A ).to(args.device ) if head_mask is None: lowercase : List[Any] =torch.ones(__A , __A ).to(args.device ) head_mask.requires_grad_(requires_grad=__A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase : int =None lowercase : str =0.0 lowercase : Dict =0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowercase : Dict =tuple(t.to(args.device ) for t in inputs ) ((lowercase) , ) : int =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase : Union[str, Any] =model(__A , labels=__A , head_mask=__A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase , lowercase , lowercase : int =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A ): lowercase : Any =entropy(attn.detach() , __A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase : Tuple =2 lowercase : Any =torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: lowercase : List[str] =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(__A ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(__A ) logger.info('''Head ranked by importance scores''' ) lowercase : Any =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowercase : Union[str, Any] =torch.arange( head_importance.numel() , device=args.device ) lowercase : int =head_ranks.view_as(__A ) print_ad_tensor(__A ) return attn_entropy, head_importance, total_loss def lowercase_ ( __A : Any , __A : Dict , __A : Optional[Any] ) -> Tuple: """simple docstring""" lowercase , lowercase , lowercase : List[Any] =compute_heads_importance(__A , __A , __A , compute_entropy=__A ) lowercase : Tuple =1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold ) lowercase : Tuple =torch.ones_like(__A ) lowercase : str =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowercase : Any =original_score while current_score >= original_score * args.masking_threshold: lowercase : Optional[int] =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase : Dict =float('''Inf''' ) lowercase : List[Any] =head_importance.view(-1 ).sort()[1] if len(__A ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowercase : List[Any] =current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowercase : Optional[int] =new_head_mask.view(-1 ) lowercase : Optional[Any] =0.0 lowercase : Dict =new_head_mask.view_as(__A ) lowercase : Any =new_head_mask.clone().detach() print_ad_tensor(__A ) # Compute metric and head importance again lowercase , lowercase , lowercase : List[Any] =compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A ) lowercase : Optional[int] =1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('''Final head mask''' ) print_ad_tensor(__A ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowercase_ ( __A : Dict , __A : int , __A : Dict , __A : int ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] =datetime.now() lowercase , lowercase , lowercase : int =compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A ) lowercase : Tuple =1 / loss lowercase : Union[str, Any] =datetime.now() - before_time lowercase : Dict =sum(p.numel() for p in model.parameters() ) lowercase : Tuple ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) ) } for k, v in heads_to_prune.items(): if isinstance(__A , __A ): lowercase : Optional[int] =[ v, ] assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__A ) lowercase : str =sum(p.numel() for p in model.parameters() ) lowercase : Optional[Any] =datetime.now() lowercase , lowercase , lowercase : List[str] =compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) lowercase : Any =1 / loss lowercase : List[str] =datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_0_0 ) save_model(__A , args.output_dir ) def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=__A , default=4_2 ) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) lowercase : str =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase : Optional[Any] =torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowercase : Dict =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowercase : Dict =torch.device('''cuda''' , args.local_rank ) lowercase : Dict =1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowercase : int =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowercase : Union[str, Any] =nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A ) elif args.n_gpu > 1: lowercase : Any =nn.DataParallel(__A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A ) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , __A ) # Prepare dataset lowercase : Union[str, Any] =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowercase : Dict =(torch.from_numpy(__A ),) lowercase : Dict =TensorDataset(*__A ) lowercase : Optional[Any] =RandomSampler(__A ) lowercase : List[Any] =DataLoader(__A , sampler=__A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase : Tuple =mask_heads(__A , __A , __A ) prune_heads(__A , __A , __A , __A ) if __name__ == "__main__": main()
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import requests from bsa import BeautifulSoup def lowercase_ ( __A : str = "AAPL" ) -> str: """simple docstring""" lowercase : int =F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' lowercase : List[Any] =BeautifulSoup(requests.get(__A ).text , '''html.parser''' ) lowercase : Union[str, Any] ='''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
8
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
1
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowercase_ ( __A : Optional[Any] , __A : Tuple , __A : Dict , __A : Optional[int] , __A : List[str] ) -> Dict: """simple docstring""" for attribute in key.split('''.''' ): lowercase : Union[str, Any] =getattr(__A , __A ) if weight_type is not None: lowercase : int =getattr(__A , __A ).shape else: lowercase : str =hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase : List[str] =value elif weight_type == "weight_g": lowercase : Optional[int] =value elif weight_type == "weight_v": lowercase : List[str] =value elif weight_type == "bias": lowercase : str =value else: lowercase : Optional[Any] =value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase_ ( __A : int , __A : List[str] ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] =[] lowercase : int =fairseq_model.state_dict() lowercase : Union[str, Any] =hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase : Optional[Any] =False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) lowercase : Optional[Any] =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase : Any =True if "*" in mapped_key: lowercase : Any =name.split(__A )[0].split('''.''' )[-2] lowercase : int =mapped_key.replace('''*''' , __A ) if "weight_g" in name: lowercase : List[str] ='''weight_g''' elif "weight_v" in name: lowercase : str ='''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: lowercase : int ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : List[Any] ='''weight''' else: lowercase : Optional[int] =None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'Unused weights: {unused_weights}' ) def lowercase_ ( __A : Any , __A : Optional[Any] , __A : Dict , __A : Union[str, Any] , __A : Tuple ) -> Optional[Any]: """simple docstring""" lowercase : Optional[Any] =full_name.split('''conv_layers.''' )[-1] lowercase : Dict =name.split('''.''' ) lowercase : List[str] =int(items[0] ) lowercase : Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase : Optional[int] =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase : Tuple =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase : Union[str, Any] =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase : Optional[Any] =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__A ) @torch.no_grad() def lowercase_ ( __A : Any , __A : Tuple , __A : Dict=None ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =torch.load(__A ) lowercase : Any =WavLMConfigOrig(checkpoint['''cfg'''] ) lowercase : int =WavLMOrig(__A ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: lowercase : Tuple =WavLMConfig.from_pretrained(__A ) else: lowercase : Any =WavLMConfig() lowercase : Dict =WavLMModel(__A ) recursively_load_weights(__A , __A ) hf_wavlm.save_pretrained(__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Dict=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=True , UpperCAmelCase : Tuple=99 , UpperCAmelCase : str=32 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : Any=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : int=4 , UpperCAmelCase : Any=None , ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : List[Any] =13 lowercase : List[str] =7 lowercase : List[str] =True lowercase : Optional[Any] =True lowercase : Dict =True lowercase : Optional[int] =True lowercase : int =99 lowercase : Any =384 lowercase : List[str] =2 lowercase : List[Any] =4 lowercase : Dict =37 lowercase : str ='''gelu''' lowercase : List[str] =0.1 lowercase : Union[str, Any] =0.1 lowercase : Any =512 lowercase : Any =16 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =0.0_2 lowercase : Tuple =3 lowercase : int =4 lowercase : Optional[int] =128 lowercase : Dict =2 lowercase : Optional[int] =9 lowercase : Union[str, Any] =1 lowercase : str =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : List[Any] =None if self.use_input_mask: lowercase : Any =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Dict =None if self.use_token_type_ids: lowercase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : int =None lowercase : str =None lowercase : Dict =None if self.use_labels: lowercase : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : int =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Optional[Any] =ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =TFConvBertModel(config=UpperCAmelCase ) lowercase : Any ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Optional[int] =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : List[str] =TFConvBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : str =TFConvBertForSequenceClassification(config=UpperCAmelCase ) lowercase : List[Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : int =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' lowercase : Optional[Any] =self.num_choices lowercase : Optional[Any] =TFConvBertForMultipleChoice(config=UpperCAmelCase ) lowercase : str =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[str] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' lowercase : List[str] =self.num_labels lowercase : Optional[Any] =TFConvBertForTokenClassification(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : Union[str, Any] =TFConvBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : str ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[Any] =config_and_inputs lowercase : List[Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : List[Any] ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFConvBertModelTester(self ) lowercase : Optional[Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Dict ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : str ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : int ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : Dict ) -> Tuple: '''simple docstring''' lowercase , lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common() lowercase : str =True lowercase : Dict =True if hasattr(UpperCAmelCase , '''use_cache''' ): lowercase : Optional[int] =True lowercase : Dict =getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) lowercase : Tuple =getattr(self.model_tester , '''key_length''' , UpperCAmelCase ) for model_class in self.all_model_classes: lowercase : Tuple =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =model_class(UpperCAmelCase ) lowercase : Any =len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) lowercase : List[Any] =os.path.join(UpperCAmelCase , '''saved_model''' , '''1''' ) lowercase : str =tf.keras.models.load_model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) if self.is_encoder_decoder: lowercase : Tuple =outputs['''encoder_hidden_states'''] lowercase : str =outputs['''encoder_attentions'''] else: lowercase : Optional[Any] =outputs['''hidden_states'''] lowercase : Optional[int] =outputs['''attentions'''] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase : Dict =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def A__ ( self : int ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self : Optional[int] ) -> str: '''simple docstring''' lowercase , lowercase : Dict =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Union[str, Any] =True lowercase : Dict =getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) lowercase : Optional[Any] =getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) lowercase : int =getattr(self.model_tester , '''key_length''' , UpperCAmelCase ) lowercase : List[str] =getattr(self.model_tester , '''key_length''' , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Any ): lowercase : Union[str, Any] =len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) lowercase : Union[str, Any] =outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Union[str, Any] ): lowercase : str =[ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase : Optional[int] =True lowercase : Union[str, Any] =False lowercase : Tuple =model_class(UpperCAmelCase ) lowercase : Optional[int] =model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Dict =len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: lowercase : Dict =model_class(UpperCAmelCase ) lowercase : List[str] =model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase : Any =True lowercase : Union[str, Any] =model_class(UpperCAmelCase ) lowercase : Optional[Any] =model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine lowercase : Union[str, Any] =True lowercase : str =True lowercase : Optional[Any] =model_class(UpperCAmelCase ) lowercase : Dict =model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : Any =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) lowercase : List[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : Dict =model(UpperCAmelCase )[0] lowercase : List[Any] =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Any =tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
1
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Node | None , ) -> None: '''simple docstring''' lowercase : List[Any] =pos_x lowercase : Tuple =pos_y lowercase : Any =(pos_y, pos_x) lowercase : Union[str, Any] =goal_x lowercase : Any =goal_y lowercase : Tuple =g_cost lowercase : Optional[int] =parent lowercase : str =self.calculate_heuristic() lowercase : Optional[Any] =self.g_cost + self.h_cost def A__ ( self : Any ) -> float: '''simple docstring''' lowercase : List[Any] =self.pos_x - self.goal_x lowercase : Dict =self.pos_y - self.goal_y if HEURISTIC == 1: return abs(UpperCAmelCase ) + abs(UpperCAmelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : int , UpperCAmelCase : Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class UpperCAmelCase_ : """simple docstring""" def __init__( self : str , UpperCAmelCase : TPosition , UpperCAmelCase : TPosition ) -> List[Any]: '''simple docstring''' lowercase : List[Any] =Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase ) lowercase : str =Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , UpperCAmelCase ) lowercase : Tuple =[self.start] lowercase : list[Node] =[] lowercase : Optional[int] =False def A__ ( self : int ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase : Optional[Any] =self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(UpperCAmelCase ) self.closed_nodes.append(UpperCAmelCase ) lowercase : Optional[Any] =self.get_successors(UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase ) else: # retrieve the best current path lowercase : List[str] =self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase ) else: self.open_nodes.append(UpperCAmelCase ) return [self.start.pos] def A__ ( self : List[Any] , UpperCAmelCase : Node ) -> list[Node]: '''simple docstring''' lowercase : Optional[Any] =[] for action in delta: lowercase : Optional[int] =parent.pos_x + action[1] lowercase : List[str] =parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase , UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase , ) ) return successors def A__ ( self : Tuple , UpperCAmelCase : Node | None ) -> list[TPosition]: '''simple docstring''' lowercase : Union[str, Any] =node lowercase : Union[str, Any] =[] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase : Tuple =current_node.parent path.reverse() return path class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict , UpperCAmelCase : TPosition , UpperCAmelCase : TPosition ) -> None: '''simple docstring''' lowercase : List[Any] =AStar(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[Any] =AStar(UpperCAmelCase , UpperCAmelCase ) lowercase : List[str] =False def A__ ( self : Optional[Any] ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowercase : Tuple =self.fwd_astar.open_nodes.pop(0 ) lowercase : Union[str, Any] =self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( UpperCAmelCase , UpperCAmelCase ) self.fwd_astar.closed_nodes.append(UpperCAmelCase ) self.bwd_astar.closed_nodes.append(UpperCAmelCase ) lowercase : Optional[int] =current_bwd_node lowercase : Optional[Any] =current_fwd_node lowercase : Optional[Any] ={ self.fwd_astar: self.fwd_astar.get_successors(UpperCAmelCase ), self.bwd_astar: self.bwd_astar.get_successors(UpperCAmelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(UpperCAmelCase ) else: # retrieve the best current path lowercase : Optional[Any] =astar.open_nodes.pop( astar.open_nodes.index(UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(UpperCAmelCase ) else: astar.open_nodes.append(UpperCAmelCase ) return [self.fwd_astar.start.pos] def A__ ( self : int , UpperCAmelCase : Node , UpperCAmelCase : Node ) -> list[TPosition]: '''simple docstring''' lowercase : Any =self.fwd_astar.retrace_path(UpperCAmelCase ) lowercase : Tuple =self.bwd_astar.retrace_path(UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() lowercase : Optional[int] =fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE = (0, 0) SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = AStar(init, goal) SCREAMING_SNAKE_CASE = a_star.search() SCREAMING_SNAKE_CASE = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
'''simple docstring''' from __future__ import annotations def lowercase_ ( __A : list[int] , __A : list[int] , __A : int ) -> tuple[float, list[float]]: """simple docstring""" lowercase : Dict =list(range(len(__A ) ) ) lowercase : Dict =[v / w for v, w in zip(__A , __A )] index.sort(key=lambda __A : ratio[i] , reverse=__A ) lowercase : float =0 lowercase : list[float] =[0] * len(__A ) for i in index: if weight[i] <= capacity: lowercase : int =1 max_value += value[i] capacity -= weight[i] else: lowercase : Dict =capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int=3 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Dict=3 , UpperCAmelCase : str=10 , UpperCAmelCase : Any=[8, 16, 32, 64] , UpperCAmelCase : int=[1, 1, 2, 1] , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Tuple="relu" , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=["stage2", "stage3", "stage4"] , UpperCAmelCase : int=[2, 3, 4] , UpperCAmelCase : Tuple=1 , ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[int] =parent lowercase : List[Any] =batch_size lowercase : str =image_size lowercase : List[Any] =num_channels lowercase : Union[str, Any] =embeddings_size lowercase : str =hidden_sizes lowercase : str =depths lowercase : Any =is_training lowercase : int =use_labels lowercase : List[Any] =hidden_act lowercase : Any =num_labels lowercase : Optional[Any] =scope lowercase : Optional[Any] =len(UpperCAmelCase ) lowercase : Optional[Any] =out_features lowercase : Dict =out_indices lowercase : List[str] =num_groups def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Dict =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.num_labels ) lowercase : Union[str, Any] =self.get_config() return config, pixel_values, labels def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Any ) -> str: '''simple docstring''' lowercase : Union[str, Any] =BitModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Dict =BitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[Any] =model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : Dict =BitBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[str] =model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase : List[Any] =None lowercase : Union[str, Any] =BitBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : str =model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self : str ) -> int: '''simple docstring''' lowercase : Dict =self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Any =config_and_inputs lowercase : Dict ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCamelCase_ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : Dict =BitModelTester(self ) lowercase : List[Any] =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' return @unittest.skip(reason='''Bit does not output attentions''' ) def A__ ( self : int ) -> str: '''simple docstring''' pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass def A__ ( self : str ) -> int: '''simple docstring''' lowercase , lowercase : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] =model_class(UpperCAmelCase ) lowercase : Any =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Tuple =[*signature.parameters.keys()] lowercase : Optional[int] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase , lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =model_class(config=UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def A__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] ): lowercase : Dict =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Tuple =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : List[Any] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : Optional[Any] =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() lowercase : str =['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase : Union[str, Any] =layer_type lowercase : List[Any] =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : str =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' pass def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A__ ( self : Any ) -> int: '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Union[str, Any] =BitModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase_ ( ) -> Any: """simple docstring""" lowercase : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A__ ( self : int ) -> int: '''simple docstring''' lowercase : Tuple =BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase ) lowercase : Union[str, Any] =self.default_image_processor lowercase : int =prepare_img() lowercase : Union[str, Any] =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase : Tuple =model(**UpperCAmelCase ) # verify the logits lowercase : Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase : List[Any] =torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @require_torch class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (BitBackbone,) if is_torch_available() else () UpperCamelCase_ = BitConfig UpperCamelCase_ = False def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =BitModelTester(self )
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE = logging.getLogger() def lowercase_ ( __A : Path , __A : list ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] ='''\n'''.join(__A ) Path(__A ).open('''w''' ).writelines(__A ) SCREAMING_SNAKE_CASE = 'patrickvonplaten/t5-tiny-random' SCREAMING_SNAKE_CASE = 'sshleifer/bart-tiny-random' SCREAMING_SNAKE_CASE = 'sshleifer/tiny-mbart' SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' lowercase : List[str] =Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' lowercase : Optional[int] =input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() lowercase : List[str] =[''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) lowercase : Tuple ='''translation_en_to_de''' if model == T5_TINY else '''summarization''' lowercase : int =f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(UpperCAmelCase , '''argv''' , UpperCAmelCase ): run_generate() assert Path(UpperCAmelCase ).exists() # os.remove(Path(output_file_name)) def A__ ( self : Dict ) -> int: '''simple docstring''' self.run_eval_tester(UpperCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def A__ ( self : Any , UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.run_eval_tester(UpperCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def A__ ( self : List[str] , UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : Any =Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' lowercase : Optional[Any] =input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() lowercase : Union[str, Any] ={ '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } lowercase : List[str] =Path(self.get_auto_remove_tmp_dir() ) lowercase : Any =str(tmp_dir / '''scores.json''' ) lowercase : Union[str, Any] =str(tmp_dir / '''val.target''' ) _dump_articles(UpperCAmelCase , text['''en'''] ) _dump_articles(UpperCAmelCase , text['''de'''] ) lowercase : Tuple ='''translation_en_to_de''' if model == T5_TINY else '''summarization''' lowercase : str =f'\n run_eval_search.py\n {model}\n {str(UpperCAmelCase )}\n {str(UpperCAmelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(UpperCAmelCase , '''argv''' , UpperCAmelCase ): with CaptureStdout() as cs: run_search() lowercase : List[Any] =[''' num_beams | length_penalty''', model, '''Best score args'''] lowercase : List[Any] =['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(UpperCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(UpperCAmelCase ).exists() os.remove(Path(UpperCAmelCase ) )
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 SCREAMING_SNAKE_CASE = sys.version_info >= (3, 10) def lowercase_ ( __A : Tuple=None , __A : List[str]=None ) -> Union[str, Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=__A ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = False UpperCamelCase_ = True UpperCamelCase_ = None class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''titi''' UpperCamelCase_ = '''toto''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''titi''' UpperCamelCase_ = '''toto''' UpperCamelCase_ = 42 @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = "toto" def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : List[str] =BasicEnum(self.foo ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = "toto" def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =MixedTypeEnum(self.foo ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = field(default=__A , metadata={'''help''': '''help message'''} ) UpperCamelCase_ = None UpperCamelCase_ = list_field(default=[] ) UpperCamelCase_ = list_field(default=[] ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = list_field(default=[] ) UpperCamelCase_ = list_field(default=[1, 2, 3] ) UpperCamelCase_ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) UpperCamelCase_ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field() UpperCamelCase_ = field() UpperCamelCase_ = field() def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' lowercase : List[Any] =BasicEnum(self.required_enum ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = field() UpperCamelCase_ = None UpperCamelCase_ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) UpperCamelCase_ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = False UpperCamelCase_ = True UpperCamelCase_ = None @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = field(default=__A , metadata={'''help''': '''help message'''} ) UpperCamelCase_ = None UpperCamelCase_ = list_field(default=[] ) UpperCamelCase_ = list_field(default=[] ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : List[Any] , UpperCAmelCase : argparse.ArgumentParser , UpperCAmelCase : argparse.ArgumentParser ) -> Any: '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase : Optional[Any] ={k: v for k, v in vars(UpperCAmelCase ).items() if k != '''container'''} lowercase : Union[str, Any] ={k: v for k, v in vars(UpperCAmelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , UpperCAmelCase ) and yy.get('''choices''' , UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](UpperCAmelCase ) , yy['''type'''](UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> Any: '''simple docstring''' lowercase : List[str] =HfArgumentParser(UpperCAmelCase ) lowercase : Any =argparse.ArgumentParser() expected.add_argument('''--foo''' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument('''--bar''' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument('''--baz''' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument('''--flag''' , type=UpperCAmelCase , default=UpperCAmelCase , const=UpperCAmelCase , nargs='''?''' ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[Any] =['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((lowercase) , ) : str =parser.parse_args_into_dataclasses(UpperCAmelCase , look_for_args_file=UpperCAmelCase ) self.assertFalse(example.flag ) def A__ ( self : int ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =HfArgumentParser(UpperCAmelCase ) lowercase : str =argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=UpperCAmelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=UpperCAmelCase , help='''help message''' ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =argparse.ArgumentParser() expected.add_argument('''--foo''' , type=UpperCAmelCase , default=UpperCAmelCase , const=UpperCAmelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=UpperCAmelCase , default=UpperCAmelCase , const=UpperCAmelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=UpperCAmelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=UpperCAmelCase , default=UpperCAmelCase ) lowercase : Optional[int] =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase ) for dataclass_type in dataclass_types: lowercase : Any =HfArgumentParser(UpperCAmelCase ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : Any =parser.parse_args([] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) lowercase : Optional[Any] =parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) lowercase : Optional[Any] =parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) lowercase : int =parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) lowercase : Optional[int] =parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : List[Any] =HfArgumentParser(UpperCAmelCase ) lowercase : Optional[Any] =argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) lowercase : Dict =parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase : Union[str, Any] =parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) lowercase : Union[str, Any] =parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase : int =parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) lowercase : List[Any] =parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def A__ ( self : Optional[int] ) -> int: '''simple docstring''' @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = "toto" lowercase : int =HfArgumentParser(UpperCAmelCase ) lowercase : Optional[Any] =argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : str =parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) lowercase : Tuple =parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) lowercase : str =parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =HfArgumentParser(UpperCAmelCase ) lowercase : List[str] =argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=UpperCAmelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=UpperCAmelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=UpperCAmelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=UpperCAmelCase ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[Any] =parser.parse_args([] ) self.assertEqual( UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase : List[str] =parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def A__ ( self : str ) -> Tuple: '''simple docstring''' lowercase : List[Any] =argparse.ArgumentParser() expected.add_argument('''--foo''' , default=UpperCAmelCase , type=UpperCAmelCase ) expected.add_argument('''--bar''' , default=UpperCAmelCase , type=UpperCAmelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=UpperCAmelCase , type=UpperCAmelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=UpperCAmelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=UpperCAmelCase ) lowercase : int =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase ) for dataclass_type in dataclass_types: lowercase : Union[str, Any] =HfArgumentParser(UpperCAmelCase ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : Any =parser.parse_args([] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , bar=UpperCAmelCase , baz=UpperCAmelCase , ces=[] , des=[] ) ) lowercase : Tuple =parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(UpperCAmelCase , Namespace(foo=12 , bar=3.1_4 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : str =HfArgumentParser(UpperCAmelCase ) lowercase : Dict =argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument('''--required_str''' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=UpperCAmelCase , ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[int] =HfArgumentParser(UpperCAmelCase ) lowercase : Union[str, Any] =argparse.ArgumentParser() expected.add_argument('''--foo''' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=UpperCAmelCase , ) expected.add_argument('''--opt''' , type=UpperCAmelCase , default=UpperCAmelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=UpperCAmelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=UpperCAmelCase ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' lowercase : int =HfArgumentParser(UpperCAmelCase ) lowercase : List[Any] ={ '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } lowercase : Tuple =parser.parse_dict(UpperCAmelCase )[0] lowercase : Optional[Any] =BasicExample(**UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] =HfArgumentParser(UpperCAmelCase ) lowercase : Tuple ={ '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(UpperCAmelCase , parser.parse_dict , UpperCAmelCase , allow_extra_keys=UpperCAmelCase ) def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =HfArgumentParser(UpperCAmelCase ) lowercase : Tuple ={ '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase : int =os.path.join(UpperCAmelCase , '''temp_json''' ) os.mkdir(UpperCAmelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] lowercase : str =BasicExample(**UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowercase : str =HfArgumentParser(UpperCAmelCase ) lowercase : Dict ={ '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] =os.path.join(UpperCAmelCase , '''temp_yaml''' ) os.mkdir(UpperCAmelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] lowercase : str =BasicExample(**UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =HfArgumentParser(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase )
8
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''trocr''' UpperCamelCase_ = ['''past_key_values'''] UpperCamelCase_ = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : Dict , UpperCAmelCase : Any=5_0265 , UpperCAmelCase : Any=1024 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : str=16 , UpperCAmelCase : Dict=4096 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Tuple=512 , UpperCAmelCase : str=0.1 , UpperCAmelCase : str=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : int=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : int=1 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : str=2 , **UpperCAmelCase : List[Any] , ) -> List[str]: '''simple docstring''' lowercase : List[Any] =vocab_size lowercase : List[str] =d_model lowercase : str =decoder_layers lowercase : Any =decoder_attention_heads lowercase : List[Any] =decoder_ffn_dim lowercase : Optional[Any] =activation_function lowercase : List[Any] =max_position_embeddings lowercase : Optional[int] =dropout lowercase : str =attention_dropout lowercase : Tuple =activation_dropout lowercase : Union[str, Any] =init_std lowercase : str =decoder_layerdrop lowercase : str =use_cache lowercase : int =scale_embedding lowercase : Any =use_learned_position_embeddings lowercase : List[Any] =layernorm_embedding super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , **UpperCAmelCase , )
8
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
1
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''AutoImageProcessor''' UpperCamelCase_ = '''AutoTokenizer''' def __init__( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[str] ) -> str: '''simple docstring''' super().__init__(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =self.image_processor def __call__( self : Dict , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase : Optional[int] =self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: lowercase : Dict =self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: lowercase : Optional[int] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def A__ ( self : Union[str, Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
8
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
1
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
1
'''simple docstring''' import math def lowercase_ ( __A : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( __A : float = 0.1 ) -> int: """simple docstring""" lowercase : Optional[Any] =3 lowercase : Union[str, Any] =3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : str =1 lowercase : Any =3 lowercase : Dict =(32, 32) lowercase : str =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase : Any =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def A__ ( self : List[str] ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowercase : Dict =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(UpperCAmelCase ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : List[str] =self.dummy_cond_unet_upscale lowercase : Optional[int] =DDPMScheduler() lowercase : Tuple =DDIMScheduler(prediction_type='''v_prediction''' ) lowercase : Optional[int] =self.dummy_vae lowercase : Any =self.dummy_text_encoder lowercase : Tuple =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : Any =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : int =Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase : List[str] =StableDiffusionUpscalePipeline( unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , max_noise_level=350 , ) lowercase : List[Any] =sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Optional[Any] ='''A painting of a squirrel eating a burger''' lowercase : str =torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase : Dict =sd_pipe( [prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase : int =output.images lowercase : Union[str, Any] =torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase : Union[str, Any] =sd_pipe( [prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCAmelCase , )[0] lowercase : int =image[0, -3:, -3:, -1] lowercase : Optional[int] =image_from_tuple[0, -3:, -3:, -1] lowercase : Union[str, Any] =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowercase : Optional[int] =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : List[Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : List[str] =self.dummy_cond_unet_upscale lowercase : Optional[Any] =DDPMScheduler() lowercase : int =DDIMScheduler(prediction_type='''v_prediction''' ) lowercase : int =self.dummy_vae lowercase : Optional[int] =self.dummy_text_encoder lowercase : List[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : str =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : Dict =Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase : Union[str, Any] =StableDiffusionUpscalePipeline( unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , max_noise_level=350 , ) lowercase : str =sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Optional[Any] ='''A painting of a squirrel eating a burger''' lowercase : List[str] =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase : Optional[Any] =output.images assert image.shape[0] == 2 lowercase : List[str] =torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase : Tuple =sd_pipe( [prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase : List[Any] =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def A__ ( self : Any ) -> Dict: '''simple docstring''' lowercase : List[Any] =self.dummy_cond_unet_upscale lowercase : List[str] =DDPMScheduler() lowercase : Union[str, Any] =DDIMScheduler(prediction_type='''v_prediction''' ) lowercase : List[str] =self.dummy_vae lowercase : Optional[Any] =self.dummy_text_encoder lowercase : Any =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : List[Any] =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : Optional[int] =Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowercase : Union[str, Any] =unet.half() lowercase : Union[str, Any] =text_encoder.half() # make sure here that pndm scheduler skips prk lowercase : Dict =StableDiffusionUpscalePipeline( unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , max_noise_level=350 , ) lowercase : int =sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : List[Any] ='''A painting of a squirrel eating a burger''' lowercase : List[str] =torch.manual_seed(0 ) lowercase : Union[str, Any] =sd_pipe( [prompt] , image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , ).images lowercase : List[str] =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase : List[str] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) lowercase : List[str] ='''stabilityai/stable-diffusion-x4-upscaler''' lowercase : Tuple =StableDiffusionUpscalePipeline.from_pretrained(UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase : List[str] ='''a cat sitting on a park bench''' lowercase : Any =torch.manual_seed(0 ) lowercase : Dict =pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , output_type='''np''' , ) lowercase : List[Any] =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase : Any =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) lowercase : Optional[Any] ='''stabilityai/stable-diffusion-x4-upscaler''' lowercase : Union[str, Any] =StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase : Union[str, Any] ='''a cat sitting on a park bench''' lowercase : Any =torch.manual_seed(0 ) lowercase : Optional[Any] =pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , output_type='''np''' , ) lowercase : Any =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : List[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase : Optional[int] ='''stabilityai/stable-diffusion-x4-upscaler''' lowercase : Union[str, Any] =StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase : Any ='''a cat sitting on a park bench''' lowercase : Union[str, Any] =torch.manual_seed(0 ) lowercase : Tuple =pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , output_type='''np''' , ) lowercase : Any =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
8
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
1
'''simple docstring''' import random def lowercase_ ( __A : int ) -> bool: """simple docstring""" lowercase : Dict =num - 1 lowercase : Union[str, Any] =0 while s % 2 == 0: lowercase : Any =s // 2 t += 1 for _ in range(5 ): lowercase : Any =random.randrange(2 , num - 1 ) lowercase : Optional[Any] =pow(__A , __A , __A ) if v != 1: lowercase : str =0 while v != (num - 1): if i == t - 1: return False else: lowercase : List[str] =i + 1 lowercase : Tuple =(v**2) % num return True def lowercase_ ( __A : int ) -> bool: """simple docstring""" if num < 2: return False lowercase : Any =[ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__A ) def lowercase_ ( __A : int = 1_0_2_4 ) -> int: """simple docstring""" while True: lowercase : Tuple =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__A ): return num if __name__ == "__main__": SCREAMING_SNAKE_CASE = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
8
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
1
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''informer''' UpperCamelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = "student_t" , UpperCAmelCase : str = "nll" , UpperCAmelCase : int = 1 , UpperCAmelCase : List[int] = None , UpperCAmelCase : Optional[Union[str, bool]] = "mean" , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : bool = True , UpperCAmelCase : str = "gelu" , UpperCAmelCase : float = 0.0_5 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 100 , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str = "prob" , UpperCAmelCase : int = 5 , UpperCAmelCase : bool = True , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =prediction_length lowercase : Union[str, Any] =context_length or prediction_length lowercase : Optional[Any] =distribution_output lowercase : int =loss lowercase : str =input_size lowercase : Optional[Any] =num_time_features lowercase : Union[str, Any] =lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase : Any =scaling lowercase : Any =num_dynamic_real_features lowercase : Any =num_static_real_features lowercase : Any =num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase : Dict =cardinality else: lowercase : Tuple =[0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase : str =embedding_dimension else: lowercase : Optional[Any] =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase : str =num_parallel_samples # Transformer architecture configuration lowercase : List[Any] =input_size * len(self.lags_sequence ) + self._number_of_features lowercase : List[Any] =d_model lowercase : Optional[Any] =encoder_attention_heads lowercase : Any =decoder_attention_heads lowercase : Any =encoder_ffn_dim lowercase : Dict =decoder_ffn_dim lowercase : Optional[Any] =encoder_layers lowercase : Union[str, Any] =decoder_layers lowercase : str =dropout lowercase : Tuple =attention_dropout lowercase : Optional[int] =activation_dropout lowercase : Tuple =encoder_layerdrop lowercase : Any =decoder_layerdrop lowercase : str =activation_function lowercase : Any =init_std lowercase : Tuple =use_cache # Informer lowercase : Optional[int] =attention_type lowercase : Union[str, Any] =sampling_factor lowercase : Tuple =distil super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : Tuple ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
8
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Iterable[int] ) -> None: '''simple docstring''' lowercase : Node | None =None for i in sorted(UpperCAmelCase , reverse=UpperCAmelCase ): lowercase : Optional[Any] =Node(UpperCAmelCase , self.head ) def __iter__( self : Any ) -> Iterator[int]: '''simple docstring''' lowercase : Dict =self.head while node: yield node.data lowercase : List[Any] =node.next_node def __len__( self : List[str] ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self : Tuple ) -> str: '''simple docstring''' return " -> ".join([str(UpperCAmelCase ) for node in self] ) def lowercase_ ( __A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
8
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' def lowercase_ ( __A : str , __A : str ) -> int: """simple docstring""" if len(__A ) != len(__A ): raise ValueError('''String lengths must match!''' ) lowercase : List[Any] =0 for chara, chara in zip(__A , __A ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
1
'''simple docstring''' SCREAMING_SNAKE_CASE = tuple[float, float, float] SCREAMING_SNAKE_CASE = tuple[float, float, float] def lowercase_ ( __A : Pointad , __A : Pointad ) -> Vectorad: """simple docstring""" lowercase : Optional[Any] =end_pointa[0] - end_pointa[0] lowercase : Dict =end_pointa[1] - end_pointa[1] lowercase : List[Any] =end_pointa[2] - end_pointa[2] return (x, y, z) def lowercase_ ( __A : Vectorad , __A : Vectorad ) -> Vectorad: """simple docstring""" lowercase : List[str] =ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase : Optional[int] =(ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase : str =ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowercase_ ( __A : Vectorad , __A : int ) -> bool: """simple docstring""" return tuple(round(__A , __A ) for x in vector ) == (0, 0, 0) def lowercase_ ( __A : Pointad , __A : Pointad , __A : Pointad , __A : int = 1_0 ) -> bool: """simple docstring""" lowercase : Optional[int] =create_vector(__A , __A ) lowercase : int =create_vector(__A , __A ) return is_zero_vector(get_ad_vectors_cross(__A , __A ) , __A )
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] ={} def A__ ( self : Any ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(UpperCAmelCase , ''' -> ''' , ''' -> '''.join([str(UpperCAmelCase ) for j in self.vertex[i]] ) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCAmelCase ) else: # else make a new vertex lowercase : Any =[to_vertex] def A__ ( self : List[str] ) -> None: '''simple docstring''' lowercase : Optional[int] =[False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : list ) -> None: '''simple docstring''' lowercase : int =True print(UpperCAmelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
8
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowercase : List[Any] ='''ylacombe/bark-small''' lowercase : int =tempfile.mkdtemp() lowercase : Any ='''en_speaker_1''' lowercase : Union[str, Any] ='''This is a test string''' lowercase : Union[str, Any] ='''speaker_embeddings_path.json''' lowercase : Optional[Any] ='''speaker_embeddings''' def A__ ( self : Tuple , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase ) def A__ ( self : Optional[int] ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =self.get_tokenizer() lowercase : List[str] =BarkProcessor(tokenizer=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase : List[Any] =BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def A__ ( self : List[Any] ) -> Any: '''simple docstring''' lowercase : str =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase : str =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase : Optional[Any] =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def A__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase : Any =35 lowercase : Optional[int] =2 lowercase : Dict =8 lowercase : List[str] ={ '''semantic_prompt''': np.ones(UpperCAmelCase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase : Tuple =processor(text=self.input_string , voice_preset=UpperCAmelCase ) lowercase : Optional[Any] =inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase : Optional[Any] =os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(UpperCAmelCase , **UpperCAmelCase ) lowercase : str =processor(text=self.input_string , voice_preset=UpperCAmelCase ) lowercase : List[str] =inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase : Optional[int] =processor(text=self.input_string , voice_preset=self.voice_preset ) def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =self.get_tokenizer() lowercase : Dict =BarkProcessor(tokenizer=UpperCAmelCase ) lowercase : List[str] =processor(text=self.input_string ) lowercase : Any =tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
8
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
1
'''simple docstring''' def lowercase_ ( __A : list[list[int]] , __A : int , __A : int , __A : set ) -> int: """simple docstring""" lowercase , lowercase : Dict =len(__A ), len(grid[0] ) if ( min(__A , __A ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowercase : Any =0 count += depth_first_search(__A , row + 1 , __A , __A ) count += depth_first_search(__A , row - 1 , __A , __A ) count += depth_first_search(__A , __A , col + 1 , __A ) count += depth_first_search(__A , __A , col - 1 , __A ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
1
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : Tuple , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : List[Any] =[label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' if len(UpperCAmelCase ) == 0 or len(UpperCAmelCase ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(UpperCAmelCase ) ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : int =[sequences] lowercase : Tuple =[] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(UpperCAmelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__A ) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : Optional[int]=ZeroShotClassificationArgumentHandler() , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' lowercase : Union[str, Any] =args_parser super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[int]=TruncationStrategy.ONLY_FIRST , **UpperCAmelCase : str ) -> int: '''simple docstring''' lowercase : int =self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) lowercase : Optional[int] =self.tokenizer.eos_token try: lowercase : int =self.tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , ) except Exception as e: if "too short" in str(UpperCAmelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowercase : List[str] =self.tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def A__ ( self : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' if kwargs.get('''multi_class''' , UpperCAmelCase ) is not None: lowercase : Dict =kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) lowercase : str ={} if "candidate_labels" in kwargs: lowercase : List[Any] =self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: lowercase : str =kwargs['''hypothesis_template'''] lowercase : Tuple ={} if "multi_label" in kwargs: lowercase : Any =kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , UpperCAmelCase : Union[str, List[str]] , *UpperCAmelCase : Dict , **UpperCAmelCase : Tuple , ) -> Optional[int]: '''simple docstring''' if len(UpperCAmelCase ) == 0: pass elif len(UpperCAmelCase ) == 1 and "candidate_labels" not in kwargs: lowercase : Optional[Any] =args[0] else: raise ValueError(f'Unable to understand extra arguments {args}' ) return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="This example is {}." ) -> Optional[int]: '''simple docstring''' lowercase , lowercase : Optional[int] =self._args_parser(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(UpperCAmelCase , UpperCAmelCase ) ): lowercase : Tuple =self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(UpperCAmelCase ) - 1, **model_input, } def A__ ( self : int , UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[int] =inputs['''candidate_label'''] lowercase : Union[str, Any] =inputs['''sequence'''] lowercase : Union[str, Any] ={k: inputs[k] for k in self.tokenizer.model_input_names} lowercase : List[str] =self.model(**UpperCAmelCase ) lowercase : List[str] ={ '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=False ) -> Union[str, Any]: '''simple docstring''' lowercase : int =[outputs['''candidate_label'''] for outputs in model_outputs] lowercase : int =[outputs['''sequence'''] for outputs in model_outputs] lowercase : Tuple =np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) lowercase : Union[str, Any] =logits.shape[0] lowercase : Tuple =len(UpperCAmelCase ) lowercase : Optional[Any] =N // n lowercase : int =logits.reshape((num_sequences, n, -1) ) if multi_label or len(UpperCAmelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowercase : Union[str, Any] =self.entailment_id lowercase : Tuple =-1 if entailment_id == 0 else 0 lowercase : Optional[int] =reshaped_outputs[..., [contradiction_id, entailment_id]] lowercase : int =np.exp(UpperCAmelCase ) / np.exp(UpperCAmelCase ).sum(-1 , keepdims=UpperCAmelCase ) lowercase : Union[str, Any] =scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowercase : Union[str, Any] =reshaped_outputs[..., self.entailment_id] lowercase : List[str] =np.exp(UpperCAmelCase ) / np.exp(UpperCAmelCase ).sum(-1 , keepdims=UpperCAmelCase ) lowercase : List[Any] =list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
8
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
1
'''simple docstring''' from math import pi def lowercase_ ( __A : int , __A : int ) -> float: """simple docstring""" return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
1
'''simple docstring''' import heapq def lowercase_ ( __A : dict ) -> set[int]: """simple docstring""" lowercase : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__A , [-1 * len(__A ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase : Dict =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase : List[str] =heapq.heappop(__A )[1][0] chosen_vertices.add(__A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase : str =elem[1][1].index(__A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE = { 'Salesforce/codegen-350M-mono': 2_048, } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ = CodeGenTokenizer def __init__( self : Any , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str="<|endoftext|>" , UpperCAmelCase : Dict="<|endoftext|>" , UpperCAmelCase : Any="<|endoftext|>" , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Union[str, Any] , ) -> List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) if kwargs.pop('''add_bos_token''' , UpperCAmelCase ): lowercase : List[str] =kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' f'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) lowercase : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase ) != add_prefix_space: lowercase : List[Any] =getattr(UpperCAmelCase , pre_tok_state.pop('''type''' ) ) lowercase : Tuple =add_prefix_space lowercase : Union[str, Any] =pre_tok_class(**UpperCAmelCase ) lowercase : str =add_prefix_space def A__ ( self : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ) -> BatchEncoding: '''simple docstring''' lowercase : List[str] =kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : str ) -> BatchEncoding: '''simple docstring''' lowercase : str =kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : Union[str, Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , UpperCAmelCase : bool = False , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[List[str]] = None , **UpperCAmelCase : Dict , ) -> str: '''simple docstring''' lowercase : str =super().decode( token_ids=UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , **UpperCAmelCase , ) if truncate_before_pattern is not None and len(UpperCAmelCase ) > 0: lowercase : List[str] =self.truncate(UpperCAmelCase , UpperCAmelCase ) return decoded_text def A__ ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' def find_re(UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): lowercase : Union[str, Any] =pattern.search(UpperCAmelCase , UpperCAmelCase ) return m.start() if m else -1 lowercase : str =[re.compile(UpperCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] lowercase : Any =list(re.finditer('''^print''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowercase : List[str] =completion[: prints[1].start()] lowercase : Optional[int] =list(re.finditer('''^def''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowercase : Optional[Any] =completion[: defs[1].start()] lowercase : Any =0 lowercase : int =[ pos for pos in [find_re(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for terminal in terminals] if pos != -1 ] if len(UpperCAmelCase ) > 0: return completion[: min(UpperCAmelCase )] else: return completion
8
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
1
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __A : Union[str, Any] , __A : List[str] , __A : str , __A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] =BigBirdConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: lowercase : Optional[int] =BigBirdForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) else: lowercase : Tuple =BigBirdForPreTraining(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , is_trivia_qa=SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class UpperCAmelCase_ ( _snake_case ): """simple docstring""" UpperCamelCase_ = '''blip_2_vision_model''' def __init__( self : Union[str, Any] , UpperCAmelCase : Dict=1408 , UpperCAmelCase : Optional[int]=6144 , UpperCAmelCase : Union[str, Any]=39 , UpperCAmelCase : str=16 , UpperCAmelCase : Dict=224 , UpperCAmelCase : str=14 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Optional[int]=0.0_0_0_0_1 , UpperCAmelCase : str=0.0 , UpperCAmelCase : List[str]=1e-10 , UpperCAmelCase : List[str]=True , **UpperCAmelCase : List[str] , ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowercase : Tuple =hidden_size lowercase : Dict =intermediate_size lowercase : Dict =num_hidden_layers lowercase : Union[str, Any] =num_attention_heads lowercase : Union[str, Any] =patch_size lowercase : Optional[int] =image_size lowercase : List[str] =initializer_range lowercase : Any =attention_dropout lowercase : Union[str, Any] =layer_norm_eps lowercase : Tuple =hidden_act lowercase : List[Any] =qkv_bias @classmethod def A__ ( cls : Optional[Any] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase__ ) lowercase , lowercase : Any =cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowercase : str =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class UpperCAmelCase_ ( _snake_case ): """simple docstring""" UpperCamelCase_ = '''blip_2_qformer''' def __init__( self : Any , UpperCAmelCase : Dict=3_0522 , UpperCAmelCase : str=768 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Any=12 , UpperCAmelCase : Tuple=3072 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Optional[Any]=512 , UpperCAmelCase : List[str]=0.0_2 , UpperCAmelCase : Union[str, Any]=1e-12 , UpperCAmelCase : Dict=0 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : List[str]=1408 , **UpperCAmelCase : Tuple , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase : Union[str, Any] =vocab_size lowercase : int =hidden_size lowercase : str =num_hidden_layers lowercase : Tuple =num_attention_heads lowercase : str =hidden_act lowercase : Tuple =intermediate_size lowercase : List[str] =hidden_dropout_prob lowercase : List[str] =attention_probs_dropout_prob lowercase : str =max_position_embeddings lowercase : List[str] =initializer_range lowercase : Union[str, Any] =layer_norm_eps lowercase : Union[str, Any] =position_embedding_type lowercase : List[Any] =cross_attention_frequency lowercase : Optional[Any] =encoder_hidden_size @classmethod def A__ ( cls : List[str] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : Dict ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase__ ) lowercase , lowercase : Dict =cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowercase : Any =config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class UpperCAmelCase_ ( _snake_case ): """simple docstring""" UpperCamelCase_ = '''blip-2''' UpperCamelCase_ = True def __init__( self : List[Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Tuple=32 , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if vision_config is None: lowercase : str ={} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: lowercase : str ={} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: lowercase : Dict ={} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowercase : Dict =BlipaVisionConfig(**lowerCAmelCase__ ) lowercase : Union[str, Any] =BlipaQFormerConfig(**lowerCAmelCase__ ) lowercase : Tuple =text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' lowercase : Union[str, Any] =CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) lowercase : Any =self.text_config.tie_word_embeddings lowercase : List[Any] =self.text_config.is_encoder_decoder lowercase : List[Any] =num_query_tokens lowercase : List[str] =self.vision_config.hidden_size lowercase : Dict =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase : Any =1.0 lowercase : List[Any] =0.0_2 @classmethod def A__ ( cls : Optional[Any] , UpperCAmelCase : BlipaVisionConfig , UpperCAmelCase : BlipaQFormerConfig , UpperCAmelCase : PretrainedConfig , **UpperCAmelCase : int , ) -> str: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : str =copy.deepcopy(self.__dict__ ) lowercase : Tuple =self.vision_config.to_dict() lowercase : Union[str, Any] =self.qformer_config.to_dict() lowercase : str =self.text_config.to_dict() lowercase : int =self.__class__.model_type return output
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py SCREAMING_SNAKE_CASE = 'src/diffusers' SCREAMING_SNAKE_CASE = '.' # This is to make sure the diffusers module imported is the one in the repo. SCREAMING_SNAKE_CASE = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) SCREAMING_SNAKE_CASE = spec.loader.load_module() def lowercase_ ( __A : List[Any] , __A : Tuple ) -> Optional[Any]: """simple docstring""" return line.startswith(_SCREAMING_SNAKE_CASE ) or len(_SCREAMING_SNAKE_CASE ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , _SCREAMING_SNAKE_CASE ) is not None def lowercase_ ( __A : List[Any] ) -> Optional[int]: """simple docstring""" lowercase : List[str] =object_name.split('''.''' ) lowercase : List[Any] =0 # First let's find the module where our object lives. lowercase : Dict =parts[i] while i < len(_SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , F'{module}.py' ) ): i += 1 if i < len(_SCREAMING_SNAKE_CASE ): lowercase : Dict =os.path.join(_SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(_SCREAMING_SNAKE_CASE ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(_SCREAMING_SNAKE_CASE , F'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase : Tuple =f.readlines() # Now let's find the class / func in the code! lowercase : Any ='''''' lowercase : Optional[int] =0 for name in parts[i + 1 :]: while ( line_index < len(_SCREAMING_SNAKE_CASE ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_SCREAMING_SNAKE_CASE ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase : Optional[int] =line_index while line_index < len(_SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , _SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase : Dict =lines[start_index:line_index] return "".join(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') SCREAMING_SNAKE_CASE = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') SCREAMING_SNAKE_CASE = re.compile(r'<FILL\s+[^>]*>') def lowercase_ ( __A : Tuple ) -> Tuple: """simple docstring""" lowercase : List[Any] =code.split('''\n''' ) lowercase : str =0 while idx < len(_SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_SCREAMING_SNAKE_CASE ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def lowercase_ ( __A : Union[str, Any] ) -> int: """simple docstring""" lowercase : List[str] =len(get_indent(_SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: lowercase : Optional[Any] =F'class Bla:\n{code}' lowercase : Dict =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=_SCREAMING_SNAKE_CASE ) lowercase : Dict =black.format_str(_SCREAMING_SNAKE_CASE , mode=_SCREAMING_SNAKE_CASE ) lowercase , lowercase : str =style_docstrings_in_code(_SCREAMING_SNAKE_CASE ) return result[len('''class Bla:\n''' ) :] if has_indent else result def lowercase_ ( __A : Optional[Any] , __A : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase : Optional[Any] =f.readlines() lowercase : Tuple =[] lowercase : Union[str, Any] =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_SCREAMING_SNAKE_CASE ): lowercase : Tuple =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase , lowercase , lowercase : Tuple =search.groups() lowercase : Optional[Any] =find_code_in_diffusers(_SCREAMING_SNAKE_CASE ) lowercase : Tuple =get_indent(_SCREAMING_SNAKE_CASE ) lowercase : Union[str, Any] =line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase : Dict =theoretical_indent lowercase : Tuple =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase : List[str] =True while line_index < len(_SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(_SCREAMING_SNAKE_CASE ): break lowercase : Optional[Any] =lines[line_index] lowercase : Dict =_should_continue(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and re.search(F'^{indent}# End copy' , _SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase : str =lines[start_index:line_index] lowercase : List[str] =''''''.join(_SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies lowercase : str =[line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(_SCREAMING_SNAKE_CASE ) is None] lowercase : List[str] ='''\n'''.join(_SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase : Any =replace_pattern.replace('''with''' , '''''' ).split(''',''' ) lowercase : int =[_re_replace_pattern.search(_SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase , lowercase , lowercase : str =pattern.groups() lowercase : str =re.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": lowercase : Optional[Any] =re.sub(obja.lower() , obja.lower() , _SCREAMING_SNAKE_CASE ) lowercase : int =re.sub(obja.upper() , obja.upper() , _SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase : Union[str, Any] =blackify(lines[start_index - 1] + theoretical_code ) lowercase : Optional[Any] =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowercase : List[str] =lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase : Union[str, Any] =start_index + 1 if overwrite and len(_SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_SCREAMING_SNAKE_CASE ) return diffs def lowercase_ ( __A : Dict = False ) -> str: """simple docstring""" lowercase : Dict =glob.glob(os.path.join(_SCREAMING_SNAKE_CASE , '''**/*.py''' ) , recursive=_SCREAMING_SNAKE_CASE ) lowercase : str =[] for filename in all_files: lowercase : Optional[Any] =is_copy_consistent(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(_SCREAMING_SNAKE_CASE ) > 0: lowercase : List[Any] ='''\n'''.join(_SCREAMING_SNAKE_CASE ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE = parser.parse_args() check_copies(args.fix_and_overwrite)
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : str=99 , UpperCAmelCase : int=32 , UpperCAmelCase : Optional[int]=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=512 , UpperCAmelCase : int=16 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Any=3 , UpperCAmelCase : str=4 , UpperCAmelCase : Any=None , ) -> Any: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : str =batch_size lowercase : int =seq_length lowercase : Optional[Any] =is_training lowercase : Dict =use_input_mask lowercase : Tuple =use_token_type_ids lowercase : Union[str, Any] =use_labels lowercase : Optional[Any] =vocab_size lowercase : Tuple =hidden_size lowercase : int =num_hidden_layers lowercase : str =num_attention_heads lowercase : Dict =intermediate_multiple_size lowercase : Optional[Any] =hidden_act lowercase : Union[str, Any] =hidden_dropout lowercase : Optional[Any] =attention_dropout lowercase : Optional[int] =weight_tying lowercase : Optional[Any] =max_position_embeddings lowercase : Any =type_vocab_size lowercase : Any =type_sequence_label_size lowercase : int =initializer_range lowercase : List[Any] =num_labels lowercase : List[str] =num_choices lowercase : int =scope def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Dict =None if self.use_input_mask: lowercase : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None if self.use_labels: lowercase : int =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =self.get_config() return config, input_ids, input_mask, token_labels def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def A__ ( self : List[str] ) -> Any: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Any =self.prepare_config_and_inputs() lowercase : Optional[int] =True return config, input_ids, input_mask, token_labels def A__ ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =GPTNeoXJapaneseModel(config=A_ ) model.to(A_ ) model.eval() lowercase : Any =model(A_ , attention_mask=A_ ) lowercase : Dict =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : int ) -> Any: '''simple docstring''' lowercase : List[Any] =True lowercase : List[Any] =GPTNeoXJapaneseModel(A_ ) model.to(A_ ) model.eval() lowercase : Union[str, Any] =model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : str , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Tuple =GPTNeoXJapaneseForCausalLM(config=A_ ) model.to(A_ ) model.eval() lowercase : List[str] =model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase : Any =True lowercase : List[str] =GPTNeoXJapaneseForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass lowercase : str =model(A_ , attention_mask=A_ , use_cache=A_ ) lowercase : Optional[int] =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase : Optional[int] =ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase : Optional[int] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase : List[str] =torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase : Dict =torch.cat([input_mask, next_mask] , dim=-1 ) lowercase : Union[str, Any] =model(A_ , attention_mask=A_ , output_hidden_states=A_ ) lowercase : str =output_from_no_past['''hidden_states'''][0] lowercase : Any =model( A_ , attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] # select random slice lowercase : Any =ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase : Dict =output_from_no_past[:, -3:, random_slice_idx].detach() lowercase : Any =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) ) def A__ ( self : List[Any] ) -> int: '''simple docstring''' lowercase : Optional[int] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : Tuple =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCamelCase_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCamelCase_ = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowercase : List[str] =GPTNeoXJapaneseModelTester(self ) lowercase : List[Any] =ConfigTester(self , config_class=A_ , hidden_size=37 ) def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A_ , A_ , A_ ) def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A_ , A_ , A_ ) def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : List[Any] =self.model_tester.prepare_config_and_inputs_for_decoder() lowercase : List[Any] =None self.model_tester.create_and_check_model_as_decoder(A_ , A_ , A_ ) def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A_ , A_ , A_ ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A_ ) @slow def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : List[Any] ='''abeja/gpt-neox-japanese-2.7b''' lowercase : List[str] =['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] lowercase : Dict =[ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] lowercase : Union[str, Any] =GPTNeoXJapaneseTokenizer.from_pretrained(A_ ) lowercase : int =GPTNeoXJapaneseForCausalLM.from_pretrained(A_ ) lowercase : Tuple =[] for prompt in prompts: lowercase : int =tokenizer(A_ , return_tensors='''pt''' ).input_ids lowercase : Tuple =model.generate(A_ , max_length=50 ) lowercase : List[Any] =tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) predicted_outputs += generated_string self.assertListEqual(A_ , A_ )
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def lowercase_ ( __A : List[str] , __A : Any ) -> Dict: """simple docstring""" inspect_dataset(_lowercase , _lowercase ) lowercase : Any =path + '.py' assert script_name in os.listdir(_lowercase ) assert "__pycache__" not in os.listdir(_lowercase ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def lowercase_ ( __A : Tuple , __A : Any ) -> Tuple: """simple docstring""" inspect_metric(_lowercase , _lowercase ) lowercase : List[Any] =path + '.py' assert script_name in os.listdir(_lowercase ) assert "__pycache__" not in os.listdir(_lowercase ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def lowercase_ ( __A : int , __A : str , __A : int ) -> Dict: """simple docstring""" lowercase : Any =get_dataset_config_info(_lowercase , config_name=_lowercase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def lowercase_ ( __A : Optional[int] , __A : List[str] , __A : Tuple ) -> List[str]: """simple docstring""" with pytest.raises(_lowercase ): get_dataset_config_info(_lowercase , config_name=_lowercase ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def lowercase_ ( __A : Tuple , __A : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : Tuple =get_dataset_config_names(_lowercase ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def lowercase_ ( __A : str , __A : str , __A : Tuple ) -> Optional[int]: """simple docstring""" lowercase : List[str] =get_dataset_infos(_lowercase ) assert list(infos.keys() ) == expected_configs lowercase : Tuple =expected_configs[0] assert expected_config in infos lowercase : str =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def lowercase_ ( __A : List[Any] , __A : int , __A : Union[str, Any] ) -> Any: """simple docstring""" lowercase : Any =get_dataset_infos(_lowercase ) assert expected_config in infos lowercase : Optional[Any] =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def lowercase_ ( __A : Optional[int] , __A : Union[str, Any] , __A : Dict ) -> Optional[int]: """simple docstring""" with pytest.raises(_lowercase ): get_dataset_split_names(_lowercase , config_name=_lowercase )
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( lowercase__ ): """simple docstring""" def __get__( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any=None ) -> Any: '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) lowercase : Optional[int] ="__cached_" + self.fget.__name__ lowercase : Optional[Any] =getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if cached is None: lowercase : List[Any] =self.fget(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return cached def lowercase_ ( __A : List[str] ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def lowercase_ ( __A : str ) -> Any: """simple docstring""" if is_torch_fx_proxy(_A ): return True if is_torch_available(): import torch if isinstance(_A , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_A , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_A , (jnp.ndarray, Tracer) ): return True return isinstance(_A , np.ndarray ) def lowercase_ ( __A : int ) -> Union[str, Any]: """simple docstring""" return isinstance(_A , np.ndarray ) def lowercase_ ( __A : Dict ) -> Union[str, Any]: """simple docstring""" return _is_numpy(_A ) def lowercase_ ( __A : List[str] ) -> Any: """simple docstring""" import torch return isinstance(_A , torch.Tensor ) def lowercase_ ( __A : Any ) -> List[str]: """simple docstring""" return False if not is_torch_available() else _is_torch(_A ) def lowercase_ ( __A : str ) -> Union[str, Any]: """simple docstring""" import torch return isinstance(_A , torch.device ) def lowercase_ ( __A : Any ) -> Optional[Any]: """simple docstring""" return False if not is_torch_available() else _is_torch_device(_A ) def lowercase_ ( __A : int ) -> int: """simple docstring""" import torch if isinstance(_A , _A ): if hasattr(_A , _A ): lowercase : List[Any] =getattr(_A , _A ) else: return False return isinstance(_A , torch.dtype ) def lowercase_ ( __A : Tuple ) -> str: """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(_A ) def lowercase_ ( __A : str ) -> Union[str, Any]: """simple docstring""" import tensorflow as tf return isinstance(_A , tf.Tensor ) def lowercase_ ( __A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return False if not is_tf_available() else _is_tensorflow(_A ) def lowercase_ ( __A : Dict ) -> List[Any]: """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_A , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(_A ) return type(_A ) == tf.Tensor def lowercase_ ( __A : Optional[Any] ) -> Optional[int]: """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(_A ) def lowercase_ ( __A : Optional[int] ) -> List[str]: """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(_A , jnp.ndarray ) def lowercase_ ( __A : List[Any] ) -> str: """simple docstring""" return False if not is_flax_available() else _is_jax(_A ) def lowercase_ ( __A : Any ) -> List[str]: """simple docstring""" if isinstance(_A , (dict, UserDict) ): return {k: to_py_obj(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return [to_py_obj(_A ) for o in obj] elif is_tf_tensor(_A ): return obj.numpy().tolist() elif is_torch_tensor(_A ): return obj.detach().cpu().tolist() elif is_jax_tensor(_A ): return np.asarray(_A ).tolist() elif isinstance(_A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowercase_ ( __A : List[Any] ) -> Tuple: """simple docstring""" if isinstance(_A , (dict, UserDict) ): return {k: to_numpy(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return np.array(_A ) elif is_tf_tensor(_A ): return obj.numpy() elif is_torch_tensor(_A ): return obj.detach().cpu().numpy() elif is_jax_tensor(_A ): return np.asarray(_A ) else: return obj class UpperCAmelCase_ ( lowercase__ ): """simple docstring""" def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[int] =fields(self ) # Safety and consistency checks if not len(__lowerCamelCase ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) lowercase : str =getattr(self , class_fields[0].name ) lowercase : List[Any] =all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__lowerCamelCase ): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase : Dict =first_field.items() lowercase : List[str] =True else: try: lowercase : Dict =iter(__lowerCamelCase ) lowercase : Dict =True except TypeError: lowercase : Optional[int] =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__lowerCamelCase ): if ( not isinstance(__lowerCamelCase , (list, tuple) ) or not len(__lowerCamelCase ) == 2 or not isinstance(element[0] , __lowerCamelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowercase : int =first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowercase : Optional[int] =element[1] elif first_field is not None: lowercase : str =first_field else: for field in class_fields: lowercase : str =getattr(self , field.name ) if v is not None: lowercase : Any =v def __delitem__( self : Tuple , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def A__ ( self : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def A__ ( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : int ) -> str: '''simple docstring''' raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def A__ ( self : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Dict: '''simple docstring''' raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self : int , UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase : List[str] =dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__lowerCamelCase , __lowerCamelCase ) super().__setattr__(__lowerCamelCase , __lowerCamelCase ) def __setitem__( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' super().__setitem__(__lowerCamelCase , __lowerCamelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' return tuple(self[k] for k in self.keys() ) class UpperCAmelCase_ ( lowercase__ , lowercase__ ): """simple docstring""" @classmethod def A__ ( cls : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class UpperCAmelCase_ ( lowercase__ ): """simple docstring""" UpperCamelCase_ = '''longest''' UpperCamelCase_ = '''max_length''' UpperCamelCase_ = '''do_not_pad''' class UpperCAmelCase_ ( lowercase__ ): """simple docstring""" UpperCamelCase_ = '''pt''' UpperCamelCase_ = '''tf''' UpperCamelCase_ = '''np''' UpperCamelCase_ = '''jax''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[ContextManager] ) -> int: '''simple docstring''' lowercase : Optional[int] =context_managers lowercase : Dict =ExitStack() def __enter__( self : Dict ) -> int: '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(__lowerCamelCase ) def __exit__( self : List[str] , *UpperCAmelCase : Any , **UpperCAmelCase : int ) -> int: '''simple docstring''' self.stack.__exit__(*__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( __A : List[Any] ) -> Dict: """simple docstring""" lowercase : str =infer_framework(_A ) if framework == "tf": lowercase : Union[str, Any] =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowercase : Union[str, Any] =inspect.signature(model_class.forward ) # PyTorch models else: lowercase : Optional[Any] =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowercase_ ( __A : Any ) -> Tuple: """simple docstring""" lowercase : Any =model_class.__name__ lowercase : Optional[Any] =infer_framework(_A ) if framework == "tf": lowercase : Optional[int] =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowercase : Optional[Any] =inspect.signature(model_class.forward ) # PyTorch models else: lowercase : Optional[Any] =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowercase_ ( __A : MutableMapping , __A : str = "" , __A : str = "." ) -> Any: """simple docstring""" def _flatten_dict(__A : Optional[int] , __A : Any="" , __A : Any="." ): for k, v in d.items(): lowercase : List[str] =str(_A ) + delimiter + str(_A ) if parent_key else k if v and isinstance(_A , _A ): yield from flatten_dict(_A , _A , delimiter=_A ).items() else: yield key, v return dict(_flatten_dict(_A , _A , _A ) ) @contextmanager def lowercase_ ( __A : Dict , __A : bool = False ) -> List[Any]: """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowercase_ ( __A : Optional[int] , __A : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" if is_numpy_array(_A ): return np.transpose(_A , axes=_A ) elif is_torch_tensor(_A ): return array.T if axes is None else array.permute(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.transpose(_A , perm=_A ) elif is_jax_tensor(_A ): return jnp.transpose(_A , axes=_A ) else: raise ValueError(F'Type not supported for transpose: {type(_A )}.' ) def lowercase_ ( __A : Any , __A : Any ) -> Union[str, Any]: """simple docstring""" if is_numpy_array(_A ): return np.reshape(_A , _A ) elif is_torch_tensor(_A ): return array.reshape(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.reshape(_A , _A ) elif is_jax_tensor(_A ): return jnp.reshape(_A , _A ) else: raise ValueError(F'Type not supported for reshape: {type(_A )}.' ) def lowercase_ ( __A : Dict , __A : int=None ) -> Tuple: """simple docstring""" if is_numpy_array(_A ): return np.squeeze(_A , axis=_A ) elif is_torch_tensor(_A ): return array.squeeze() if axis is None else array.squeeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.squeeze(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.squeeze(_A , axis=_A ) else: raise ValueError(F'Type not supported for squeeze: {type(_A )}.' ) def lowercase_ ( __A : Any , __A : Union[str, Any] ) -> List[str]: """simple docstring""" if is_numpy_array(_A ): return np.expand_dims(_A , _A ) elif is_torch_tensor(_A ): return array.unsqueeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.expand_dims(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.expand_dims(_A , axis=_A ) else: raise ValueError(F'Type not supported for expand_dims: {type(_A )}.' ) def lowercase_ ( __A : int ) -> Any: """simple docstring""" if is_numpy_array(_A ): return np.size(_A ) elif is_torch_tensor(_A ): return array.numel() elif is_tf_tensor(_A ): import tensorflow as tf return tf.size(_A ) elif is_jax_tensor(_A ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(_A )}.' ) def lowercase_ ( __A : Tuple , __A : Tuple ) -> Optional[Any]: """simple docstring""" for key, value in auto_map.items(): if isinstance(_A , (tuple, list) ): lowercase : Optional[Any] =[F'{repo_id}--{v}' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowercase : Tuple =F'{repo_id}--{value}' return auto_map def lowercase_ ( __A : Dict ) -> List[str]: """simple docstring""" for base_class in inspect.getmro(_A ): lowercase : Optional[int] =base_class.__module__ lowercase : List[str] =base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv3ImageProcessor''' UpperCamelCase_ = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self : Any , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' lowercase : str =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase_ , ) lowercase : Dict =kwargs.pop('''feature_extractor''' ) lowercase : Optional[int] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : List[str] , ) -> int: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor lowercase : Optional[Any] =self.image_processor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : int =features['words'] lowercase : int =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # add pixel values lowercase : Any =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : List[Any] =self.get_overflowing_images(UpperCAmelCase_ , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Any =images return encoded_inputs def A__ ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : List[str] =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}' ) return images_with_overflow def A__ ( self : Tuple , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A__ ( self : Optional[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def A__ ( self : List[Any] ) -> Any: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase_ , ) return self.image_processor_class @property def A__ ( self : Any ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase_ , ) return self.image_processor
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = XGLMConfig UpperCamelCase_ = {} UpperCamelCase_ = 'gelu' def __init__( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=14 , UpperCAmelCase : Any=7 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=True , UpperCAmelCase : str=99 , UpperCAmelCase : Dict=32 , UpperCAmelCase : int=2 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : Any=0.0_2 , ) -> str: '''simple docstring''' lowercase : Any =parent lowercase : Tuple =batch_size lowercase : Dict =seq_length lowercase : List[str] =is_training lowercase : int =use_input_mask lowercase : Any =use_labels lowercase : str =vocab_size lowercase : Dict =d_model lowercase : str =num_hidden_layers lowercase : Optional[int] =num_attention_heads lowercase : List[Any] =ffn_dim lowercase : Optional[int] =activation_function lowercase : int =activation_dropout lowercase : Optional[Any] =attention_dropout lowercase : List[str] =max_position_embeddings lowercase : Optional[int] =initializer_range lowercase : str =None lowercase : Any =0 lowercase : Union[str, Any] =2 lowercase : Optional[Any] =1 def A__ ( self : Any ) -> int: '''simple docstring''' return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : List[str] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowercase : Optional[Any] =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str =self.get_config() lowercase : List[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def A__ ( self : Dict ) -> Any: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_lowercase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_lowercase , ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' lowercase : str =self.prepare_config_and_inputs() ( lowercase ) : Dict =config_and_inputs lowercase : Optional[Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase : Optional[Any] =TFXGLMModelTester(self ) lowercase : List[str] =ConfigTester(self , config_class=_lowercase , n_embd=37 ) def A__ ( self : Any ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @slow def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any =TFXGLMModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : str , UpperCAmelCase : Union[str, Any]=True ) -> List[Any]: '''simple docstring''' lowercase : List[str] =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase : Tuple =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase : Any =[2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on lowercase : Tuple =model.generate(_lowercase , do_sample=_lowercase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _lowercase ) @slow def A__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowercase : int =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase : Dict =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) lowercase : Any =tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) lowercase : Any =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): lowercase : List[str] =model.generate(_lowercase , do_sample=_lowercase , seed=[7, 0] ) lowercase : Optional[Any] =tokenizer.decode(output_ids[0] , skip_special_tokens=_lowercase ) lowercase : Optional[Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(_lowercase , _lowercase ) @slow def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase : Optional[Any] =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase : str ='left' # use different length sentences to test batching lowercase : str =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] lowercase : List[Any] =tokenizer(_lowercase , return_tensors='''tf''' , padding=_lowercase ) lowercase : Tuple =inputs['input_ids'] lowercase : Optional[int] =model.generate(input_ids=_lowercase , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) lowercase : Optional[Any] =tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids lowercase : List[Any] =model.generate(input_ids=_lowercase , max_new_tokens=12 ) lowercase : List[Any] =tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids lowercase : Tuple =model.generate(input_ids=_lowercase , max_new_tokens=12 ) lowercase : Union[str, Any] =tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) lowercase : Optional[Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowercase ) lowercase : Tuple =tokenizer.decode(output_padded[0] , skip_special_tokens=_lowercase ) lowercase : Dict =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , [non_padded_sentence, padded_sentence] )
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : int ) -> int: """simple docstring""" if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : str , UpperCAmelCase : str = True , UpperCAmelCase : List[str] = None , UpperCAmelCase : Optional[int] = PILImageResampling.BILINEAR , UpperCAmelCase : List[Any] = True , UpperCAmelCase : int = None , UpperCAmelCase : Optional[int] = True , UpperCAmelCase : Optional[int] = 1 / 255 , UpperCAmelCase : List[Any] = True , UpperCAmelCase : Optional[int] = True , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = None , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase : Optional[Any] =size if size is not None else {'''shortest_edge''': 256} lowercase : List[Any] =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) lowercase : List[Any] =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : List[Any] =get_size_dict(_lowerCAmelCase , param_name='''crop_size''' ) lowercase : Dict =do_resize lowercase : int =size lowercase : str =do_center_crop lowercase : Any =crop_size lowercase : Dict =resample lowercase : Any =do_rescale lowercase : Optional[Any] =rescale_factor lowercase : Dict =offset lowercase : Any =do_normalize lowercase : Union[str, Any] =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Tuple =image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple = PILImageResampling.BILINEAR , UpperCAmelCase : List[str] = None , **UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' lowercase : Any =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" in size: lowercase : Dict =get_resize_output_image_size(_lowerCAmelCase , size['''shortest_edge'''] , default_to_square=_lowerCAmelCase ) elif "height" in size and "width" in size: lowercase : List[Any] =(size['''height'''], size['''width''']) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] = None , **UpperCAmelCase : str , ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def A__ ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] = True , UpperCAmelCase : int = None , **UpperCAmelCase : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =image.astype(np.floataa ) if offset: lowercase : Optional[int] =image - (scale / 2) return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def A__ ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict = None , **UpperCAmelCase : Tuple , ) -> Any: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str = None , UpperCAmelCase : List[str] = None , UpperCAmelCase : int = None , UpperCAmelCase : str = None , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : Optional[Any] = None , UpperCAmelCase : str = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Tuple = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict = ChannelDimension.FIRST , ) -> List[str]: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowercase : int =to_numpy_array(_lowerCAmelCase ) if do_resize: lowercase : Union[str, Any] =self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) if do_center_crop: lowercase : List[str] =self.center_crop(_lowerCAmelCase , size=_lowerCAmelCase ) if do_rescale: lowercase : str =self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase , offset=_lowerCAmelCase ) if do_normalize: lowercase : Any =self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) lowercase : Optional[Any] =to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) return image def A__ ( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : Tuple = None , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : List[str] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Tuple = None , UpperCAmelCase : Any = None , UpperCAmelCase : Optional[Any] = None , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Tuple = ChannelDimension.FIRST , **UpperCAmelCase : Optional[Any] , ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =do_resize if do_resize is not None else self.do_resize lowercase : Any =resample if resample is not None else self.resample lowercase : int =do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Dict =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Union[str, Any] =offset if offset is not None else self.offset lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[str] =image_mean if image_mean is not None else self.image_mean lowercase : List[Any] =image_std if image_std is not None else self.image_std lowercase : Optional[int] =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) lowercase : Optional[Any] =crop_size if crop_size is not None else self.crop_size lowercase : List[str] =get_size_dict(_lowerCAmelCase , param_name='''crop_size''' ) if not valid_images(_lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Optional[Any] =make_batched(_lowerCAmelCase ) lowercase : Any =[ [ self._preprocess_image( image=_lowerCAmelCase , do_resize=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , crop_size=_lowerCAmelCase , do_rescale=_lowerCAmelCase , rescale_factor=_lowerCAmelCase , offset=_lowerCAmelCase , do_normalize=_lowerCAmelCase , image_mean=_lowerCAmelCase , image_std=_lowerCAmelCase , data_format=_lowerCAmelCase , ) for img in video ] for video in videos ] lowercase : Optional[int] ={'''pixel_values''': videos} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : list[Any] =[] lowercase : int =0 lowercase : int =0 def A__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' return self.head == self.tail def A__ ( self : Any , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' self.data.append(UpperCamelCase_ ) lowercase : str =self.tail + 1 def A__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowercase : str =self.data[self.head] lowercase : Tuple =self.head + 1 return ret def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return self.tail - self.head def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =data lowercase : MyNode | None =None lowercase : MyNode | None =None lowercase : int =1 def A__ ( self : str ) -> int: '''simple docstring''' return self.data def A__ ( self : Any ) -> List[str]: '''simple docstring''' return self.left def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' return self.right def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.height def A__ ( self : Dict , UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Tuple =data def A__ ( self : Dict , UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =node def A__ ( self : int , UpperCAmelCase : Dict ) -> int: '''simple docstring''' lowercase : int =node def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase : int =height def lowercase_ ( __A : List[str] ) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def lowercase_ ( __A : Union[str, Any] , __A : int ) -> int: """simple docstring""" if a > b: return a return b def lowercase_ ( __A : Union[str, Any] ) -> MyNode: """simple docstring""" print('''left rotation node:''' , node.get_data() ) lowercase : Union[str, Any] =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCamelCase__ ) lowercase : Optional[int] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase__ ) lowercase : Optional[int] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase__ ) return ret def lowercase_ ( __A : int ) -> MyNode: """simple docstring""" print('''right rotation node:''' , node.get_data() ) lowercase : Union[str, Any] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCamelCase__ ) lowercase : Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase__ ) lowercase : Optional[Any] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase__ ) return ret def lowercase_ ( __A : List[str] ) -> MyNode: """simple docstring""" lowercase : Dict =node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCamelCase__ ) ) return right_rotation(lowerCamelCase__ ) def lowercase_ ( __A : Any ) -> MyNode: """simple docstring""" lowercase : List[str] =node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCamelCase__ ) ) return left_rotation(lowerCamelCase__ ) def lowercase_ ( __A : Optional[int] , __A : Union[str, Any] ) -> MyNode | None: """simple docstring""" if node is None: return MyNode(lowerCamelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCamelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowercase : Optional[Any] =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowercase : Dict =right_rotation(lowerCamelCase__ ) else: lowercase : Union[str, Any] =lr_rotation(lowerCamelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCamelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowercase : Any =node.get_right() assert right_child is not None if data < right_child.get_data(): lowercase : Union[str, Any] =rl_rotation(lowerCamelCase__ ) else: lowercase : Any =left_rotation(lowerCamelCase__ ) lowercase : int =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase__ ) return node def lowercase_ ( __A : Dict ) -> Any: """simple docstring""" while True: lowercase : Tuple =root.get_right() if right_child is None: break lowercase : List[Any] =right_child return root.get_data() def lowercase_ ( __A : Dict ) -> Any: """simple docstring""" while True: lowercase : Optional[int] =root.get_left() if left_child is None: break lowercase : List[Any] =left_child return root.get_data() def lowercase_ ( __A : List[str] , __A : int ) -> MyNode | None: """simple docstring""" lowercase : int =root.get_left() lowercase : Tuple =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowercase : List[Any] =get_left_most(lowerCamelCase__ ) root.set_data(lowerCamelCase__ ) root.set_right(del_node(lowerCamelCase__ , lowerCamelCase__ ) ) elif left_child is not None: lowercase : Tuple =left_child elif right_child is not None: lowercase : Optional[int] =right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(lowerCamelCase__ , lowerCamelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCamelCase__ , lowerCamelCase__ ) ) if get_height(lowerCamelCase__ ) - get_height(lowerCamelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowercase : int =left_rotation(lowerCamelCase__ ) else: lowercase : Dict =rl_rotation(lowerCamelCase__ ) elif get_height(lowerCamelCase__ ) - get_height(lowerCamelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowercase : Optional[int] =right_rotation(lowerCamelCase__ ) else: lowercase : int =lr_rotation(lowerCamelCase__ ) lowercase : int =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCamelCase__ ) return root class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : MyNode | None =None def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return get_height(self.root ) def A__ ( self : str , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' print('''insert:''' + str(UpperCamelCase_ ) ) lowercase : List[Any] =insert_node(self.root , UpperCamelCase_ ) def A__ ( self : Any , UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' print('''delete:''' + str(UpperCamelCase_ ) ) if self.root is None: print('''Tree is empty!''' ) return lowercase : List[Any] =del_node(self.root , UpperCamelCase_ ) def __str__( self : Dict , ) -> int: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' lowercase : List[str] ="" lowercase : int =MyQueue() q.push(self.root ) lowercase : Optional[Any] =self.get_height() if layer == 0: return output lowercase : Union[str, Any] =0 while not q.is_empty(): lowercase : List[Any] =q.pop() lowercase : Optional[Any] =" " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase_ ) q.push(UpperCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowercase : List[Any] =cnt + 1 for i in range(100 ): if cnt == math.pow(2 , UpperCamelCase_ ) - 1: lowercase : Dict =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowercase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() SCREAMING_SNAKE_CASE = AVLtree() SCREAMING_SNAKE_CASE = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } SCREAMING_SNAKE_CASE = '</w>' SCREAMING_SNAKE_CASE = '@@ ' def lowercase_ ( __A : List[str] ) -> Any: """simple docstring""" lowercase : int =set() lowercase : str =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : str =char return pairs # Speech2Text2 has no max input length SCREAMING_SNAKE_CASE = {'facebook/s2t-wav2vec2-large-en-de': 1_024} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : Tuple="<pad>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Dict="<unk>" , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : str=None , **UpperCAmelCase : Optional[Any] , ) -> Any: '''simple docstring''' super().__init__( unk_token=__A , bos_token=__A , eos_token=__A , pad_token=__A , do_lower_case=__A , **__A , ) lowercase : int =do_lower_case with open(__A , encoding='''utf-8''' ) as vocab_handle: lowercase : List[Any] =json.load(__A ) lowercase : str ={v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'No merges files provided. {self.__class__.__name__} can only be used for decoding.' ) lowercase : List[Any] =None lowercase : str =None else: with open(__A , encoding='''utf-8''' ) as merges_handle: lowercase : Optional[Any] =merges_handle.read().split('''\n''' )[:-1] lowercase : List[Any] =[tuple(merge.split()[:2] ) for merge in merges] lowercase : List[Any] =dict(zip(__A , range(len(__A ) ) ) ) lowercase : Tuple ={} @property def A__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return len(self.decoder ) def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase : Optional[Any] =get_pairs(__A ) if not pairs: return token while True: lowercase : Any =min(__A , key=lambda UpperCAmelCase : self.bpe_ranks.get(__A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase : Optional[Any] =bigram lowercase : Optional[Any] =[] lowercase : Any =0 while i < len(__A ): try: lowercase : Tuple =word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Union[str, Any] =j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(__A ) lowercase : Dict =new_word if len(__A ) == 1: break else: lowercase : List[Any] =get_pairs(__A ) lowercase : Dict =" ".join(__A ) if word == "\n " + BPE_TOKEN_MERGES: lowercase : Any ="\n" + BPE_TOKEN_MERGES if word.endswith(__A ): lowercase : List[str] =word.replace(__A , '''''' ) lowercase : List[Any] =word.replace(''' ''' , __A ) lowercase : Tuple =word return word def A__ ( self : Any , UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: lowercase : List[Any] =text.lower() lowercase : Optional[int] =text.split() lowercase : Optional[int] =[] for token in text: if token: split_tokens.extend(list(self.bpe(__A ).split(''' ''' ) ) ) return split_tokens def A__ ( self : int , UpperCAmelCase : str ) -> Any: '''simple docstring''' return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def A__ ( self : List[str] , UpperCAmelCase : int ) -> int: '''simple docstring''' lowercase : List[Any] =self.decoder.get(__A , self.unk_token ) return result def A__ ( self : int , UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' lowercase : List[str] =" ".join(__A ) # make sure @@ tokens are concatenated lowercase : int ="".join(string.split(__A ) ) return string def A__ ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Optional[Any]: '''simple docstring''' if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Union[str, Any] =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Any =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + '''\n''' ) lowercase : Dict =0 if self.bpe_ranks is None: return (vocab_file,) with open(__A , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(__A ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ReformerTokenizer UpperCamelCase_ = ReformerTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = True def A__ ( self : Dict ) -> List[str]: '''simple docstring''' super().setUp() lowercase : List[Any] =ReformerTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowercase : str ="""<s>""" lowercase : Optional[int] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1000 ) def A__ ( self : Any ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' if not self.test_rust_tokenizer: return lowercase : List[str] =self.get_tokenizer() lowercase : Optional[Any] =self.get_rust_tokenizer() lowercase : int ="""I was born in 92000, and this is falsé.""" lowercase : List[str] =tokenizer.tokenize(_a ) lowercase : Any =rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] =tokenizer.encode(_a , add_special_tokens=_a ) lowercase : Union[str, Any] =rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : str =self.get_rust_tokenizer() lowercase : List[str] =tokenizer.encode(_a ) lowercase : Any =rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def A__ ( self : Union[str, Any] , UpperCAmelCase : int=15 ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase : Dict =self.rust_tokenizer_class.from_pretrained(_a , **_a ) # Simple input lowercase : List[Any] ="""This is a simple input""" lowercase : Optional[Any] =["""This is a simple input 1""", """This is a simple input 2"""] lowercase : int =("""This is a simple input""", """This is a pair""") lowercase : Dict =[ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding='''max_length''' ) # Simple input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding='''max_length''' ) # Simple input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding='''max_length''' , ) # Pair input self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding='''max_length''' ) # Pair input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding='''max_length''' ) # Pair input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding='''max_length''' , ) def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =ReformerTokenizer(_a , keep_accents=_a ) lowercase : Any =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [285, 46, 10, 170, 382] , ) lowercase : Any =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : Optional[int] =tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase : Union[str, Any] =tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : Any ="""Hello World!""" lowercase : List[str] =[126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : int =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowercase : int =[ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @require_torch @slow def A__ ( self : str ) -> Tuple: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowercase : Dict =list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase : List[Any] =""" """.join(_a ) lowercase : str =self.big_tokenizer.encode_plus(_a , return_tensors='''pt''' ) lowercase : Tuple =self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) lowercase : Optional[int] =ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowercase : Any =encoded_sequence["""input_ids"""].shape lowercase : Any =ReformerModel(_a ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_a ) model(**_a ) @slow def A__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] ={"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowercase : Tuple =[ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_a , sequences=_a , )
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowercase_ ( __A : Any ) -> Tuple: """simple docstring""" lowercase : int =VideoMAEConfig() set_architecture_configs(lowerCAmelCase__ , lowerCAmelCase__ ) if "finetuned" not in model_name: lowercase : List[Any] =False if "finetuned" in model_name: lowercase : Union[str, Any] ='''huggingface/label-files''' if "kinetics" in model_name: lowercase : str =4_0_0 lowercase : Any ='''kinetics400-id2label.json''' elif "ssv2" in model_name: lowercase : Union[str, Any] =1_7_4 lowercase : Optional[Any] ='''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) lowercase : Optional[Any] =json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase : Dict ={int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase : int =idalabel lowercase : Optional[Any] ={v: k for k, v in idalabel.items()} return config def lowercase_ ( __A : str , __A : int ) -> Optional[Any]: """simple docstring""" if "small" in model_name: lowercase : Dict =3_8_4 lowercase : Optional[Any] =1_5_3_6 lowercase : Union[str, Any] =1_2 lowercase : List[str] =1_6 lowercase : Union[str, Any] =1_2 lowercase : Tuple =3 lowercase : str =1_9_2 lowercase : List[str] =7_6_8 elif "large" in model_name: lowercase : Any =1_0_2_4 lowercase : Tuple =4_0_9_6 lowercase : List[Any] =2_4 lowercase : Tuple =1_6 lowercase : int =1_2 lowercase : List[Any] =8 lowercase : List[Any] =5_1_2 lowercase : Optional[Any] =2_0_4_8 elif "huge" in model_name: lowercase : Any =1_2_8_0 lowercase : Union[str, Any] =5_1_2_0 lowercase : Dict =3_2 lowercase : Optional[int] =1_6 lowercase : List[str] =1_2 lowercase : Optional[int] =8 lowercase : Optional[int] =6_4_0 lowercase : Union[str, Any] =2_5_6_0 elif "base" not in model_name: raise ValueError('''Model name should include either \"small\", \"base\", \"large\", or \"huge\"''' ) def lowercase_ ( __A : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder." in name: lowercase : List[Any] =name.replace('''encoder.''' , '''''' ) if "cls_token" in name: lowercase : int =name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: lowercase : Union[str, Any] =name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: lowercase : int =name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase : Any =name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase : int =name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: lowercase : str =name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: lowercase : Union[str, Any] =name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: lowercase : Union[str, Any] =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: lowercase : str =name.replace('''attn''' , '''attention.self''' ) if "attn" in name: lowercase : int =name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: lowercase : List[Any] =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase : List[Any] =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase : int =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase : Optional[Any] =name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: lowercase : Tuple =name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: lowercase : Optional[int] =name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: lowercase : Tuple =name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowercase : int =name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowercase : List[str] =name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: lowercase : Tuple =name.replace('''head''' , '''classifier''' ) return name def lowercase_ ( __A : List[Any] , __A : Tuple ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase : List[Any] =orig_state_dict.pop(lowerCAmelCase__ ) if key.startswith('''encoder.''' ): lowercase : Optional[Any] =key.replace('''encoder.''' , '''''' ) if "qkv" in key: lowercase : int =key.split('''.''' ) if key.startswith('''decoder.blocks''' ): lowercase : Optional[int] =config.decoder_hidden_size lowercase : List[Any] =int(key_split[2] ) lowercase : Union[str, Any] ='''decoder.decoder_layers.''' if "weight" in key: lowercase : Optional[int] =val[:dim, :] lowercase : Optional[Any] =val[dim : dim * 2, :] lowercase : Optional[int] =val[-dim:, :] else: lowercase : Tuple =config.hidden_size lowercase : Any =int(key_split[1] ) lowercase : Optional[int] ='''videomae.encoder.layer.''' if "weight" in key: lowercase : Optional[Any] =val[:dim, :] lowercase : Tuple =val[dim : dim * 2, :] lowercase : str =val[-dim:, :] else: lowercase : int =val return orig_state_dict def lowercase_ ( ) -> Tuple: """simple docstring""" lowercase : Tuple =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowercase : Tuple =np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) def lowercase_ ( __A : int , __A : Optional[Any] , __A : Any , __A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Tuple =get_videomae_config(lowerCAmelCase__ ) if "finetuned" in model_name: lowercase : str =VideoMAEForVideoClassification(lowerCAmelCase__ ) else: lowercase : List[str] =VideoMAEForPreTraining(lowerCAmelCase__ ) # download original checkpoint, hosted on Google Drive lowercase : Any ='''pytorch_model.bin''' gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ ) lowercase : str =torch.load(lowerCAmelCase__ , map_location='''cpu''' ) if "model" in files: lowercase : List[str] =files['''model'''] else: lowercase : Optional[int] =files['''module'''] lowercase : Tuple =convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify model on basic input lowercase : Dict =VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowercase : Any =prepare_video() lowercase : int =image_processor(lowerCAmelCase__ , return_tensors='''pt''' ) if "finetuned" not in model_name: lowercase : Dict =hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowercase : Optional[Any] =torch.load(lowerCAmelCase__ ) lowercase : Any =model(**lowerCAmelCase__ ) lowercase : Union[str, Any] =outputs.logits lowercase : Tuple =[ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowercase : str =torch.Size([1, 4_0_0] ) lowercase : List[Any] =torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": lowercase : str =torch.Size([1, 1_7_4] ) lowercase : Union[str, Any] =torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": lowercase : Tuple =torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase : Optional[Any] =torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": lowercase : Tuple =torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase : Any =torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one lowercase : List[str] =torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": lowercase : Dict =torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase : Dict =torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": lowercase : int =torch.Size([1, 4_0_0] ) lowercase : str =torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": lowercase : List[Any] =torch.Size([1, 4_0_0] ) lowercase : Tuple =torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowercase : Union[str, Any] =torch.Size([1, 4_0_0] ) lowercase : Optional[Any] =torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": lowercase : List[Any] =torch.Size([1, 4_0_0] ) lowercase : List[str] =torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": lowercase : Optional[int] =torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase : str =torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowercase : Tuple =torch.Size([1, 1_7_4] ) lowercase : str =torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": lowercase : List[Any] =torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase : Optional[Any] =torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": lowercase : Any =torch.Size([1, 1_7_4] ) lowercase : List[Any] =torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": lowercase : Optional[int] =outputs.loss assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(lowerCAmelCase__ , organization='''nielsr''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase_ ( __lowerCAmelCase ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''BlipImageProcessor''' UpperCamelCase_ = '''AutoTokenizer''' def __init__( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> str: '''simple docstring''' super().__init__(_UpperCamelCase , _UpperCamelCase ) # add QFormer tokenizer lowercase : Dict =qformer_tokenizer def __call__( self : Union[str, Any] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Dict , ) -> BatchFeature: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowercase : Tuple =BatchFeature() if text is not None: lowercase : Union[str, Any] =self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) encoding.update(_UpperCamelCase ) lowercase : List[str] =self.qformer_tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) lowercase : str =qformer_text_encoding.pop('''input_ids''' ) lowercase : Any =qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowercase : str =self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def A__ ( self : int , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def A__ ( self : Tuple , *UpperCAmelCase : List[str] , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : int =self.tokenizer.model_input_names lowercase : Union[str, Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def A__ ( self : int , UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' if os.path.isfile(_UpperCamelCase ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) lowercase : str =os.path.join(_UpperCamelCase , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(_UpperCamelCase ) return super().save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def A__ ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained(_UpperCamelCase , subfolder='''qformer_tokenizer''' ) lowercase : str =cls._get_arguments_from_pretrained(_UpperCamelCase , **_UpperCamelCase ) args.append(_UpperCamelCase ) return cls(*_UpperCamelCase )
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class UpperCAmelCase_ ( a__ ): """simple docstring""" UpperCamelCase_ = '''open-llama''' def __init__( self : Any , UpperCAmelCase : List[Any]=10_0000 , UpperCAmelCase : int=4096 , UpperCAmelCase : List[Any]=1_1008 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : int=32 , UpperCAmelCase : Any="silu" , UpperCAmelCase : List[Any]=2048 , UpperCAmelCase : List[Any]=0.0_2 , UpperCAmelCase : Union[str, Any]=1e-6 , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Dict=1 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: '''simple docstring''' lowercase : int =vocab_size lowercase : Dict =max_position_embeddings lowercase : Optional[Any] =hidden_size lowercase : List[str] =intermediate_size lowercase : Tuple =num_hidden_layers lowercase : Dict =num_attention_heads lowercase : str =hidden_act lowercase : Optional[int] =initializer_range lowercase : Optional[int] =rms_norm_eps lowercase : Tuple =use_cache lowercase : int =kwargs.pop( '''use_memorry_efficient_attention''' , _A ) lowercase : List[Any] =hidden_dropout_prob lowercase : Dict =attention_dropout_prob lowercase : int =use_stable_embedding lowercase : int =shared_input_output_embedding lowercase : Optional[int] =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A , ) def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'got {self.rope_scaling}' ) lowercase : Optional[Any] =self.rope_scaling.get('''type''' , _A ) lowercase : Tuple =self.rope_scaling.get('''factor''' , _A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 # setable values UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = None @classmethod def A__ ( cls : Optional[int] , UpperCAmelCase : CommonSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray ) -> Optional[int]: '''simple docstring''' return cls(common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase ) @dataclass class UpperCAmelCase_ ( _A ): """simple docstring""" UpperCamelCase_ = 42 class UpperCAmelCase_ ( _A , _A ): """simple docstring""" UpperCamelCase_ = [e.name for e in FlaxKarrasDiffusionSchedulers] UpperCamelCase_ = 42 @property def A__ ( self : List[Any] ) -> str: '''simple docstring''' return True @register_to_config def __init__( self : Tuple , UpperCAmelCase : int = 1000 , UpperCAmelCase : float = 0.0_0_0_1 , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : str = "linear" , UpperCAmelCase : Optional[jnp.ndarray] = None , UpperCAmelCase : str = "fixed_small" , UpperCAmelCase : bool = True , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : jnp.dtype = jnp.floataa , ) -> List[str]: '''simple docstring''' lowercase : str =dtype def A__ ( self : Tuple , UpperCAmelCase : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: lowercase : int =CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase : Tuple =jnp.array(1.0 , dtype=self.dtype ) lowercase : Union[str, Any] =jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase , ) def A__ ( self : Tuple , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : Optional[int] = None ) -> jnp.ndarray: '''simple docstring''' return sample def A__ ( self : str , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : int , UpperCAmelCase : Tuple = () ) -> DDPMSchedulerState: '''simple docstring''' lowercase : List[str] =self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase : int =(jnp.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase , ) def A__ ( self : int , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : Any , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=None ) -> Any: '''simple docstring''' lowercase : str =state.common.alphas_cumprod[t] lowercase : Union[str, Any] =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase : str =(1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase : Tuple =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase : str =jnp.clip(__lowerCamelCase , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase : str =jnp.log(jnp.clip(__lowerCamelCase , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowercase : Union[str, Any] =state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase : str =jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase : Optional[Any] =variance lowercase : str =state.common.betas[t] lowercase : Optional[int] =(predicted_variance + 1) / 2 lowercase : int =frac * max_log + (1 - frac) * min_log return variance def A__ ( self : int , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : Optional[jax.random.KeyArray] = None , UpperCAmelCase : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' lowercase : Union[str, Any] =timestep if key is None: lowercase : Any =jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase : Any =jnp.split(__lowerCamelCase , sample.shape[1] , axis=1 ) else: lowercase : Tuple =None # 1. compute alphas, betas lowercase : Dict =state.common.alphas_cumprod[t] lowercase : Tuple =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase : Any =1 - alpha_prod_t lowercase : str =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase : Optional[int] =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase : Union[str, Any] =model_output elif self.config.prediction_type == "v_prediction": lowercase : Dict =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase : Dict =jnp.clip(__lowerCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase : Optional[int] =(alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase : Dict =state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase : List[str] =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase : str =jax.random.split(__lowerCamelCase , num=1 ) lowercase : Any =jax.random.normal(__lowerCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__lowerCamelCase , __lowerCamelCase , predicted_variance=__lowerCamelCase ) ** 0.5) * noise lowercase : List[Any] =jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase : List[Any] =pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCamelCase , state=__lowerCamelCase ) def A__ ( self : Dict , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def A__ ( self : List[str] , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __len__( self : str ) -> str: '''simple docstring''' return self.config.num_train_timesteps
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class UpperCAmelCase_ ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ = '''masked_bert''' def __init__( self : Dict , UpperCAmelCase : int=3_0522 , UpperCAmelCase : Any=768 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : List[str]=3072 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : int=2 , UpperCAmelCase : Optional[int]=0.0_2 , UpperCAmelCase : List[Any]=1e-12 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict="topK" , UpperCAmelCase : List[Any]="constant" , UpperCAmelCase : Optional[Any]=0.0 , **UpperCAmelCase : Any , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) lowercase : int =vocab_size lowercase : Dict =hidden_size lowercase : List[str] =num_hidden_layers lowercase : List[Any] =num_attention_heads lowercase : Tuple =hidden_act lowercase : Optional[Any] =intermediate_size lowercase : List[str] =hidden_dropout_prob lowercase : str =attention_probs_dropout_prob lowercase : Dict =max_position_embeddings lowercase : Any =type_vocab_size lowercase : Union[str, Any] =initializer_range lowercase : Optional[Any] =layer_norm_eps lowercase : Optional[Any] =pruning_method lowercase : List[str] =mask_init lowercase : int =mask_scale
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _UpperCAmelCase ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : VQModel , UpperCAmelCase : UNetaDModel , UpperCAmelCase : DDIMScheduler ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules(vqvae=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : Tuple , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : float = 0.0 , UpperCAmelCase : int = 50 , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , **UpperCAmelCase : List[Any] , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' lowercase : str =randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCamelCase , ) lowercase : Optional[int] =latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase : Tuple =latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowercase : Any ='''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase : List[str] ={} if accepts_eta: lowercase : int =eta for t in self.progress_bar(self.scheduler.timesteps ): lowercase : Optional[int] =self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual lowercase : List[str] =self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase : List[str] =self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # decode the image latents with the VAE lowercase : Dict =self.vqvae.decode(__UpperCamelCase ).sample lowercase : int =(image / 2 + 0.5).clamp(0 , 1 ) lowercase : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : Union[str, Any] =self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' from collections.abc import Callable import numpy as np def lowercase_ ( __A : Tuple , __A : Optional[Any] , __A : Tuple , __A : int , __A : Any ) -> np.array: """simple docstring""" lowercase : Any =int(np.ceil((x_end - xa) / step_size ) ) lowercase : List[str] =np.zeros((n + 1,) ) lowercase : Union[str, Any] =ya lowercase : str =xa for k in range(__A ): lowercase : Any =y[k] + step_size * ode_func(__A , y[k] ) lowercase : List[Any] =y[k] + ( (step_size / 2) * (ode_func(__A , y[k] ) + ode_func(x + step_size , __A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowercase__ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : List[str] =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(_lowercase ): lowercase : Dict =pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def A__ ( self : List[Any] ) -> str: '''simple docstring''' with self.assertRaises(_lowercase ): lowercase : str =pa.array(TypedSequence([1, 2, 3] , try_type=Value('''bool''' ) , type=Value('''int64''' ) ) ) def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Dict =pa.array(TypedSequence([1, 2, 3] , type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def A__ ( self : str ) -> Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase : Tuple =pa.array(TypedSequence(['''foo''', '''bar'''] , type=Value('''int64''' ) ) ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Tuple =pa.array(TypedSequence([1, 2, 3] , try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' lowercase : Optional[int] =pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) def A__ ( self : str ) -> int: '''simple docstring''' lowercase : List[Any] =pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def A__ ( self : Any ) -> List[Any]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase : List[str] =pa.array(TypedSequence(['''foo''', '''bar'''] , type=ArrayaD((1, 3) , '''int64''' ) ) ) def A__ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowercase : List[Any] =pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase : str =pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def A__ ( self : int ) -> List[str]: '''simple docstring''' import PIL.Image lowercase : int =PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''' , side_effect=_lowercase ) as mock_cast_to_python_objects: lowercase : Any =pa.array(TypedSequence([{'''path''': None, '''bytes''': b'''image_bytes'''}, pil_image] , type=Image() ) ) lowercase : List[Any] =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' , _lowercase ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def lowercase_ ( __A : Tuple , __A : int ) -> Dict: """simple docstring""" lowercase : List[str] =pa.BufferReader(__UpperCamelCase ) if isinstance(__UpperCamelCase , pa.Buffer ) else pa.memory_map(__UpperCamelCase ) lowercase : Optional[Any] =pa.ipc.open_stream(__UpperCamelCase ) lowercase : pa.Table =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 1_0] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowercase_ ( __A : Tuple , __A : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Optional[int] =pa.BufferOutputStream() lowercase : List[Any] =pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase : Optional[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase : Tuple ={"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowercase_ ( ) -> int: """simple docstring""" lowercase : Union[str, Any] =pa.BufferOutputStream() lowercase : Optional[Any] =Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=__UpperCamelCase , features=__UpperCamelCase ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) lowercase : int =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowercase : int =pa.BufferReader(output.getvalue() ) lowercase : Optional[int] =pa.ipc.open_stream(__UpperCamelCase ) lowercase : pa.Table =f.read_all() lowercase : Optional[int] =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__UpperCamelCase ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 1_0] ) def lowercase_ ( __A : Tuple ) -> Optional[Any]: """simple docstring""" lowercase : int =pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt='''split_name''' , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2] ) lowercase : List[Any] =writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 1_0] ) def lowercase_ ( __A : str ) -> List[str]: """simple docstring""" lowercase : List[str] =pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt='''split_name''' , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1_0 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=1_0 ) lowercase : Dict =writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 1_0] ) def lowercase_ ( __A : List[str] ) -> int: """simple docstring""" lowercase : List[Any] =pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt='''split_name''' , check_duplicates=__UpperCamelCase , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2 ) lowercase : List[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 1_0] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowercase_ ( __A : int , __A : Optional[int] ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] =pa.BufferOutputStream() lowercase : int =pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) lowercase : List[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase : Tuple ={"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 1_0] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowercase_ ( __A : str , __A : int ) -> List[Any]: """simple docstring""" lowercase : Union[str, Any] =pa.BufferOutputStream() lowercase : str =pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) lowercase : Dict =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase : List[str] ={"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 1_0] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowercase_ ( __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : str =pa.BufferOutputStream() lowercase : Optional[int] =pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) lowercase : Optional[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase : List[Any] ={"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowercase_ ( ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase : str ={"""col_1""": pa.string(), """col_2""": pa.intaa()} lowercase : Any =os.path.join(__UpperCamelCase , '''test.arrow''' ) with ArrowWriter(path=__UpperCamelCase , schema=pa.schema(__UpperCamelCase ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) lowercase : Dict =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(__UpperCamelCase , 1 ) def lowercase_ ( __A : Any ) -> Any: """simple docstring""" if pa.types.is_list(__UpperCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowercase_ ( __A : int , __A : Dict ) -> Union[str, Any]: """simple docstring""" if isinstance(lst[0] , __UpperCamelCase ): change_first_primitive_element_in_list(lst[0] , __UpperCamelCase ) else: lowercase : Tuple =value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowercase_ ( __A : Any , __A : List[str] , __A : List[str] ) -> Optional[Any]: """simple docstring""" lowercase : str =pa.array(TypedSequence(__UpperCamelCase , optimized_int_type=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowercase_ ( __A : Dict , __A : str , __A : List[Any] ) -> Any: """simple docstring""" lowercase : List[str] =pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowercase : Any =copy.deepcopy(__UpperCamelCase ) lowercase : List[str] =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__UpperCamelCase , __UpperCamelCase ) lowercase : str =pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True] ) def lowercase_ ( __A : List[str] , __A : Dict ) -> Optional[int]: """simple docstring""" lowercase : List[str] =str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=__UpperCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowercase_ ( __A : Tuple ) -> Tuple: """simple docstring""" lowercase : List[Any] ="""mock://dataset-train.arrow""" with ArrowWriter(path=__UpperCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__UpperCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase : int =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__UpperCamelCase ) def lowercase_ ( ) -> List[Any]: """simple docstring""" lowercase : Union[str, Any] =pa.BufferOutputStream() with ParquetWriter(stream=__UpperCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase : str =writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowercase : Optional[int] =pa.BufferReader(output.getvalue() ) lowercase : pa.Table =pq.read_table(__UpperCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True] ) def lowercase_ ( __A : Optional[int] , __A : Optional[int] ) -> Optional[Any]: """simple docstring""" import PIL.Image lowercase : int =str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__UpperCamelCase , format='''png''' ) lowercase : List[str] =pa.BufferOutputStream() with ParquetWriter( stream=__UpperCamelCase , features=Features({'''image''': Image()} ) , embed_local_files=__UpperCamelCase ) as writer: writer.write({'''image''': image_path} ) writer.finalize() lowercase : Tuple =pa.BufferReader(output.getvalue() ) lowercase : pa.Table =pq.read_table(__UpperCamelCase ) lowercase : List[Any] =pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , __UpperCamelCase ) with open(__UpperCamelCase , '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowercase_ ( ) -> Tuple: """simple docstring""" lowercase : Tuple =pa.schema([pa.field('''col_1''' , pa.string() , nullable=__UpperCamelCase )] ) lowercase : Optional[Any] =pa.BufferOutputStream() with ArrowWriter(stream=__UpperCamelCase ) as writer: writer._build_writer(inferred_schema=__UpperCamelCase ) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string() )] )
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class UpperCAmelCase_ ( _lowercase ): """simple docstring""" UpperCamelCase_ = '''sequence-classification''' def __init__( self : Any , UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' if type(A_ ) == dict: lowercase : Dict =Namespace(**A_ ) lowercase : Tuple =glue_output_modes[hparams.task] lowercase : List[str] =glue_tasks_num_labels[hparams.task] super().__init__(A_ , A_ , self.mode ) def A__ ( self : Dict , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.model(**A_ ) def A__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' lowercase : List[Any] ={'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase : int =batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase : List[Any] =self(**A_ ) lowercase : Tuple =outputs[0] lowercase : List[Any] =self.trainer.lr_schedulers[0]['''scheduler'''] lowercase : Dict ={'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : Any =self.hparams lowercase : Tuple =processors[args.task]() lowercase : int =processor.get_labels() for mode in ["train", "dev"]: lowercase : Tuple =self._feature_file(A_ ) if os.path.exists(A_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , A_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowercase : Any =( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) lowercase : Any =convert_examples_to_features( A_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , A_ ) torch.save(A_ , A_ ) def A__ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : bool = False ) -> DataLoader: '''simple docstring''' lowercase : Optional[Any] ='''dev''' if mode == '''test''' else mode lowercase : List[Any] =self._feature_file(A_ ) logger.info('''Loading features from cached file %s''' , A_ ) lowercase : Any =torch.load(A_ ) lowercase : int =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase : Dict =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowercase : List[Any] =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowercase : List[str] =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowercase : Union[str, Any] =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(A_ , A_ , A_ , A_ ) , batch_size=A_ , shuffle=A_ , ) def A__ ( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] ={'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase : Optional[Any] =batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase : Tuple =self(**A_ ) lowercase , lowercase : List[Any] =outputs[:2] lowercase : Dict =logits.detach().cpu().numpy() lowercase : str =inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A__ ( self : List[str] , UpperCAmelCase : str ) -> tuple: '''simple docstring''' lowercase : Union[str, Any] =torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() lowercase : Tuple =np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowercase : Optional[int] =np.argmax(A_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowercase : Optional[Any] =np.squeeze(A_ ) lowercase : List[str] =np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowercase : Optional[int] =[[] for _ in range(out_label_ids.shape[0] )] lowercase : List[Any] =[[] for _ in range(out_label_ids.shape[0] )] lowercase : List[str] ={**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , A_ , A_ )} lowercase : Any =dict(results.items() ) lowercase : Any =results return ret, preds_list, out_label_list def A__ ( self : Optional[Any] , UpperCAmelCase : list ) -> dict: '''simple docstring''' lowercase , lowercase , lowercase : str =self._eval_end(A_ ) lowercase : Dict =ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A__ ( self : Dict , UpperCAmelCase : Dict ) -> dict: '''simple docstring''' lowercase , lowercase , lowercase : List[str] =self._eval_end(A_ ) lowercase : Tuple =ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' BaseTransformer.add_model_specific_args(A_ , A_ ) parser.add_argument( '''--max_seq_length''' , default=128 , type=A_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=A_ , required=A_ , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=A_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def lowercase_ ( ) -> Optional[Any]: """simple docstring""" lowercase : Tuple =argparse.ArgumentParser() add_generic_args(snake_case__ , os.getcwd() ) lowercase : int =GLUETransformer.add_model_specific_args(snake_case__ , os.getcwd() ) lowercase : Tuple =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase : List[Any] =os.path.join( '''./results''' , F'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) lowercase : Optional[int] =GLUETransformer(snake_case__ ) lowercase : List[Any] =generic_train(snake_case__ , snake_case__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase : Union[str, Any] =sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=snake_case__ ) ) lowercase : List[Any] =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(snake_case__ ) if __name__ == "__main__": main()
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Input must be a string of 8 numbers plus letter' SCREAMING_SNAKE_CASE = 'TRWAGMYFPDXBNJZSQVHLCKE' def lowercase_ ( __A : List[Any] ) -> bool: """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase : Optional[int] =F'Expected string as input, found {type(__SCREAMING_SNAKE_CASE ).__name__}' raise TypeError(__SCREAMING_SNAKE_CASE ) lowercase : Optional[int] =spanish_id.replace('''-''' , '''''' ).upper() if len(__SCREAMING_SNAKE_CASE ) != 9: raise ValueError(__SCREAMING_SNAKE_CASE ) try: lowercase : Union[str, Any] =int(spanish_id_clean[0:8] ) lowercase : Dict =spanish_id_clean[8] except ValueError as ex: raise ValueError(__SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(__SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = r'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class UpperCAmelCase_ ( __A ): """simple docstring""" @add_start_docstrings(UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , **UpperCAmelCase : Tuple ) -> bool: '''simple docstring''' raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : str = None ) -> Optional[int]: '''simple docstring''' lowercase : Any =max_length lowercase : int =max_position_embeddings @add_start_docstrings(UpperCAmelCase ) def __call__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[int] ) -> bool: '''simple docstring''' lowercase : Tuple =input_ids.shape[-1] lowercase : Any =cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f'maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ' '''exceptions, performance degradation, or nothing at all.''' ) return is_done class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f'Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ' '''with `max_length = start_length + max_new_tokens` instead.''' , UpperCAmelCase , ) lowercase : Optional[int] =start_length lowercase : List[Any] =max_new_tokens lowercase : Optional[Any] =start_length + max_new_tokens @add_start_docstrings(UpperCAmelCase ) def __call__( self : str , UpperCAmelCase : int , UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict = None ) -> int: '''simple docstring''' lowercase : Union[str, Any] =max_time lowercase : str =time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCAmelCase ) def __call__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class UpperCAmelCase_ ( __A ): """simple docstring""" @add_start_docstrings(UpperCAmelCase ) def __call__( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , **UpperCAmelCase : Tuple ) -> bool: '''simple docstring''' return any(criteria(UpperCAmelCase , UpperCAmelCase ) for criteria in self ) @property def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(UpperCAmelCase , UpperCAmelCase ): return stopping_criterium.max_length elif isinstance(UpperCAmelCase , UpperCAmelCase ): return stopping_criterium.max_length return None def lowercase_ ( __A : StoppingCriteriaList , __A : int ) -> Optional[Any]: """simple docstring""" lowercase : Tuple =stopping_criteria.max_length lowercase : List[str] =deepcopy(__A ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , __A ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__A ) ) return new_stopping_criteria
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' def lowercase_ ( __A : int , __A : int , __A : list[list[int]] ) -> Optional[Any]: """simple docstring""" def update_area_of_max_square(__A : int , __A : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase : List[Any] =update_area_of_max_square(snake_case_ , col + 1 ) lowercase : Optional[int] =update_area_of_max_square(row + 1 , col + 1 ) lowercase : int =update_area_of_max_square(row + 1 , snake_case_ ) if mat[row][col]: lowercase : Optional[int] =1 + min([right, diagonal, down] ) lowercase : Any =max(largest_square_area[0] , snake_case_ ) return sub_problem_sol else: return 0 lowercase : str =[0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowercase_ ( __A : int , __A : int , __A : list[list[int]] ) -> str: """simple docstring""" def update_area_of_max_square_using_dp_array( __A : int , __A : int , __A : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase : Tuple =update_area_of_max_square_using_dp_array(snake_case_ , col + 1 , snake_case_ ) lowercase : List[str] =update_area_of_max_square_using_dp_array(row + 1 , col + 1 , snake_case_ ) lowercase : List[Any] =update_area_of_max_square_using_dp_array(row + 1 , snake_case_ , snake_case_ ) if mat[row][col]: lowercase : str =1 + min([right, diagonal, down] ) lowercase : Union[str, Any] =max(largest_square_area[0] , snake_case_ ) lowercase : int =sub_problem_sol return sub_problem_sol else: return 0 lowercase : List[Any] =[0] lowercase : Dict =[[-1] * cols for _ in range(snake_case_ )] update_area_of_max_square_using_dp_array(0 , 0 , snake_case_ ) return largest_square_area[0] def lowercase_ ( __A : int , __A : int , __A : list[list[int]] ) -> List[str]: """simple docstring""" lowercase : Tuple =[[0] * (cols + 1) for _ in range(rows + 1 )] lowercase : List[Any] =0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase : int =dp_array[row][col + 1] lowercase : Optional[Any] =dp_array[row + 1][col + 1] lowercase : List[Any] =dp_array[row + 1][col] if mat[row][col] == 1: lowercase : Dict =1 + min(snake_case_ , snake_case_ , snake_case_ ) lowercase : Any =max(dp_array[row][col] , snake_case_ ) else: lowercase : List[Any] =0 return largest_square_area def lowercase_ ( __A : int , __A : int , __A : list[list[int]] ) -> Optional[int]: """simple docstring""" lowercase : List[Any] =[0] * (cols + 1) lowercase : str =[0] * (cols + 1) lowercase : Tuple =0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase : Dict =current_row[col + 1] lowercase : Optional[int] =next_row[col + 1] lowercase : List[str] =next_row[col] if mat[row][col] == 1: lowercase : Dict =1 + min(snake_case_ , snake_case_ , snake_case_ ) lowercase : List[str] =max(current_row[col] , snake_case_ ) else: lowercase : int =0 lowercase : Union[str, Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : List[str] =[randint(-1_0_0_0 , 1_0_0_0 ) for i in range(1_0 )] lowercase : Tuple =randint(-5_0_0_0 , 5_0_0_0 ) return (arr, r) SCREAMING_SNAKE_CASE = make_dataset() def lowercase_ ( __A : list[int] , __A : int ) -> str: """simple docstring""" for triplet in permutations(_lowerCamelCase , 3 ): if sum(_lowerCamelCase ) == target: return tuple(sorted(_lowerCamelCase ) ) return (0, 0, 0) def lowercase_ ( __A : list[int] , __A : int ) -> Dict: """simple docstring""" arr.sort() lowercase : Optional[Any] =len(_lowerCamelCase ) for i in range(n - 1 ): lowercase : Tuple =i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowercase_ ( ) -> Tuple: """simple docstring""" lowercase : Any ="\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" lowercase : str ="\ntriplet_sum1(*dataset)\n" lowercase : Optional[Any] ="\ntriplet_sum2(*dataset)\n" lowercase : Any =repeat(setup=_lowerCamelCase , stmt=_lowerCamelCase , repeat=5 , number=1_0_0_0_0 ) lowercase : Dict =repeat(setup=_lowerCamelCase , stmt=_lowerCamelCase , repeat=5 , number=1_0_0_0_0 ) return (min(_lowerCamelCase ), min(_lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = None UpperCamelCase_ = None def lowercase_ ( ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =Node(1 ) lowercase : Dict =Node(2 ) lowercase : Dict =Node(3 ) lowercase : Dict =Node(4 ) lowercase : Union[str, Any] =Node(5 ) return tree def lowercase_ ( __A : Node | None ) -> int: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase_ ( __A : Node | None ) -> Any: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase_ ( __A : Node | None ) -> str: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase_ ( __A : Node | None ) -> Union[str, Any]: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase_ ( __A : Node | None ) -> List[Any]: """simple docstring""" lowercase : list[Any] =[] if root is None: return output lowercase : Union[str, Any] =deque([root] ) while process_queue: lowercase : str =process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase_ ( __A : Node | None , __A : int ) -> str: """simple docstring""" lowercase : list[Any] =[] def populate_output(__A : Node | None , __A : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def lowercase_ ( __A : Node | None , __A : int ) -> Dict: """simple docstring""" lowercase : list[Any] =[] def populate_output(__A : Node | None , __A : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def lowercase_ ( __A : Node | None ) -> int: """simple docstring""" if root is None: return [] lowercase : list[Sequence[Node | None]] =[] lowercase : List[Any] =0 lowercase : Optional[int] =height(snake_case__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case__ , snake_case__ ) ) lowercase : Tuple =1 else: output.append(get_nodes_from_right_to_left(snake_case__ , snake_case__ ) ) lowercase : Tuple =0 return output def lowercase_ ( ) -> List[Any]: # Main function for testing. """simple docstring""" lowercase : Optional[int] =make_tree() print(F'In-order Traversal: {inorder(snake_case__ )}' ) print(F'Pre-order Traversal: {preorder(snake_case__ )}' ) print(F'Post-order Traversal: {postorder(snake_case__ )}' , '''\n''' ) print(F'Height of Tree: {height(snake_case__ )}' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case__ ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(snake_case__ , level=snake_case__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowercase_ ( __A : Tuple , __A : List[str]=() , __A : Any=None , __A : Dict="no" , __A : Optional[int]="29500" ) -> Dict: """simple docstring""" lowercase : List[str] =False lowercase : Union[str, Any] =False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): lowercase : str =True elif "IPython" in sys.modules: lowercase : Optional[Any] ='''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: lowercase : Dict =PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __snake_case ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: lowercase : Any =8 lowercase : Any =PrepareForLaunch(__snake_case , distributed_type='''TPU''' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(__snake_case , args=__snake_case , nprocs=__snake_case , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__snake_case ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__snake_case , master_addr='''127.0.01''' , master_port=__snake_case , mixed_precision=__snake_case ): lowercase : Any =PrepareForLaunch(__snake_case , distributed_type='''MULTI_GPU''' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(__snake_case , args=__snake_case , nprocs=__snake_case , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowercase : int ='''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__snake_case ) def lowercase_ ( __A : Any , __A : Optional[Any]=() , __A : int=2 ) -> Optional[Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__snake_case , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): lowercase : int =PrepareForLaunch(__snake_case , debug=__snake_case ) start_processes(__snake_case , args=__snake_case , nprocs=__snake_case , start_method='''fork''' )
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowercase_ ( __A : int=2 , __A : Optional[Any]=3 , __A : Optional[Any]=1_6 , __A : int = 1_0 , __A : int = 2 ) -> Optional[Any]: """simple docstring""" def get_dataset(__A : Tuple ): lowercase : Optional[Any] =torch.randn(batch_size * n_batches , 1 ) return TensorDataset(UpperCAmelCase__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase : Any =get_dataset(UpperCAmelCase__ ) lowercase : str =get_dataset(UpperCAmelCase__ ) lowercase : Union[str, Any] =DataLoader(UpperCAmelCase__ , shuffle=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , num_workers=4 ) lowercase : Optional[Any] =DataLoader(UpperCAmelCase__ , shuffle=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase_ ( __A : str , __A : Optional[int] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[str] , __A : List[str]=None ) -> Dict: """simple docstring""" lowercase : Optional[int] =[] for epoch in range(UpperCAmelCase__ ): # Train quickly model.train() for batch in dataloader: lowercase : int =batch lowercase : Tuple =model(UpperCAmelCase__ ) lowercase : Optional[Any] =torch.nn.functional.mse_loss(UpperCAmelCase__ , UpperCAmelCase__ ) accelerator.backward(UpperCAmelCase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase : List[Any] =nn.Parameter(torch.randn(1 ) ) lowercase : Tuple =nn.Parameter(torch.randn(1 ) ) def A__ ( self : Optional[int] , UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' return x * self.a + self.b class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Dict ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : int =DummyModel() lowercase : Optional[Any] =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase : Any =dummy_dataloaders() lowercase : int =ProjectConfiguration(total_limit=1 , project_dir=lowercase_ , automatic_checkpoint_naming=lowercase_ ) # Train baseline lowercase : List[Any] =Accelerator(project_config=lowercase_ ) lowercase : List[str] =accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self : str ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : List[str] =DummyModel() lowercase : Any =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase : Dict =dummy_dataloaders() # Train baseline lowercase : str =Accelerator() lowercase : Any =accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save initial lowercase : Any =os.path.join(lowercase_ , '''initial''' ) accelerator.save_state(lowercase_ ) (lowercase) : Tuple =model.a.item(), model.b.item() lowercase : Tuple =optimizer.state_dict() lowercase : int =train(3 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) (lowercase) : List[Any] =model.a.item(), model.b.item() lowercase : Dict =optimizer.state_dict() # Train partially set_seed(42 ) lowercase : List[Any] =DummyModel() lowercase : int =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase : List[str] =dummy_dataloaders() lowercase : Optional[int] =Accelerator() lowercase : Optional[Any] =accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.load_state(lowercase_ ) (lowercase) : List[Any] =model.a.item(), model.b.item() lowercase : Optional[int] =optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) lowercase : Optional[int] =train(2 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save everything lowercase : str =os.path.join(lowercase_ , '''checkpoint''' ) accelerator.save_state(lowercase_ ) # Load everything back in and make sure all states work accelerator.load_state(lowercase_ ) test_rands += train(1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) (lowercase) : Tuple =model.a.item(), model.b.item() lowercase : Tuple =optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Any =DummyModel() lowercase : int =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase : Dict =dummy_dataloaders() lowercase : Tuple =ProjectConfiguration(automatic_checkpoint_naming=lowercase_ ) # Train baseline lowercase : List[Any] =Accelerator(project_dir=lowercase_ , project_config=lowercase_ ) lowercase : str =accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save initial accelerator.save_state() (lowercase) : str =model.a.item(), model.b.item() lowercase : str =optimizer.state_dict() lowercase : Optional[Any] =train(3 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) (lowercase) : str =model.a.item(), model.b.item() lowercase : List[Any] =optimizer.state_dict() # Train partially set_seed(42 ) lowercase : Union[str, Any] =DummyModel() lowercase : Union[str, Any] =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase : Union[str, Any] =dummy_dataloaders() lowercase : Dict =ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowercase_ ) lowercase : int =Accelerator(project_dir=lowercase_ , project_config=lowercase_ ) lowercase : Optional[int] =accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.load_state(os.path.join(lowercase_ , '''checkpoints''' , '''checkpoint_0''' ) ) (lowercase) : List[Any] =model.a.item(), model.b.item() lowercase : List[str] =optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) lowercase : Optional[int] =train(2 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowercase_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) (lowercase) : Tuple =model.a.item(), model.b.item() lowercase : List[str] =optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : List[str] =torch.tensor([1, 2, 3] ) lowercase : Any =torch.tensor([2, 3, 4] ) lowercase : Tuple =DummyModel() lowercase : str =torch.optim.Adam(net.parameters() ) lowercase : Optional[Any] =Accelerator() with self.assertRaises(lowercase_ ) as ve: accelerator.register_for_checkpointing(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase : Optional[int] =str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self : Optional[int] ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Any =DummyModel() lowercase : Union[str, Any] =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase : int =torch.optim.lr_scheduler.StepLR(lowercase_ , step_size=1 , gamma=0.9_9 ) lowercase : List[Any] =dummy_dataloaders() lowercase : List[str] =ProjectConfiguration(automatic_checkpoint_naming=lowercase_ ) # Train baseline lowercase : Union[str, Any] =Accelerator(project_dir=lowercase_ , project_config=lowercase_ ) lowercase : Tuple =accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save initial accelerator.save_state() lowercase : Dict =scheduler.state_dict() train(3 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.assertNotEqual(lowercase_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowercase_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(lowercase_ , scheduler.state_dict() ) def A__ ( self : int ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Dict =DummyModel() lowercase : Optional[int] =ProjectConfiguration(automatic_checkpoint_naming=lowercase_ , total_limit=2 ) # Train baseline lowercase : Optional[Any] =Accelerator(project_dir=lowercase_ , project_config=lowercase_ ) lowercase : str =accelerator.prepare(lowercase_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowercase_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(lowercase_ , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = "/tmp/accelerate/state_checkpointing" SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters(), lr=1E-3) SCREAMING_SNAKE_CASE = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline SCREAMING_SNAKE_CASE = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) SCREAMING_SNAKE_CASE = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) SCREAMING_SNAKE_CASE = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: SCREAMING_SNAKE_CASE = group["params"][0].device break assert param_device.type == accelerator.device.type SCREAMING_SNAKE_CASE = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: SCREAMING_SNAKE_CASE = group["params"][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: SCREAMING_SNAKE_CASE = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( a__ ): """simple docstring""" def __init__( self : int , **UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**lowerCAmelCase__ ) def A__ ( self : Optional[int] , UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[int] =[] lowercase : Optional[Any] =[] lowercase : Dict =element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowercase : List[str] =parent.find_all(child.name , recursive=lowerCAmelCase__ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(lowerCAmelCase__ ) else next(i for i, s in enumerate(lowerCAmelCase__ , 1 ) if s is child ) ) lowercase : Optional[int] =parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict ) -> int: '''simple docstring''' lowercase : str =BeautifulSoup(lowerCAmelCase__ , '''html.parser''' ) lowercase : Optional[int] =[] lowercase : List[Any] =[] lowercase : List[str] =[] for element in html_code.descendants: if type(lowerCAmelCase__ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowercase : List[Any] =html.unescape(lowerCAmelCase__ ).strip() if not text_in_this_tag: continue all_doc_strings.append(lowerCAmelCase__ ) lowercase : List[Any] =self.xpath_soup(lowerCAmelCase__ ) stringaxtag_seq.append(lowerCAmelCase__ ) stringaxsubs_seq.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int ="" for tagname, subs in zip(lowerCAmelCase__ , lowerCAmelCase__ ): xpath += f'/{tagname}' if subs != 0: xpath += f'[{subs}]' return xpath def __call__( self : Any , UpperCAmelCase : Optional[int] ) -> BatchFeature: '''simple docstring''' lowercase : List[Any] =False # Check that strings has a valid type if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase : Tuple =True elif isinstance(lowerCAmelCase__ , (list, tuple) ): if len(lowerCAmelCase__ ) == 0 or isinstance(html_strings[0] , lowerCAmelCase__ ): lowercase : int =True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' f'but is of type {type(lowerCAmelCase__ )}.' ) lowercase : Optional[Any] =bool(isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(html_strings[0] , lowerCAmelCase__ )) ) if not is_batched: lowercase : Dict =[html_strings] # Get nodes + xpaths lowercase : Optional[Any] =[] lowercase : Dict =[] for html_string in html_strings: lowercase : str =self.get_three_from_single(lowerCAmelCase__ ) nodes.append(lowerCAmelCase__ ) lowercase : Dict =[] for node, tag_list, sub_list in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase : Union[str, Any] =self.construct_xpath(lowerCAmelCase__ , lowerCAmelCase__ ) xpath_strings.append(lowerCAmelCase__ ) xpaths.append(lowerCAmelCase__ ) # return as Dict lowercase : Optional[Any] ={"nodes": nodes, "xpaths": xpaths} lowercase : List[Any] =BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) return encoded_inputs
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' def lowercase_ ( __A : str ) -> Union[str, Any]: """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) lowercase : Dict ='''''' while len(UpperCAmelCase__ ) % 3 != 0: lowercase : Tuple ='''0''' + bin_string lowercase : Optional[int] =[ bin_string[index : index + 3] for index in range(len(UpperCAmelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowercase : int =0 for index, val in enumerate(UpperCAmelCase__ ): oct_val += int(2 ** (2 - index) * int(UpperCAmelCase__ ) ) oct_string += str(UpperCAmelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( __UpperCAmelCase ): """simple docstring""" UpperCamelCase_ = """encoder-decoder""" UpperCamelCase_ = True def __init__( self : Tuple , **UpperCAmelCase : str ) -> Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase : List[str] =kwargs.pop('''encoder''' ) lowercase : Optional[int] =encoder_config.pop('''model_type''' ) lowercase : Optional[int] =kwargs.pop('''decoder''' ) lowercase : int =decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase : Optional[Any] =AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) lowercase : int =AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) lowercase : Union[str, Any] =True @classmethod def A__ ( cls : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowercase : int =True lowercase : Optional[Any] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase_ ) def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : Dict =copy.deepcopy(self.__dict__ ) lowercase : str =self.encoder.to_dict() lowercase : int =self.decoder.to_dict() lowercase : Dict =self.__class__.model_type return output
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class UpperCAmelCase_ ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Distribution , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=0 ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =1.0 if scale is None else scale lowercase : Optional[int] =0.0 if loc is None else loc super().__init__(UpperCamelCase__ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCamelCase__ )] ) @property def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self : List[Any] ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self : int ) -> Dict: '''simple docstring''' return self.variance.sqrt() class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Callable[..., Tuple[torch.Tensor]] , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase : Union[str, Any] =args_dim lowercase : List[Any] =nn.ModuleList([nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) for dim in args_dim.values()] ) lowercase : Dict =domain_map def A__ ( self : List[str] , UpperCAmelCase : torch.Tensor ) -> List[Any]: '''simple docstring''' lowercase : Any =[proj(UpperCamelCase__ ) for proj in self.proj] return self.domain_map(*UpperCamelCase__ ) class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' super().__init__() lowercase : Union[str, Any] =function def A__ ( self : List[str] , UpperCAmelCase : Optional[Any] , *UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' return self.function(UpperCamelCase__ , *UpperCamelCase__ ) class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 def __init__( self : str , UpperCAmelCase : int = 1 ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =dim lowercase : List[str] ={k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCamelCase__ ) else: return Independent(self.distribution_class(*UpperCamelCase__ ) , 1 ) def A__ ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , ) -> int: '''simple docstring''' lowercase : Union[str, Any] =self._base_distribution(UpperCamelCase__ ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCamelCase__ , loc=UpperCamelCase__ , scale=UpperCamelCase__ , event_dim=self.event_dim ) @property def A__ ( self : Optional[int] ) -> int: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self : str ) -> List[Any]: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' return 0.0 def A__ ( self : Union[str, Any] , UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' return ParameterProjection( in_features=UpperCamelCase__ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self : List[str] , *UpperCAmelCase : torch.Tensor ) -> Tuple: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase : torch.Tensor ) -> Optional[int]: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCamelCase__ ) + 4.0 )) / 2.0 class UpperCAmelCase_ ( UpperCamelCase_ ): """simple docstring""" UpperCamelCase_ = {'''df''': 1, '''loc''': 1, '''scale''': 1} UpperCamelCase_ = StudentT @classmethod def A__ ( cls : Optional[Any] , UpperCAmelCase : torch.Tensor , UpperCAmelCase : torch.Tensor , UpperCAmelCase : torch.Tensor ) -> List[str]: '''simple docstring''' lowercase : Optional[Any] =cls.squareplus(UpperCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase : Any =2.0 + cls.squareplus(UpperCamelCase__ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase_ ( UpperCamelCase_ ): """simple docstring""" UpperCamelCase_ = {'''loc''': 1, '''scale''': 1} UpperCamelCase_ = Normal @classmethod def A__ ( cls : str , UpperCAmelCase : torch.Tensor , UpperCAmelCase : torch.Tensor ) -> List[Any]: '''simple docstring''' lowercase : int =cls.squareplus(UpperCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase_ ( UpperCamelCase_ ): """simple docstring""" UpperCamelCase_ = {'''total_count''': 1, '''logits''': 1} UpperCamelCase_ = NegativeBinomial @classmethod def A__ ( cls : Optional[int] , UpperCAmelCase : torch.Tensor , UpperCAmelCase : torch.Tensor ) -> str: '''simple docstring''' lowercase : List[str] =cls.squareplus(UpperCamelCase__ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self : Dict , UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' lowercase : Tuple =distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCamelCase__ , logits=UpperCamelCase__ ) else: return Independent(self.distribution_class(total_count=UpperCamelCase__ , logits=UpperCamelCase__ ) , 1 ) def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None ) -> Tuple: '''simple docstring''' lowercase : str =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any=13 , UpperCAmelCase : Any=2 , UpperCAmelCase : List[str]=24 , UpperCAmelCase : Dict=16 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=32 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[str]=37 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Tuple=10 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Dict=2 , ): '''simple docstring''' lowercase : Tuple =parent lowercase : Any =batch_size lowercase : List[Any] =patch_size lowercase : Dict =max_length lowercase : Tuple =num_mel_bins lowercase : int =is_training lowercase : Union[str, Any] =use_labels lowercase : List[str] =hidden_size lowercase : Tuple =num_hidden_layers lowercase : Any =num_attention_heads lowercase : Dict =intermediate_size lowercase : Optional[Any] =hidden_act lowercase : List[str] =hidden_dropout_prob lowercase : Union[str, Any] =attention_probs_dropout_prob lowercase : int =type_sequence_label_size lowercase : int =initializer_range lowercase : Any =scope lowercase : str =frequency_stride lowercase : List[Any] =time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase : int =(self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowercase : Any =(self.max_length - self.patch_size) // self.time_stride + 1 lowercase : List[Any] =frequency_out_dimension * time_out_dimension lowercase : int =num_patches + 2 def A__ ( self : List[Any] ): '''simple docstring''' lowercase : List[str] =floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowercase : Optional[Any] =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Optional[int] =self.get_config() return config, input_values, labels def A__ ( self : List[str] ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def A__ ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] ): '''simple docstring''' lowercase : str =ASTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase : Dict =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : int ): '''simple docstring''' lowercase : Dict =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Tuple =config_and_inputs lowercase : Dict ={'''input_values''': input_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCamelCase_ = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Any ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def A__ ( self : List[str] ): '''simple docstring''' lowercase : Union[str, Any] =ASTModelTester(self ) lowercase : Optional[Any] =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def A__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def A__ ( self : List[Any] ): '''simple docstring''' pass def A__ ( self : Optional[Any] ): '''simple docstring''' lowercase , lowercase : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[str] =model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : Optional[int] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A__ ( self : Union[str, Any] ): '''simple docstring''' lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[str] =model_class(_SCREAMING_SNAKE_CASE ) lowercase : Tuple =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : str =[*signature.parameters.keys()] lowercase : Any =['''input_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def A__ ( self : Optional[int] ): '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @slow def A__ ( self : str ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[Any] =ASTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" lowercase : str =hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) lowercase , lowercase : Optional[Any] =torchaudio.load(__UpperCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : str ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def A__ ( self : int ): '''simple docstring''' lowercase : Optional[int] =self.default_feature_extractor lowercase : Optional[Any] =ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(_SCREAMING_SNAKE_CASE ) lowercase : Any =self.default_feature_extractor lowercase , lowercase : List[Any] =prepare_audio() lowercase : int =audio.squeeze().numpy() lowercase : Optional[Any] =feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase : Optional[int] =model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowercase : List[Any] =torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowercase : int =torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 class UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" UpperCamelCase_ = 1 @register_to_config def __init__( self : Tuple , UpperCAmelCase : int = 2000 , UpperCAmelCase : float = 0.1_5 , UpperCAmelCase : float = 0.0_1 , UpperCAmelCase : float = 1348.0 , UpperCAmelCase : float = 1e-5 , UpperCAmelCase : int = 1 , ) -> Optional[Any]: '''simple docstring''' lowercase : int =sigma_max # setable values lowercase : Any =None self.set_sigmas(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : float = None , UpperCAmelCase : Union[str, torch.device] = None ) -> str: '''simple docstring''' lowercase : Dict =sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase : int =torch.linspace(1 , UpperCAmelCase , UpperCAmelCase , device=UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : int , UpperCAmelCase : float = None , UpperCAmelCase : float = None , UpperCAmelCase : float = None ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =sigma_min if sigma_min is not None else self.config.sigma_min lowercase : Any =sigma_max if sigma_max is not None else self.config.sigma_max lowercase : Any =sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[int] =sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase : Any =torch.exp(torch.linspace(math.log(UpperCAmelCase ) , math.log(UpperCAmelCase ) , UpperCAmelCase ) ) lowercase : List[str] =torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def A__ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def A__ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : bool = True , ) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase : List[Any] =timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase : Union[str, Any] =(timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase : Optional[int] =timesteps.to(self.discrete_sigmas.device ) lowercase : Optional[int] =self.discrete_sigmas[timesteps].to(sample.device ) lowercase : Any =self.get_adjacent_sigma(UpperCAmelCase , UpperCAmelCase ).to(sample.device ) lowercase : str =torch.zeros_like(UpperCAmelCase ) lowercase : Dict =(sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase : List[str] =diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase : Optional[Any] =diffusion.unsqueeze(-1 ) lowercase : Tuple =drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase : List[Any] =randn_tensor( sample.shape , layout=sample.layout , generator=UpperCAmelCase , device=sample.device , dtype=sample.dtype ) lowercase : str =sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase : Dict =prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=UpperCAmelCase , prev_sample_mean=UpperCAmelCase ) def A__ ( self : Dict , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : bool = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase : int =randn_tensor(sample.shape , layout=sample.layout , generator=UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase : str =torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowercase : Optional[int] =torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowercase : Optional[int] =(self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase : Optional[int] =step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase : List[Any] =step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase : Optional[Any] =step_size.unsqueeze(-1 ) lowercase : List[str] =sample + step_size * model_output lowercase : Any =prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , ) -> torch.FloatTensor: '''simple docstring''' lowercase : Union[str, Any] =timesteps.to(original_samples.device ) lowercase : Tuple =self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase : str =( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(UpperCAmelCase ) * sigmas[:, None, None, None] ) lowercase : Any =noise + original_samples return noisy_samples def __len__( self : List[Any] ) -> Dict: '''simple docstring''' return self.config.num_train_timesteps
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' pass @is_pipeline_test @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @require_torch def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase : Any =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowercase : int =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase : Any =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowercase ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowercase : Dict =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], ] , ) @require_tf def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[int] =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowercase : Optional[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase : List[Any] =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowercase ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowercase : str =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], ] , ) @slow @require_torch def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowercase : List[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase : Union[str, Any] =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowercase : Optional[int] =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowercase : Union[str, Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase : str =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowercase : Any =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput SCREAMING_SNAKE_CASE = 8 def lowercase_ ( __A : Optional[Any] , __A : Tuple=BITS ) -> Optional[Any]: """simple docstring""" lowercase : Any =x.device lowercase : List[str] =(x * 2_5_5).int().clamp(0 , 2_5_5 ) lowercase : int =2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCAmelCase ) lowercase : Union[str, Any] =rearrange(_lowerCAmelCase , '''d -> d 1 1''' ) lowercase : Any =rearrange(_lowerCAmelCase , '''b c h w -> b c 1 h w''' ) lowercase : Any =((x & mask) != 0).float() lowercase : Union[str, Any] =rearrange(_lowerCAmelCase , '''b c d h w -> b (c d) h w''' ) lowercase : Optional[int] =bits * 2 - 1 return bits def lowercase_ ( __A : int , __A : int=BITS ) -> int: """simple docstring""" lowercase : Dict =x.device lowercase : str =(x > 0).int() lowercase : Optional[Any] =2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCAmelCase , dtype=torch.intaa ) lowercase : Union[str, Any] =rearrange(_lowerCAmelCase , '''d -> d 1 1''' ) lowercase : Tuple =rearrange(_lowerCAmelCase , '''b (c d) h w -> b c d h w''' , d=8 ) lowercase : List[Any] =reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def lowercase_ ( self : Optional[int] , __A : Dict , __A : str , __A : Optional[Any] , __A : List[Any] = 0.0 , __A : List[str] = True , __A : str=None , __A : Dict = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowercase : List[Any] =timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowercase : List[str] =self.alphas_cumprod[timestep] lowercase : str =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowercase : Optional[Any] =1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase : Any =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowercase : List[str] =self.bit_scale if self.config.clip_sample: lowercase : Any =torch.clamp(_lowerCAmelCase , -scale , _lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowercase : int =self._get_variance(_lowerCAmelCase , _lowerCAmelCase ) lowercase : Union[str, Any] =eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowercase : Tuple =(sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase : Union[str, Any] =(1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase : Tuple =alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowercase : Any =model_output.device if torch.is_tensor(_lowerCAmelCase ) else "cpu" lowercase : Optional[Any] =torch.randn(model_output.shape , dtype=model_output.dtype , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) lowercase : List[str] =self._get_variance(_lowerCAmelCase , _lowerCAmelCase ) ** 0.5 * eta * noise lowercase : str =prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def lowercase_ ( self : Dict , __A : Optional[int] , __A : List[Any] , __A : str , __A : Optional[Any]="epsilon" , __A : Optional[Any]=None , __A : Optional[int] = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" lowercase : Tuple =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowercase : List[Any] =torch.split(_lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowercase : Any =None # 1. compute alphas, betas lowercase : Union[str, Any] =self.alphas_cumprod[t] lowercase : Optional[Any] =self.alphas_cumprod[t - 1] if t > 0 else self.one lowercase : List[Any] =1 - alpha_prod_t lowercase : Any =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowercase : Any =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowercase : Optional[Any] =model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" lowercase : Any =self.bit_scale if self.config.clip_sample: lowercase : int =torch.clamp(_lowerCAmelCase , -scale , _lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase : Any =(alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowercase : List[Any] =self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase : List[str] =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase : Optional[Any] =0 if t > 0: lowercase : Any =torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_lowerCAmelCase ).to(model_output.device ) lowercase : str =(self._get_variance(_lowerCAmelCase , predicted_variance=_lowerCAmelCase ) ** 0.5) * noise lowercase : str =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) class UpperCAmelCase_ ( __snake_case ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple = 1.0 , ) -> Any: '''simple docstring''' super().__init__() lowercase : Optional[int] =bit_scale lowercase : int =( ddim_bit_scheduler_step if isinstance(A_ , A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : int , UpperCAmelCase : Optional[Any] = 256 , UpperCAmelCase : Any = 256 , UpperCAmelCase : str = 50 , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Dict = 1 , UpperCAmelCase : int = "pil" , UpperCAmelCase : List[str] = True , **UpperCAmelCase : Any , ) -> Union[str, Any]: '''simple docstring''' lowercase : str =torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=A_ , ) lowercase : str =decimal_to_bits(A_ ) * self.bit_scale lowercase : List[str] =latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowercase : int =self.unet(A_ , A_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase : Tuple =self.scheduler.step(A_ , A_ , A_ ).prev_sample lowercase : Any =bits_to_decimal(A_ ) if output_type == "pil": lowercase : Any =self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" UpperCamelCase_ = "funnel" UpperCamelCase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : Optional[int] , UpperCAmelCase : Any=3_0522 , UpperCAmelCase : Optional[Any]=[4, 4, 4] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=2 , UpperCAmelCase : Optional[Any]=768 , UpperCAmelCase : str=12 , UpperCAmelCase : str=64 , UpperCAmelCase : Optional[Any]=3072 , UpperCAmelCase : Optional[int]="gelu_new" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=1e-9 , UpperCAmelCase : str="mean" , UpperCAmelCase : List[str]="relative_shift" , UpperCAmelCase : str=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Optional[Any]=True , **UpperCAmelCase : Any , ) -> Dict: '''simple docstring''' lowercase : Dict =vocab_size lowercase : Optional[Any] =block_sizes lowercase : Optional[int] =[1] * len(lowerCamelCase__ ) if block_repeats is None else block_repeats assert len(lowerCamelCase__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowercase : List[Any] =num_decoder_layers lowercase : List[Any] =d_model lowercase : Tuple =n_head lowercase : Union[str, Any] =d_head lowercase : Union[str, Any] =d_inner lowercase : List[str] =hidden_act lowercase : List[Any] =hidden_dropout lowercase : Any =attention_dropout lowercase : List[str] =activation_dropout lowercase : str =initializer_range lowercase : Dict =initializer_std lowercase : str =layer_norm_eps assert pooling_type in [ "mean", "max", ], f'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' lowercase : Optional[Any] =pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' lowercase : List[str] =attention_type lowercase : Optional[Any] =separate_cls lowercase : str =truncate_seq lowercase : int =pool_q_only super().__init__(**lowerCamelCase__ ) @property def A__ ( self : Any ) -> int: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def A__ ( self : str ) -> str: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def A__ ( self : Any , UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration SCREAMING_SNAKE_CASE = 500_000 SCREAMING_SNAKE_CASE = os.path.split(__file__) SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def lowercase_ ( __A : datasets.Dataset , **__A : Dict ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =dataset.map(**UpperCamelCase__ ) @get_duration def lowercase_ ( __A : datasets.Dataset , **__A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] =dataset.filter(**UpperCamelCase__ ) def lowercase_ ( ) -> Any: """simple docstring""" lowercase : Tuple ={"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase : str =datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase : Tuple =generate_example_dataset( os.path.join(UpperCamelCase__ , '''dataset.arrow''' ) , UpperCamelCase__ , num_examples=UpperCamelCase__ ) lowercase : Tuple =transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase__ ) def tokenize(__A : Dict ): return tokenizer(examples['''text'''] ) lowercase : Any =map(UpperCamelCase__ ) lowercase : Union[str, Any] =map(UpperCamelCase__ , batched=UpperCamelCase__ ) lowercase : List[str] =map(UpperCamelCase__ , function=lambda __A : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='''numpy''' ): lowercase : Dict =map(UpperCamelCase__ , function=lambda __A : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='''pandas''' ): lowercase : List[Any] =map(UpperCamelCase__ , function=lambda __A : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase : str =map(UpperCamelCase__ , function=lambda __A : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase : Tuple =map(UpperCamelCase__ , function=lambda __A : None , batched=UpperCamelCase__ ) lowercase : Tuple =map(UpperCamelCase__ , function=UpperCamelCase__ , batched=UpperCamelCase__ ) lowercase : List[str] =filter(UpperCamelCase__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase__ , '''wb''' ) as f: f.write(json.dumps(UpperCamelCase__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowercase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Dict , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : int = 32 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , UpperCAmelCase : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , UpperCAmelCase : bool = True , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : Optional[int]=30 , UpperCAmelCase : Union[str, Any]=400 , UpperCAmelCase : List[Any]=3 , ) -> Dict: '''simple docstring''' lowercase : List[Any] =parent lowercase : Dict =do_resize lowercase : str =size if size is not None else {'''shortest_edge''': 288} lowercase : int =size_divisor lowercase : Dict =do_rescale lowercase : int =rescale_factor lowercase : str =do_normalize lowercase : List[Any] =do_center_crop lowercase : Tuple =image_mean lowercase : int =image_std lowercase : Tuple =do_pad lowercase : List[str] =batch_size lowercase : Union[str, Any] =num_channels lowercase : List[str] =min_resolution lowercase : List[str] =max_resolution def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict=False ) -> Any: '''simple docstring''' if not batched: lowercase : Any =self.size['''shortest_edge'''] lowercase : Union[str, Any] =image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image ): lowercase , lowercase : Union[str, Any] =image.size else: lowercase , lowercase : List[Any] =image.shape[1], image.shape[2] lowercase : Union[str, Any] =size / min(UpperCAmelCase__ , UpperCAmelCase__ ) if h < w: lowercase , lowercase : List[Any] =size, scale * w else: lowercase , lowercase : str =scale * h, size lowercase : Dict =int((1333 / 800) * size ) if max(UpperCAmelCase__ , UpperCAmelCase__ ) > max_size: lowercase : Optional[int] =max_size / max(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Optional[int] =newh * scale lowercase : Dict =neww * scale lowercase , lowercase : List[str] =int(newh + 0.5 ), int(neww + 0.5 ) lowercase , lowercase : str =( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowercase : Tuple =[] for image in image_inputs: lowercase , lowercase : Union[str, Any] =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase : Optional[int] =max(UpperCAmelCase__ , key=lambda UpperCAmelCase : item[0] )[0] lowercase : int =max(UpperCAmelCase__ , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase__ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = BridgeTowerImageProcessor if is_vision_available() else None def A__ ( self : Optional[int] ) -> str: '''simple docstring''' lowercase : int =BridgeTowerImageProcessingTester(self ) @property def A__ ( self : List[str] ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''size_divisor''' ) ) def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : List[str] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input lowercase : Any =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : str =self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : Optional[Any] =image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values lowercase , lowercase : int =self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input lowercase : Union[str, Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : str =self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : List[str] =image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Any =self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self : int ) -> List[str]: '''simple docstring''' lowercase : Any =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input lowercase : Optional[int] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Optional[int] =self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : Optional[Any] =image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values lowercase , lowercase : int =self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase , lowercase : Optional[int] =FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) lowercase : Any ='''A painting of a squirrel eating a burger''' lowercase : int =jax.device_count() lowercase : Tuple =num_samples * [prompt] lowercase : Tuple =sd_pipe.prepare_inputs(A__ ) lowercase : Any =replicate(A__ ) lowercase : List[str] =shard(A__ ) lowercase : Tuple =jax.random.PRNGKey(0 ) lowercase : Optional[int] =jax.random.split(A__ , jax.device_count() ) lowercase : Tuple =sd_pipe(A__ , A__ , A__ , num_inference_steps=25 , jit=A__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase : Union[str, Any] =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase : List[Any] =images[0, 253:256, 253:256, -1] lowercase : Any =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase : str =jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Optional[Any] ='''stabilityai/stable-diffusion-2''' lowercase , lowercase : Union[str, Any] =FlaxDPMSolverMultistepScheduler.from_pretrained(A__ , subfolder='''scheduler''' ) lowercase , lowercase : Optional[int] =FlaxStableDiffusionPipeline.from_pretrained( A__ , scheduler=A__ , revision='''bf16''' , dtype=jnp.bfloataa , ) lowercase : Union[str, Any] =scheduler_params lowercase : Optional[Any] ='''A painting of a squirrel eating a burger''' lowercase : Dict =jax.device_count() lowercase : Optional[int] =num_samples * [prompt] lowercase : Any =sd_pipe.prepare_inputs(A__ ) lowercase : Optional[int] =replicate(A__ ) lowercase : Optional[Any] =shard(A__ ) lowercase : List[str] =jax.random.PRNGKey(0 ) lowercase : Optional[int] =jax.random.split(A__ , jax.device_count() ) lowercase : int =sd_pipe(A__ , A__ , A__ , num_inference_steps=25 , jit=A__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase : str =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase : Union[str, Any] =images[0, 253:256, 253:256, -1] lowercase : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase : Union[str, Any] =jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = (PNDMScheduler,) UpperCamelCase_ = (('num_inference_steps', 50),) def A__ ( self : Any , **UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Dict ={ '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**UpperCAmelCase ) return config def A__ ( self : Union[str, Any] , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =dict(self.forward_default_kwargs ) lowercase : Any =kwargs.pop('''num_inference_steps''' , UpperCAmelCase ) lowercase : Optional[int] =self.dummy_sample lowercase : Union[str, Any] =0.1 * sample lowercase : List[str] =[residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowercase : List[Any] =self.get_scheduler_config(**UpperCAmelCase ) lowercase : Any =scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals lowercase : Optional[int] =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) lowercase : Tuple =scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals lowercase : List[Any] =dummy_past_residuals[:] lowercase : Dict =scheduler.step_prk(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample lowercase : Any =new_scheduler.step_prk(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase : Dict =scheduler.step_plms(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample lowercase : Union[str, Any] =new_scheduler.step_plms(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass def A__ ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' lowercase : Optional[int] =dict(self.forward_default_kwargs ) lowercase : Union[str, Any] =kwargs.pop('''num_inference_steps''' , UpperCAmelCase ) lowercase : int =self.dummy_sample lowercase : Dict =0.1 * sample lowercase : List[str] =[residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowercase : Dict =self.get_scheduler_config() lowercase : str =scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase : Tuple =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) lowercase : Tuple =scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase : Union[str, Any] =dummy_past_residuals[:] lowercase : Optional[Any] =scheduler.step_prk(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample lowercase : List[str] =new_scheduler.step_prk(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase : List[Any] =scheduler.step_plms(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample lowercase : Tuple =new_scheduler.step_plms(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A__ ( self : Optional[Any] , **UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =self.scheduler_classes[0] lowercase : List[str] =self.get_scheduler_config(**UpperCAmelCase ) lowercase : Optional[int] =scheduler_class(**UpperCAmelCase ) lowercase : str =10 lowercase : Tuple =self.dummy_model() lowercase : Optional[Any] =self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase : Any =model(UpperCAmelCase , UpperCAmelCase ) lowercase : int =scheduler.step_prk(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase : Optional[Any] =model(UpperCAmelCase , UpperCAmelCase ) lowercase : str =scheduler.step_plms(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : Dict =dict(self.forward_default_kwargs ) lowercase : int =kwargs.pop('''num_inference_steps''' , UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase : List[Any] =self.get_scheduler_config() lowercase : List[str] =scheduler_class(**UpperCAmelCase ) lowercase : List[Any] =self.dummy_sample lowercase : Optional[int] =0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase , '''set_timesteps''' ): scheduler.set_timesteps(UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase , '''set_timesteps''' ): lowercase : Optional[int] =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase : Any =[residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] lowercase : Dict =dummy_past_residuals[:] lowercase : List[Any] =scheduler.step_prk(UpperCAmelCase , 0 , UpperCAmelCase , **UpperCAmelCase ).prev_sample lowercase : Optional[int] =scheduler.step_prk(UpperCAmelCase , 1 , UpperCAmelCase , **UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase : Optional[int] =scheduler.step_plms(UpperCAmelCase , 0 , UpperCAmelCase , **UpperCAmelCase ).prev_sample lowercase : int =scheduler.step_plms(UpperCAmelCase , 1 , UpperCAmelCase , **UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def A__ ( self : Dict ) -> int: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase ) lowercase : List[Any] =self.scheduler_classes[0] lowercase : Optional[Any] =self.get_scheduler_config(steps_offset=1 ) lowercase : Dict =scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def A__ ( self : int ) -> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def A__ ( self : Any ) -> Any: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : Dict =27 for scheduler_class in self.scheduler_classes: lowercase : Optional[int] =self.dummy_sample lowercase : Optional[int] =0.1 * sample lowercase : str =self.get_scheduler_config() lowercase : int =scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase : Any =scheduler.step_prk(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample def A__ ( self : int ) -> Optional[int]: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : List[Any] =self.scheduler_classes[0] lowercase : Union[str, Any] =self.get_scheduler_config() lowercase : Optional[int] =scheduler_class(**UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : Optional[Any] =self.full_loop() lowercase : List[str] =torch.sum(torch.abs(UpperCAmelCase ) ) lowercase : Union[str, Any] =torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : int =self.full_loop(prediction_type='''v_prediction''' ) lowercase : Optional[int] =torch.sum(torch.abs(UpperCAmelCase ) ) lowercase : Tuple =torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =self.full_loop(set_alpha_to_one=UpperCAmelCase , beta_start=0.0_1 ) lowercase : Optional[int] =torch.sum(torch.abs(UpperCAmelCase ) ) lowercase : List[str] =torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =self.full_loop(set_alpha_to_one=UpperCAmelCase , beta_start=0.0_1 ) lowercase : List[Any] =torch.sum(torch.abs(UpperCAmelCase ) ) lowercase : Any =torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' from math import sqrt def lowercase_ ( __A : Optional[int] = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" lowercase : Union[str, Any] =0 lowercase : Tuple =0 lowercase : List[str] =4_2 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' def lowercase_ ( __A : Tuple , __A : str ) -> Union[str, Any]: """simple docstring""" lowercase : List[Any] ='''''' for i in table: res += inp[i - 1] return res def lowercase_ ( __A : Tuple ) -> Union[str, Any]: """simple docstring""" return data[1:] + data[0] def lowercase_ ( __A : Any , __A : List[str] ) -> int: """simple docstring""" lowercase : Union[str, Any] ='''''' for i in range(len(lowerCAmelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __A : Optional[int] , __A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Dict =int('''0b''' + data[0] + data[-1] , 2 ) lowercase : Union[str, Any] =int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __A : Optional[Any] , __A : int , __A : Union[str, Any] , __A : Optional[Any] , __A : str ) -> str: """simple docstring""" lowercase : int =message[:4] lowercase : List[Any] =message[4:] lowercase : List[Any] =apply_table(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase : List[str] =xor(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase : Optional[Any] =apply_sbox(lowerCAmelCase_ , temp[:4] ) # noqa: E741 lowercase : List[str] =apply_sbox(lowerCAmelCase_ , temp[4:] ) lowercase : int ='''0''' * (2 - len(lowerCAmelCase_ )) + l # noqa: E741 lowercase : Dict ='''0''' * (2 - len(lowerCAmelCase_ )) + r lowercase : List[Any] =apply_table(l + r , lowerCAmelCase_ ) lowercase : Dict =xor(lowerCAmelCase_ , lowerCAmelCase_ ) return temp + right if __name__ == "__main__": SCREAMING_SNAKE_CASE = input('Enter 10 bit key: ') SCREAMING_SNAKE_CASE = input('Enter 8 bit message: ') SCREAMING_SNAKE_CASE = [6, 3, 7, 4, 8, 5, 10, 9] SCREAMING_SNAKE_CASE = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] SCREAMING_SNAKE_CASE = [2, 4, 3, 1] SCREAMING_SNAKE_CASE = [2, 6, 3, 1, 4, 8, 5, 7] SCREAMING_SNAKE_CASE = [4, 1, 3, 5, 7, 2, 8, 6] SCREAMING_SNAKE_CASE = [4, 1, 2, 3, 2, 3, 4, 1] SCREAMING_SNAKE_CASE = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] SCREAMING_SNAKE_CASE = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation SCREAMING_SNAKE_CASE = apply_table(key, paa_table) SCREAMING_SNAKE_CASE = temp[:5] SCREAMING_SNAKE_CASE = temp[5:] SCREAMING_SNAKE_CASE = left_shift(left) SCREAMING_SNAKE_CASE = left_shift(right) SCREAMING_SNAKE_CASE = apply_table(left + right, pa_table) SCREAMING_SNAKE_CASE = left_shift(left) SCREAMING_SNAKE_CASE = left_shift(right) SCREAMING_SNAKE_CASE = left_shift(left) SCREAMING_SNAKE_CASE = left_shift(right) SCREAMING_SNAKE_CASE = apply_table(left + right, pa_table) # encryption SCREAMING_SNAKE_CASE = apply_table(message, IP) SCREAMING_SNAKE_CASE = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption SCREAMING_SNAKE_CASE = apply_table(CT, IP) SCREAMING_SNAKE_CASE = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCAmelCase_ ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ = """trocr""" UpperCamelCase_ = ["""past_key_values"""] UpperCamelCase_ = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Optional[int] , UpperCAmelCase : List[Any]=5_0265 , UpperCAmelCase : Tuple=1024 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Any=4096 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[Any]=512 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : str=0.0 , UpperCAmelCase : int=True , UpperCAmelCase : Any=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=True , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : Dict=0 , UpperCAmelCase : Dict=2 , **UpperCAmelCase : Tuple , ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] =vocab_size lowercase : int =d_model lowercase : Any =decoder_layers lowercase : str =decoder_attention_heads lowercase : Optional[Any] =decoder_ffn_dim lowercase : str =activation_function lowercase : Dict =max_position_embeddings lowercase : Dict =dropout lowercase : Optional[int] =attention_dropout lowercase : Dict =activation_dropout lowercase : Tuple =init_std lowercase : Optional[int] =decoder_layerdrop lowercase : Optional[int] =use_cache lowercase : Union[str, Any] =scale_embedding lowercase : Optional[Any] =use_learned_position_embeddings lowercase : Dict =layernorm_embedding super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , )
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase_ ( __A : str , __A : Union[str, Any] , __A : List[str]=None , __A : Optional[Any]=None , __A : List[str]=None , __A : List[str]=None , __A : Optional[Any]=None , __A : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: lowercase : Union[str, Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase : Optional[int] =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase : List[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase : List[Any] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase : Optional[Any] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any]=13 , UpperCAmelCase : Any=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=False , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : str=2 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : int=2 , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : str=0 , UpperCAmelCase : str=0.0_2 , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Any =batch_size lowercase : str =seq_length lowercase : Optional[Any] =is_training lowercase : Tuple =use_labels lowercase : List[str] =vocab_size lowercase : Any =hidden_size lowercase : str =num_hidden_layers lowercase : Any =num_attention_heads lowercase : Tuple =intermediate_size lowercase : List[Any] =hidden_act lowercase : Tuple =hidden_dropout_prob lowercase : Dict =attention_probs_dropout_prob lowercase : List[Any] =max_position_embeddings lowercase : List[str] =eos_token_id lowercase : Tuple =pad_token_id lowercase : Tuple =bos_token_id lowercase : int =initializer_range def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : str =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowercase : Union[str, Any] =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowercase : List[Any] =shift_tokens_right(__snake_case , 1 , 2 ) lowercase : Optional[int] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__snake_case , ) lowercase : Dict =prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[int] =self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : Tuple =20 lowercase : Union[str, Any] =model_class_name(__snake_case ) lowercase : Optional[Any] =model.encode(inputs_dict['''input_ids'''] ) lowercase : Dict =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase : Optional[Any] =model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) lowercase : Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowercase : int =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase : Optional[Any] =model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) lowercase : Optional[int] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase : str =model.decode( decoder_input_ids[:, -1:] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__snake_case , ) lowercase : Optional[int] =model.decode(__snake_case , __snake_case ) lowercase : Tuple =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: '''simple docstring''' lowercase : List[str] =20 lowercase : Union[str, Any] =model_class_name(__snake_case ) lowercase : Any =model.encode(inputs_dict['''input_ids'''] ) lowercase : Optional[int] =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase : str =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase : Optional[int] =model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) lowercase : Any =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase : int =model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) lowercase : Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase : int =model.decode( decoder_input_ids[:, -1:] , __snake_case , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__snake_case , decoder_position_ids=__snake_case , ) lowercase : str =model.decode(__snake_case , __snake_case , decoder_attention_mask=__snake_case ) lowercase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 99 def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : Dict =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowercase : Union[str, Any] =input_ids.shape[0] lowercase : Any =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A__ ( self : List[str] ) -> Any: '''simple docstring''' lowercase : List[Any] =self._get_config_and_data() lowercase : str =FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) lowercase : Any =lm_model(input_ids=__snake_case ) lowercase : Union[str, Any] =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __snake_case ) def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : int =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowercase : Optional[int] =FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) lowercase : List[Any] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowercase : List[Any] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowercase : List[str] =lm_model(input_ids=__snake_case , decoder_input_ids=__snake_case ) lowercase : Tuple =(*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __snake_case ) def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : Optional[Any] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowercase : Union[str, Any] =shift_tokens_right(__snake_case , 1 , 2 ) lowercase : Dict =np.equal(__snake_case , 1 ).astype(np.floataa ).sum() lowercase : str =np.equal(__snake_case , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__snake_case , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase_ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Optional[int] =FlaxBlenderbotSmallModelTester(self ) def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__snake_case , __snake_case , __snake_case ) def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__snake_case , __snake_case , __snake_case ) def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : Tuple =self._prepare_for_class(__snake_case , __snake_case ) lowercase : Optional[int] =model_class(__snake_case ) @jax.jit def encode_jitted(UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ): return model.encode(input_ids=__snake_case , attention_mask=__snake_case ) with self.subTest('''JIT Enabled''' ): lowercase : Optional[int] =encode_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase : Any =encode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : Tuple =model_class(__snake_case ) lowercase : Dict =model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowercase : Tuple ={ '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ): return model.decode( decoder_input_ids=__snake_case , decoder_attention_mask=__snake_case , encoder_outputs=__snake_case , ) with self.subTest('''JIT Enabled''' ): lowercase : Tuple =decode_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase : Optional[Any] =decode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase : Optional[Any] =model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase : Optional[int] =np.ones((1, 1) ) * model.config.eos_token_id lowercase : Union[str, Any] =model(__snake_case ) self.assertIsNotNone(__snake_case )
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowercase_ ( __A : bool = True , *__A : Tuple , **__A : Tuple ) -> str: """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) lowercase : Tuple =False if main_process_only: lowercase : Optional[int] =PartialState().local_process_index == 0 return _tqdm(*__A , **__A , disable=__A )
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : Tuple ) -> str: """simple docstring""" lowercase : int =torch.load(lowercase_ , map_location='''cpu''' ) if "model" in sd.keys(): lowercase : Union[str, Any] =torch.load(lowercase_ , map_location='''cpu''' )["model"] # pop unnecessary weights lowercase : List[Any] =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase_ ) lowercase : Optional[Any] ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowercase : str =sd.pop(lowercase_ ) lowercase : Dict =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowercase : List[str] =sd[key] # We split QKV in separate Q,K,V lowercase : Tuple =key.replace('''.qkv_proj.''' , '''.q_proj.''' ) lowercase : Any =key.replace('''.qkv_proj.''' , '''.k_proj.''' ) lowercase : Tuple =key.replace('''.qkv_proj.''' , '''.v_proj.''' ) lowercase : Optional[Any] =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowercase : str =torch.split(lowercase_ , depth // 3 , dim=0 ) lowercase : int =q lowercase : Optional[Any] =k lowercase : int =v del sd[key] return sd @torch.no_grad() def lowercase_ ( __A : Union[str, Any] , __A : Any , __A : List[Any]=None ) -> int: """simple docstring""" lowercase : List[Any] =load_checkpoint(lowercase_ ) if config is not None: lowercase : Tuple =OPTConfig.from_pretrained(lowercase_ ) else: lowercase : Union[str, Any] =OPTConfig() lowercase : List[Any] =OPTModel(lowercase_ ).half().eval() model.load_state_dict(lowercase_ ) # Check results Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
'''simple docstring''' from __future__ import annotations import time SCREAMING_SNAKE_CASE = list[tuple[int, int]] SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Node | None ) -> Tuple: '''simple docstring''' lowercase : List[Any] =pos_x lowercase : Optional[Any] =pos_y lowercase : Any =(pos_y, pos_x) lowercase : List[str] =goal_x lowercase : str =goal_y lowercase : Tuple =parent class UpperCAmelCase_ : """simple docstring""" def __init__( self : Any , UpperCAmelCase : tuple[int, int] , UpperCAmelCase : tuple[int, int] ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =Node(start[1] , start[0] , goal[1] , goal[0] , _snake_case ) lowercase : Optional[int] =Node(goal[1] , goal[0] , goal[1] , goal[0] , _snake_case ) lowercase : Any =[self.start] lowercase : Union[str, Any] =False def A__ ( self : Tuple ) -> Any: '''simple docstring''' while self.node_queue: lowercase : Any =self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowercase : Union[str, Any] =True return self.retrace_path(_snake_case ) lowercase : List[Any] =self.get_successors(_snake_case ) for node in successors: self.node_queue.append(_snake_case ) if not self.reached: return [self.start.pos] return None def A__ ( self : List[str] , UpperCAmelCase : Node ) -> Dict: '''simple docstring''' lowercase : Optional[int] =[] for action in delta: lowercase : Optional[Any] =parent.pos_x + action[1] lowercase : Union[str, Any] =parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_snake_case , _snake_case , self.target.pos_y , self.target.pos_x , _snake_case ) ) return successors def A__ ( self : Dict , UpperCAmelCase : Node | None ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =node lowercase : Union[str, Any] =[] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase : Optional[int] =current_node.parent path.reverse() return path class UpperCAmelCase_ : """simple docstring""" def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : int ) -> Dict: '''simple docstring''' lowercase : int =BreadthFirstSearch(_snake_case , _snake_case ) lowercase : Optional[int] =BreadthFirstSearch(_snake_case , _snake_case ) lowercase : Any =False def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowercase : Tuple =self.fwd_bfs.node_queue.pop(0 ) lowercase : List[str] =self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowercase : List[Any] =True return self.retrace_bidirectional_path( _snake_case , _snake_case ) lowercase : str =current_bwd_node lowercase : int =current_fwd_node lowercase : Any ={ self.fwd_bfs: self.fwd_bfs.get_successors(_snake_case ), self.bwd_bfs: self.bwd_bfs.get_successors(_snake_case ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_snake_case ) if not self.reached: return [self.fwd_bfs.start.pos] return None def A__ ( self : Optional[Any] , UpperCAmelCase : Node , UpperCAmelCase : Node ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =self.fwd_bfs.retrace_path(_snake_case ) lowercase : Any =self.bwd_bfs.retrace_path(_snake_case ) bwd_path.pop() bwd_path.reverse() lowercase : Union[str, Any] =fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() SCREAMING_SNAKE_CASE = (0, 0) SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = BreadthFirstSearch(init, goal) SCREAMING_SNAKE_CASE = bfs.search() SCREAMING_SNAKE_CASE = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = BidirectionalBreadthFirstSearch(init, goal) SCREAMING_SNAKE_CASE = bd_bfs.search() SCREAMING_SNAKE_CASE = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase_ ( __A : str , __A : List[str] ) -> Tuple: """simple docstring""" lowercase : int =torch.load(__A , map_location='''cpu''' ) lowercase : str =chkpt['''model'''] # We have the base model one level deeper than the original XLM repository lowercase : Tuple ={} for k, v in state_dict.items(): if "pred_layer" in k: lowercase : str =v else: lowercase : Tuple =v lowercase : Union[str, Any] =chkpt['''params'''] lowercase : List[str] ={n: v for n, v in config.items() if not isinstance(__A , (torch.FloatTensor, numpy.ndarray) )} lowercase : str =chkpt['''dico_word2id'''] lowercase : int ={s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model lowercase : int =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowercase : Union[str, Any] =pytorch_dump_folder_path + '''/''' + CONFIG_NAME lowercase : Any =pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(__A , __A ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__A , indent=2 ) + '''\n''' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__A , indent=2 ) + '''\n''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): SCREAMING_SNAKE_CASE = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def lowercase_ ( __A : int ) -> Any: """simple docstring""" lowercase : int =(images / 2 + 0.5).clamp(0 , 1 ) lowercase : List[Any] =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase : List[str] =numpy_to_pil(snake_case_ ) return images def lowercase_ ( __A : Optional[int] ) -> Tuple: """simple docstring""" if images.ndim == 3: lowercase : List[str] =images[None, ...] lowercase : int =(images * 2_5_5).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase : str =[Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: lowercase : Tuple =[Image.fromarray(snake_case_ ) for image in images] return pil_images
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , '''width_multiplier''' ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Dict=64 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Dict="swish" , UpperCAmelCase : str=3 , UpperCAmelCase : int=32 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=10 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=0.2_5 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Tuple=0.0 , ) -> Dict: '''simple docstring''' lowercase : Optional[int] =parent lowercase : List[str] =batch_size lowercase : str =image_size lowercase : Dict =patch_size lowercase : Optional[int] =num_channels lowercase : List[Any] =make_divisible(512 * width_multiplier , divisor=8 ) lowercase : Optional[Any] =hidden_act lowercase : Any =conv_kernel_size lowercase : str =output_stride lowercase : Any =classifier_dropout_prob lowercase : Union[str, Any] =use_labels lowercase : str =is_training lowercase : Tuple =num_labels lowercase : str =initializer_range lowercase : List[Any] =scope lowercase : List[str] =width_multiplier lowercase : int =ffn_dropout lowercase : Union[str, Any] =attn_dropout def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : Dict =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Union[str, Any] =None lowercase : Optional[Any] =None if self.use_labels: lowercase : str =ids_tensor([self.batch_size] , self.num_labels ) lowercase : Optional[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase : Any =self.get_config() return config, pixel_values, labels, pixel_labels def A__ ( self : Dict ) -> List[str]: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def A__ ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Dict: '''simple docstring''' lowercase : str =MobileViTVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase : Dict =model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A__ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : List[Any] =MobileViTVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase : Union[str, Any] =model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' lowercase : Any =self.num_labels lowercase : Optional[Any] =MobileViTVaForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase : Union[str, Any] =model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase : Union[str, Any] =model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : List[str] =self.prepare_config_and_inputs() lowercase : Dict =config_and_inputs lowercase : Tuple ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : List[str] =MobileViTVaModelTester(self ) lowercase : int =MobileViTVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def A__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def A__ ( self : Dict ) -> Any: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] =model_class(UpperCamelCase__ ) lowercase : Any =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[str] =[*signature.parameters.keys()] lowercase : List[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def A__ ( self : Optional[int] ) -> str: '''simple docstring''' lowercase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A__ ( self : int ) -> str: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): lowercase : Optional[Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowercase : Tuple =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowercase : Union[str, Any] =outputs.hidden_states lowercase : Any =5 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase : str =2 for i in range(len(UpperCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : List[Any] =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def A__ ( self : Tuple ) -> int: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ ) @slow def A__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Optional[int] =MobileViTVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowercase_ ( ) -> Dict: """simple docstring""" lowercase : str =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : Any ) -> Tuple: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : int =MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( UpperCamelCase__ ) lowercase : Dict =self.default_image_processor lowercase : List[Any] =prepare_img() lowercase : List[str] =image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase : List[Any] =model(**UpperCamelCase__ ) # verify the logits lowercase : int =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase : List[Any] =torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : int =MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase : int =model.to(UpperCamelCase__ ) lowercase : str =MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase : List[str] =prepare_img() lowercase : int =image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase : Dict =model(**UpperCamelCase__ ) lowercase : Any =outputs.logits # verify the logits lowercase : Any =torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowercase : Optional[int] =torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=UpperCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : str =MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase : Tuple =model.to(UpperCamelCase__ ) lowercase : int =MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase : Tuple =prepare_img() lowercase : Optional[Any] =image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase : Union[str, Any] =model(**UpperCamelCase__ ) lowercase : Optional[int] =outputs.logits.detach().cpu() lowercase : List[str] =image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(50, 60)] ) lowercase : Union[str, Any] =torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) lowercase : List[str] =image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) lowercase : str =torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase_ ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : str , UpperCAmelCase : List[str]=0.0_1 , UpperCAmelCase : str=1000 ) -> List[Any]: '''simple docstring''' lowercase : Any =p_stop lowercase : int =max_length def __iter__( self : List[str] ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =0 lowercase : Dict =False while not stop and count < self.max_length: yield count count += 1 lowercase : List[Any] =random.random() < self.p_stop class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Any=True ) -> Tuple: '''simple docstring''' lowercase : Tuple =[ BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 ) ] lowercase : Tuple =[list(_lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_lowerCamelCase ) for shard in batch_sampler_shards] , [len(_lowerCamelCase ) for e in expected] ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def A__ ( self : int ) -> Dict: '''simple docstring''' lowercase : str =BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : int =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) lowercase : Optional[Any] =BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase : List[str] =BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : Optional[int] =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) lowercase : str =BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : List[Any] =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase : Dict =BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : List[str] =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) lowercase : Dict =BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : int =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase : List[Any] =BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : List[Any] =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) lowercase : List[str] =BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : List[str] =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is very small. lowercase : str =BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : str =[[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) lowercase : Any =BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : str =[[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : Union[str, Any] =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) lowercase : Tuple =BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. lowercase : Dict =BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : Any =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) lowercase : List[str] =BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : str =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase : List[str] =BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : Any =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) lowercase : Tuple =BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : List[str] =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. lowercase : Optional[Any] =BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : List[str] =[[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) lowercase : Union[str, Any] =BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : Dict =[[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : List[Any] =BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : Optional[int] =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) lowercase : Optional[int] =BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase : List[Any] =BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : int =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) lowercase : Tuple =BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : Dict =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase : Optional[Any] =BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : Union[str, Any] =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) lowercase : int =BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : Any =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase : Any =BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : Union[str, Any] =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) lowercase : List[Any] =BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : Any =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. lowercase : int =BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : List[Any] =[[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) lowercase : Optional[Any] =BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) lowercase : Any =[[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : str =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) lowercase : Tuple =BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. lowercase : str =BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : Tuple =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) lowercase : Dict =BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : Optional[Any] =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase : List[Any] =BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : Optional[Any] =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) lowercase : Tuple =BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : Dict =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. lowercase : int =BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : str =[[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) lowercase : Optional[int] =BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : Optional[Any] =[[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : List[Any] =[[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowercase : Optional[Any] =[BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A__ ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Dict=False ) -> str: '''simple docstring''' random.seed(_lowerCamelCase ) lowercase : Any =list(_lowerCamelCase ) lowercase : Tuple =[ IterableDatasetShard( _lowerCamelCase , batch_size=_lowerCamelCase , drop_last=_lowerCamelCase , num_processes=_lowerCamelCase , process_index=_lowerCamelCase , split_batches=_lowerCamelCase , ) for i in range(_lowerCamelCase ) ] lowercase : str =[] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_lowerCamelCase ) iterable_dataset_lists.append(list(_lowerCamelCase ) ) lowercase : Optional[Any] =batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowercase : List[Any] =iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) self.assertTrue(len(_lowerCamelCase ) % shard_batch_size == 0 ) lowercase : Dict =[] for idx in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_lowerCamelCase ) < len(_lowerCamelCase ): reference += reference self.assertListEqual(_lowerCamelCase , reference[: len(_lowerCamelCase )] ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[int] =42 lowercase : int =RandomIterableDataset() self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) # Edge case with a very small dataset lowercase : List[str] =RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' lowercase : str =BatchSampler(range(16 ) , batch_size=4 , drop_last=_lowerCamelCase ) lowercase : List[str] =SkipBatchSampler(_lowerCamelCase , 2 ) self.assertListEqual(list(_lowerCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : Tuple =SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =DataLoader(list(range(16 ) ) , batch_size=4 ) lowercase : Any =skip_first_batches(_lowerCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A__ ( self : Optional[int] ) -> str: '''simple docstring''' Accelerator() lowercase : int =DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import logging from transformers import PretrainedConfig SCREAMING_SNAKE_CASE = logging.getLogger(__name__) SCREAMING_SNAKE_CASE = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class UpperCAmelCase_ ( _A ): """simple docstring""" UpperCamelCase_ = '''bertabs''' def __init__( self : Any , UpperCAmelCase : List[str]=3_0522 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=6 , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : Union[str, Any]=512 , UpperCAmelCase : Optional[Any]=0.2 , UpperCAmelCase : List[str]=6 , UpperCAmelCase : Union[str, Any]=768 , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : int=2048 , UpperCAmelCase : int=0.2 , **UpperCAmelCase : Any , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : int =vocab_size lowercase : Optional[Any] =max_pos lowercase : List[Any] =enc_layers lowercase : List[str] =enc_hidden_size lowercase : str =enc_heads lowercase : Optional[Any] =enc_ff_size lowercase : Any =enc_dropout lowercase : int =dec_layers lowercase : List[str] =dec_hidden_size lowercase : Dict =dec_heads lowercase : Any =dec_ff_size lowercase : str =dec_dropout
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' import math def lowercase_ ( __A : str , __A : Any ) -> List[Any]: """simple docstring""" if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(a__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE = namedtuple('covid_data', 'cases deaths recovered') def lowercase_ ( __A : str = "https://www.worldometers.info/coronavirus/" ) -> int: """simple docstring""" lowercase : int ='''//div[@class = \"maincounter-number\"]/span/text()''' return covid_data(*html.fromstring(requests.get(UpperCamelCase__ ).content ).xpath(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from __future__ import annotations from collections import deque class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : list[str] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =[] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(__SCREAMING_SNAKE_CASE ) self.set_fail_transitions() def A__ ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str ) -> str: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A__ ( self : List[str] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : List[Any] =0 for character in keyword: lowercase : List[str] =self.find_next_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase : Dict =len(self.adlist ) - 1 else: lowercase : Any =next_state self.adlist[current_state]["output"].append(__SCREAMING_SNAKE_CASE ) def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : str =deque() for node in self.adlist[0]["next_states"]: q.append(__SCREAMING_SNAKE_CASE ) lowercase : List[Any] =0 while q: lowercase : List[Any] =q.popleft() for child in self.adlist[r]["next_states"]: q.append(__SCREAMING_SNAKE_CASE ) lowercase : List[Any] =self.adlist[r]['''fail_state'''] while ( self.find_next_state(__SCREAMING_SNAKE_CASE , self.adlist[child]['''value'''] ) is None and state != 0 ): lowercase : int =self.adlist[state]['''fail_state'''] lowercase : Optional[int] =self.find_next_state( __SCREAMING_SNAKE_CASE , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: lowercase : Optional[int] =0 lowercase : List[str] =( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def A__ ( self : Optional[Any] , UpperCAmelCase : str ) -> List[str]: '''simple docstring''' lowercase : Optional[int] ={} # returns a dict with keywords and list of its occurrences lowercase : str =0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): while ( self.find_next_state(__SCREAMING_SNAKE_CASE , string[i] ) is None and current_state != 0 ): lowercase : Optional[int] =self.adlist[current_state]['''fail_state'''] lowercase : Any =self.find_next_state(__SCREAMING_SNAKE_CASE , string[i] ) if next_state is None: lowercase : Optional[Any] =0 else: lowercase : Union[str, Any] =next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase : Any =[] result[key].append(i - len(__SCREAMING_SNAKE_CASE ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py SCREAMING_SNAKE_CASE = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. SCREAMING_SNAKE_CASE = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') SCREAMING_SNAKE_CASE = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. SCREAMING_SNAKE_CASE = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) SCREAMING_SNAKE_CASE = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowercase_ ( __A : Tuple ) -> Optional[int]: """simple docstring""" lowercase : Dict =re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __A ) return [m.group(0 ) for m in matches] def lowercase_ ( ) -> List[Any]: """simple docstring""" lowercase : List[str] =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase : Optional[Any] ={ config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowercase : Optional[Any] =collections.defaultdict(__A ) lowercase : List[str] =collections.defaultdict(__A ) lowercase : Optional[Any] =collections.defaultdict(__A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__A ): lowercase : Tuple =None if _re_tf_models.match(__A ) is not None: lowercase : Tuple =tf_models lowercase : str =_re_tf_models.match(__A ).groups()[0] elif _re_flax_models.match(__A ) is not None: lowercase : int =flax_models lowercase : Dict =_re_flax_models.match(__A ).groups()[0] elif _re_pt_models.match(__A ) is not None: lowercase : int =pt_models lowercase : int =_re_pt_models.match(__A ).groups()[0] if lookup_dict is not None: while len(__A ) > 0: if attr_name in model_prefix_to_model_type: lowercase : Optional[int] =True break # Try again after removing the last word in the name lowercase : Tuple =''.join(camel_case_split(__A )[:-1] ) lowercase : Optional[Any] =set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowercase : List[Any] =list(__A ) all_models.sort() lowercase : List[Any] ={'model_type': all_models} lowercase : str =[pt_models[t] for t in all_models] lowercase : List[str] =[tf_models[t] for t in all_models] lowercase : Optional[int] =[flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowercase : Optional[Any] ={} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowercase : Any ='AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowercase : Optional[Any] ='AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowercase : Optional[int] ='AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowercase : Optional[Any] ='AutoTokenizer' lowercase : Optional[int] =[processors[t] for t in all_models] return pd.DataFrame(__A ) def lowercase_ ( __A : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase : str =[ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowercase : Any =[model_mapping, F'TF_{model_mapping}', F'FLAX_{model_mapping}'] lowercase : Optional[Any] =[auto_class, F'TF_{auto_class}', F'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(__A , __A , __A ): # The type of pipeline may not exist in this framework if not hasattr(__A , __A ): continue # First extract all model_names lowercase : Any =[] for name in getattr(__A , __A ).values(): if isinstance(__A , __A ): model_names.append(__A ) else: model_names.extend(list(__A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowercase_ ( __A : Optional[Any] , __A : List[Any] ) -> Dict: """simple docstring""" lowercase : Optional[Any] =get_frameworks_table() lowercase : Optional[Any] =Dataset.from_pandas(__A ) lowercase : Optional[int] =hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=__A ) lowercase : Optional[int] =Dataset.from_json(__A ) lowercase : int ={ tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(__A ) ) } lowercase : int =update_pipeline_and_auto_class_table(__A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowercase : Tuple =sorted(table.keys() ) lowercase : Tuple =pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) lowercase : Any =Dataset.from_pandas(__A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(__A , '''pipeline_tags.json''' ) ) if commit_sha is not None: lowercase : int =( F'Update with commit {commit_sha}\n\nSee: ' F'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: lowercase : Tuple ='Update' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=__A , repo_type='''dataset''' , token=__A , commit_message=__A , ) def lowercase_ ( ) -> Optional[int]: """simple docstring""" lowercase : Optional[int] ={tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowercase : Any =transformers_module.pipelines.SUPPORTED_TASKS lowercase : List[Any] =[] for key in pipeline_tasks: if key not in in_table: lowercase : str =pipeline_tasks[key]['pt'] if isinstance(__A , (list, tuple) ): lowercase : List[str] =model[0] lowercase : Dict =model.__name__ if model not in in_table.values(): missing.append(__A ) if len(__A ) > 0: lowercase : Union[str, Any] =', '.join(__A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') SCREAMING_SNAKE_CASE = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0