code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow SCREAMING_SNAKE_CASE = False class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : str , UpperCAmelCase : Optional[Any]=32 ) -> List[str]: '''simple docstring''' set_seed(0 ) lowercase : str =UNetaDModel(sample_size=UpperCAmelCase , in_channels=3 , out_channels=3 ) lowercase : int =torch.optim.SGD(model.parameters() , lr=0.0_0_0_1 ) return model, optimizer @slow def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : int ='''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase : Tuple =DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=UpperCAmelCase , ) lowercase : Union[str, Any] =DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=UpperCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase : Any =[torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCAmelCase ) for _ in range(4 )] lowercase : Tuple =[torch.randn((4, 3, 32, 32) ).to(UpperCAmelCase ) for _ in range(4 )] lowercase : str =[torch.randint(0 , 1000 , (4,) ).long().to(UpperCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler lowercase , lowercase : List[str] =self.get_model_optimizer(resolution=32 ) model.train().to(UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase : Any =ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase : List[Any] =model(UpperCAmelCase , timesteps[i] ).sample lowercase : Any =torch.nn.functional.mse_loss(UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase , lowercase : Union[str, Any] =self.get_model_optimizer(resolution=32 ) model.train().to(UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase : Dict =ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase : Any =model(UpperCAmelCase , timesteps[i] ).sample lowercase : Optional[Any] =torch.nn.functional.mse_loss(UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) )
8
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCAmelCase_ ( yaml.SafeLoader ): """simple docstring""" def A__ ( self : int , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =[self.constructed_objects[key_node] for key_node, _ in node.value] lowercase : int =[tuple(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else key for key in keys] lowercase : str =Counter(UpperCAmelCase ) lowercase : List[str] =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'Got duplicate yaml keys: {duplicate_keys}' ) def A__ ( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict=False ) -> Dict: '''simple docstring''' lowercase : str =super().construct_mapping(UpperCAmelCase , deep=UpperCAmelCase ) self._check_no_duplicates_on_constructed_node(UpperCAmelCase ) return mapping def lowercase_ ( __A : str ) -> Tuple[Optional[str], str]: """simple docstring""" lowercase : int =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase : Union[str, Any] =full_content[1:].index('''---''' ) + 1 lowercase : int ='''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__A ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def A__ ( cls : Optional[Any] , UpperCAmelCase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(UpperCAmelCase , encoding='''utf-8''' ) as readme_file: lowercase , lowercase : List[str] =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(UpperCAmelCase ) else: return cls() def A__ ( self : Dict , UpperCAmelCase : Path ) -> int: '''simple docstring''' if path.exists(): with open(UpperCAmelCase , encoding='''utf-8''' ) as readme_file: lowercase : Tuple =readme_file.read() else: lowercase : str =None lowercase : Dict =self._to_readme(UpperCAmelCase ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(UpperCAmelCase ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: lowercase , lowercase : List[Any] =_split_yaml_from_readme(UpperCAmelCase ) lowercase : Optional[Any] ='''---\n''' + self.to_yaml_string() + '''---\n''' + content else: lowercase : Tuple ='''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def A__ ( cls : List[str] , UpperCAmelCase : str ) -> "DatasetMetadata": '''simple docstring''' lowercase : Dict =yaml.load(UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase : Tuple ={ (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCAmelCase ) def A__ ( self : Tuple ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCAmelCase , allow_unicode=UpperCAmelCase , encoding='''utf-8''' , ).decode('''utf-8''' ) SCREAMING_SNAKE_CASE = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser SCREAMING_SNAKE_CASE = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') SCREAMING_SNAKE_CASE = ap.parse_args() SCREAMING_SNAKE_CASE = Path(args.readme_filepath) SCREAMING_SNAKE_CASE = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
8
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
1
'''simple docstring''' class UpperCAmelCase_ : # Public class to implement a graph """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[bool]] ) -> None: '''simple docstring''' lowercase : Optional[int] =row lowercase : Union[str, Any] =col lowercase : List[str] =graph def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[bool]] ) -> None: '''simple docstring''' lowercase : List[str] =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase : Dict =[-1, 0, 1, -1, 1, -1, 0, 1] lowercase : List[str] =True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase ) def A__ ( self : Tuple ) -> int: # And finally, count all islands. '''simple docstring''' lowercase : Tuple =[[False for j in range(self.COL )] for i in range(self.ROW )] lowercase : List[Any] =0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) count += 1 return count
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
1
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): SCREAMING_SNAKE_CASE = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) UpperCamelCase_ = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) UpperCamelCase_ = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) UpperCamelCase_ = field( default=0.999995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def lowercase_ ( __A : ModelArguments , __A : TrainingArguments ) -> int: """simple docstring""" logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase : Optional[int] =logging.WARNING if model_args.verbose_logging: lowercase : str =logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase : Union[str, Any] =logging.INFO logger.setLevel(__A ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default=__A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase_ = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCamelCase_ = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) UpperCamelCase_ = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase_ = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ = field( default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = "longest" UpperCamelCase_ = None UpperCamelCase_ = None def __call__( self : Tuple , UpperCAmelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowercase : Any =self.feature_extractor.pad( UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) lowercase : List[str] =self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) lowercase : Tuple =batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase : str =self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) lowercase : Optional[Any] =torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase : Tuple =1 lowercase : Optional[Any] =attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase : Optional[Any] =_compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase , min_masks=2 , ) return batch class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase : int , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : str=0 , UpperCAmelCase : Optional[Any]=1.0 , **UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' super().__init__(*UpperCAmelCase , **UpperCAmelCase ) lowercase : Any =0 lowercase : List[str] =max_gumbel_temp lowercase : List[str] =min_gumbel_temp lowercase : str =gumbel_temp_decay def A__ ( self : Optional[Any] , UpperCAmelCase : nn.Module , UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() lowercase : Any =self._prepare_inputs(UpperCAmelCase ) if self.use_amp: with autocast(): lowercase : Union[str, Any] =self.compute_loss(UpperCAmelCase , UpperCAmelCase ) else: lowercase : List[str] =self.compute_loss(UpperCAmelCase , UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase : Any =loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase : Union[str, Any] =loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: lowercase : Optional[Any] =loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : List[str] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase , lowercase , lowercase : Union[str, Any] =parser.parse_args_into_dataclasses() configure_logger(__A , __A ) # Downloading and loading a dataset from the hub. lowercase : Optional[Any] =load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase : Optional[int] =DatasetDict() lowercase : Dict =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) lowercase : str =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase : int =DatasetDict() lowercase : Union[str, Any] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) lowercase : str =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase : Dict =WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__A ) def prepare_dataset(__A : Optional[Any] ): # check that all files have the correct sampling rate lowercase , lowercase : int =librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase : Dict =datasets.map( __A , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long lowercase : List[str] =vectorized_datasets.filter( lambda __A : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__A : Any ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase : Dict =vectorized_datasets.map( __A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase : Dict =WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) lowercase : Dict =WavaVecaForPreTraining(__A ) lowercase : Any =DataCollatorForWavaVecaPretraining(model=__A , feature_extractor=__A ) lowercase : Optional[int] =WavaVecaPreTrainer( model=__A , data_collator=__A , args=__A , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=__A , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase_ ( __A , __A ): """simple docstring""" @register_to_config def __init__( self : Dict , *, UpperCAmelCase : int = 4 , UpperCAmelCase : int = 768 , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , ) -> int: '''simple docstring''' super().__init__() lowercase : Optional[Any] =nn.Parameter(torch.zeros(UpperCAmelCase ) ) # parameters for additional clip time embeddings lowercase : int =nn.Linear(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[Any] =nn.Linear(UpperCAmelCase , UpperCAmelCase ) # parameters for encoder hidden states lowercase : List[Any] =clip_extra_context_tokens lowercase : int =nn.Linear( UpperCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) lowercase : Optional[int] =nn.Linear(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =nn.LayerNorm(UpperCAmelCase ) def A__ ( self : Any , *, UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings lowercase : Any =image_embeddings.shape[0] lowercase : int =self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) lowercase : List[str] =classifier_free_guidance_embeddings.expand( UpperCAmelCase , -1 ) lowercase : Union[str, Any] =torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] lowercase : str =prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... lowercase : str =self.embedding_proj(UpperCAmelCase ) lowercase : str =self.clip_image_embeddings_project_to_time_embeddings(UpperCAmelCase ) lowercase : List[str] =time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" lowercase : List[str] =self.clip_extra_context_tokens_proj(UpperCAmelCase ) lowercase : List[Any] =clip_extra_context_tokens.reshape(UpperCAmelCase , -1 , self.clip_extra_context_tokens ) lowercase : str =clip_extra_context_tokens.permute(0 , 2 , 1 ) lowercase : Any =self.encoder_hidden_states_proj(UpperCAmelCase ) lowercase : Optional[Any] =self.text_encoder_hidden_states_norm(UpperCAmelCase ) lowercase : str =torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
8
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''lxmert''' UpperCamelCase_ = {} def __init__( self : Optional[Any] , UpperCAmelCase : Dict=3_0522 , UpperCAmelCase : int=768 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Tuple=9500 , UpperCAmelCase : List[str]=1600 , UpperCAmelCase : Union[str, Any]=400 , UpperCAmelCase : Optional[int]=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[Any]=0.0_2 , UpperCAmelCase : int=1e-12 , UpperCAmelCase : int=9 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : int=2048 , UpperCAmelCase : Dict=4 , UpperCAmelCase : int=6.6_7 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=True , **UpperCAmelCase : Tuple , ) -> List[str]: '''simple docstring''' lowercase : Dict =vocab_size lowercase : Optional[int] =hidden_size lowercase : int =num_attention_heads lowercase : int =hidden_act lowercase : List[Any] =intermediate_size lowercase : str =hidden_dropout_prob lowercase : Optional[Any] =attention_probs_dropout_prob lowercase : Union[str, Any] =max_position_embeddings lowercase : int =type_vocab_size lowercase : Tuple =initializer_range lowercase : Optional[Any] =layer_norm_eps lowercase : Dict =num_qa_labels lowercase : List[str] =num_object_labels lowercase : Optional[Any] =num_attr_labels lowercase : Tuple =l_layers lowercase : Optional[Any] =x_layers lowercase : List[str] =r_layers lowercase : List[Any] =visual_feat_dim lowercase : List[str] =visual_pos_dim lowercase : Tuple =visual_loss_normalizer lowercase : Optional[int] =task_matched lowercase : Tuple =task_mask_lm lowercase : Union[str, Any] =task_obj_predict lowercase : List[Any] =task_qa lowercase : Dict =visual_obj_loss lowercase : int =visual_attr_loss lowercase : List[Any] =visual_feat_loss lowercase : Union[str, Any] ={'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCAmelCase )
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( __A : Optional[Any] , __A : List[str] , __A : Any , __A : Optional[int] ) -> Dict: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def lowercase_ ( __A : str , __A : Any , __A : Optional[int] , __A : Tuple , __A : Optional[Any]=True ) -> str: """simple docstring""" model.train() lowercase : List[str] =model(__A ) lowercase : str =F.mse_loss(__A , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__A ) def lowercase_ ( __A : Dict , __A : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" set_seed(4_2 ) lowercase : str =RegressionModel() lowercase : str =deepcopy(__A ) lowercase : Dict =RegressionDataset(length=8_0 ) lowercase : Union[str, Any] =DataLoader(__A , batch_size=1_6 ) model.to(accelerator.device ) if sched: lowercase : int =AdamW(params=model.parameters() , lr=1E-3 ) lowercase : Dict =AdamW(params=ddp_model.parameters() , lr=1E-3 ) lowercase : List[str] =LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 ) lowercase : str =LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 ) # Make a copy of `model` if sched: lowercase , lowercase , lowercase , lowercase : List[Any] =accelerator.prepare(__A , __A , __A , __A ) else: lowercase , lowercase : Any =accelerator.prepare(__A , __A ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( __A : List[str] ) -> Tuple: """simple docstring""" lowercase , lowercase , lowercase : str =get_training_setup(__A ) # Use a single batch lowercase , lowercase : Optional[int] =next(iter(__A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase , lowercase : List[Any] =accelerator.gather((ddp_input, ddp_target) ) lowercase , lowercase : Any =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__A ): step_model(__A , __A , __A , __A ) else: # Sync grads step_model(__A , __A , __A , __A ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__A , __A , __A , __A ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) lowercase : Any =ddp_input[torch.randperm(len(__A ) )] def lowercase_ ( __A : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : List[Any] =get_training_setup(__A ) # Use a single batch lowercase , lowercase : Optional[Any] =next(iter(__A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase , lowercase : Tuple =accelerator.gather((ddp_input, ddp_target) ) lowercase , lowercase : List[str] =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__A ): step_model(__A , __A , __A , __A ) else: # Sync grads step_model(__A , __A , __A , __A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) lowercase : int =ddp_input[torch.randperm(len(__A ) )] def lowercase_ ( __A : Dict=False , __A : Tuple=False ) -> Union[str, Any]: """simple docstring""" lowercase : List[Any] =Accelerator( split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase , lowercase , lowercase : Dict =get_training_setup(__A ) for iteration, batch in enumerate(__A ): lowercase , lowercase : Optional[int] =batch.values() # Gather the distributed inputs and targs for the base model lowercase , lowercase : Tuple =accelerator.gather((ddp_input, ddp_target) ) lowercase , lowercase : Dict =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A , __A ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__A ): step_model(__A , __A , __A , __A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__A ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) lowercase : Optional[int] =ddp_input[torch.randperm(len(__A ) )] GradientState._reset_state() def lowercase_ ( __A : Optional[Any]=False , __A : List[str]=False ) -> Union[str, Any]: """simple docstring""" lowercase : int =Accelerator( split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase : Optional[int] =get_training_setup(__A , __A ) for iteration, batch in enumerate(__A ): lowercase , lowercase : int =batch.values() # Gather the distributed inputs and targs for the base model lowercase , lowercase : Any =accelerator.gather((ddp_input, ddp_target) ) lowercase , lowercase : Optional[int] =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__A , __A , __A , __A , __A ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__A )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__A ): step_model(__A , __A , __A , __A ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' lowercase : Union[str, Any] =(((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__A )) if accelerator.num_processes > 1: check_model_parameters(__A , __A , __A , __A ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" lowercase : Tuple =Accelerator() lowercase : str =RegressionDataset(length=8_0 ) lowercase : Tuple =DataLoader(__A , batch_size=1_6 ) lowercase : Tuple =RegressionDataset(length=9_6 ) lowercase : Tuple =DataLoader(__A , batch_size=1_6 ) lowercase , lowercase : int =accelerator.prepare(__A , __A ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__A ): assert id(accelerator.gradient_state.active_dataloader ) == id(__A ) if iteration < len(__A ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__A ): assert id(accelerator.gradient_state.active_dataloader ) == id(__A ) if batch_num < len(__A ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ) -> Tuple: """simple docstring""" lowercase : List[str] =Accelerator() lowercase : int =accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(__A ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(__A ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(__A , __A ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(__A , __A ) def lowercase_ ( __A : Tuple ) -> Tuple: """simple docstring""" main() if __name__ == "__main__": main()
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
1
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowercase_ ( __A : Any , __A : str ) -> List[Any]: """simple docstring""" lowercase : List[str] =XCLIPTextConfig() # derive patch size from model name lowercase : List[str] =model_name.find('''patch''' ) lowercase : Any =int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) lowercase : Dict =XCLIPVisionConfig(patch_size=__A , num_frames=__A ) if "large" in model_name: lowercase : Any =7_6_8 lowercase : Optional[Any] =3_0_7_2 lowercase : Union[str, Any] =1_2 lowercase : str =1_0_2_4 lowercase : Any =4_0_9_6 lowercase : List[Any] =1_6 lowercase : Optional[int] =2_4 lowercase : Optional[Any] =7_6_8 lowercase : str =3_0_7_2 if model_name == "xclip-large-patch14-16-frames": lowercase : Tuple =3_3_6 lowercase : Tuple =XCLIPConfig.from_text_vision_configs(__A , __A ) if "large" in model_name: lowercase : Dict =7_6_8 return config def lowercase_ ( __A : str ) -> Dict: """simple docstring""" if name == "token_embedding.weight": lowercase : List[Any] =name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": lowercase : Tuple =name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: lowercase : Optional[int] =name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: lowercase : int =name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: lowercase : Tuple =name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: lowercase : Tuple =name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): lowercase : Tuple =name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: lowercase : Optional[Any] =name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: lowercase : str =name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": lowercase : str =name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": lowercase : Tuple =name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): lowercase : Tuple =name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: lowercase : Optional[int] =name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: lowercase : int =name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: lowercase : Tuple =name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: lowercase : str =name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: lowercase : Tuple =name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: lowercase : List[Any] =name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: lowercase : Tuple =name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": lowercase : Optional[int] =name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): lowercase : int =name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): lowercase : Union[str, Any] =name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def lowercase_ ( __A : Optional[int] , __A : Tuple ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase : Union[str, Any] =orig_state_dict.pop(__A ) if "attn.in_proj" in key: lowercase : int =key.split('''.''' ) if key.startswith('''visual''' ): lowercase : Dict =key_split[3] lowercase : List[str] =config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowercase : List[str] =val[ :dim, : ] lowercase : List[str] =val[ dim : dim * 2, : ] lowercase : Optional[Any] =val[ -dim:, : ] else: lowercase : List[str] =val[ :dim ] lowercase : Dict =val[ dim : dim * 2 ] lowercase : Any =val[ -dim: ] else: if "weight" in key: lowercase : Optional[Any] =val[ :dim, : ] lowercase : Union[str, Any] =val[ dim : dim * 2, : ] lowercase : int =val[ -dim:, : ] else: lowercase : Optional[Any] =val[:dim] lowercase : Tuple =val[ dim : dim * 2 ] lowercase : List[Any] =val[-dim:] elif key.startswith('''mit''' ): lowercase : str =key_split[2] lowercase : Dict =config.vision_config.mit_hidden_size if "weight" in key: lowercase : Any =val[:dim, :] lowercase : Optional[int] =val[dim : dim * 2, :] lowercase : Tuple =val[-dim:, :] else: lowercase : List[Any] =val[:dim] lowercase : int =val[dim : dim * 2] lowercase : Union[str, Any] =val[-dim:] else: lowercase : Dict =key_split[2] lowercase : str =config.text_config.hidden_size if "weight" in key: lowercase : Union[str, Any] =val[:dim, :] lowercase : Optional[Any] =val[ dim : dim * 2, : ] lowercase : List[Any] =val[-dim:, :] else: lowercase : Dict =val[:dim] lowercase : List[Any] =val[ dim : dim * 2 ] lowercase : List[Any] =val[-dim:] else: lowercase : Optional[int] =rename_key(__A ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowercase : List[str] =val.T lowercase : Optional[int] =val return orig_state_dict def lowercase_ ( __A : Optional[Any] ) -> List[Any]: """simple docstring""" if num_frames == 8: lowercase : Union[str, Any] ='''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: lowercase : Union[str, Any] ='''eating_spaghetti.npy''' elif num_frames == 3_2: lowercase : Any ='''eating_spaghetti_32_frames.npy''' lowercase : List[Any] =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=__A , repo_type='''dataset''' , ) lowercase : int =np.load(__A ) return list(__A ) def lowercase_ ( __A : Optional[int] , __A : int=None , __A : Any=False ) -> int: """simple docstring""" lowercase : Dict ={ # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } lowercase : int =model_to_url[model_name] lowercase : int =8 if "16-frames" in model_name: lowercase : Optional[Any] =1_6 elif "shot" in model_name: lowercase : int =3_2 lowercase : List[str] =get_xclip_config(__A , __A ) lowercase : Union[str, Any] =XCLIPModel(__A ) model.eval() if "drive" in checkpoint_url: lowercase : Optional[int] ='''pytorch_model.bin''' gdown.cached_download(__A , __A , quiet=__A ) lowercase : Optional[int] =torch.load(__A , map_location='''cpu''' )['''model'''] else: lowercase : Any =torch.hub.load_state_dict_from_url(__A )['''model'''] lowercase : str =convert_state_dict(__A , __A ) lowercase : Optional[int] =XCLIPModel(__A ) lowercase , lowercase : List[Any] =model.load_state_dict(__A , strict=__A ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowercase : Any =3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 lowercase : str =VideoMAEImageProcessor(size=__A ) lowercase : Dict =CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) lowercase : int =CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) lowercase : str =XCLIPProcessor(image_processor=__A , tokenizer=__A ) lowercase : str =prepare_video(__A ) lowercase : Optional[Any] =processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=__A , return_tensors='''pt''' , padding=__A ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): lowercase : Tuple =model(**__A ) # Verify outputs lowercase : str =outputs.logits_per_video lowercase : Optional[Any] =logits_per_video.softmax(dim=1 ) print('''Probs:''' , __A ) # kinetics-400 if model_name == "xclip-base-patch32": lowercase : Any =torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": lowercase : Union[str, Any] =torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] ) elif model_name == "xclip-base-patch16": lowercase : Optional[Any] =torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": lowercase : Optional[int] =torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] ) elif model_name == "xclip-large-patch14": lowercase : Tuple =torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": lowercase : List[str] =torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowercase : int =torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowercase : Tuple =torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowercase : Tuple =torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowercase : int =torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowercase : Union[str, Any] =torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowercase : str =torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowercase : Optional[int] =torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowercase : Optional[Any] =torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowercase : str =torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowercase : List[Any] =torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowercase : str =torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowercase : Dict =torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] ) else: raise ValueError(F'Model name {model_name} not supported' ) assert torch.allclose(__A , __A , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(__A , organization='''nielsr''' ) processor.push_to_hub(__A , organization='''nielsr''' ) slow_tokenizer.push_to_hub(__A , organization='''nielsr''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
8
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
1
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : str=32 , UpperCAmelCase : Any=2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : str=16 , UpperCAmelCase : Union[str, Any]=[1, 2, 1] , UpperCAmelCase : List[str]=[2, 2, 4] , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Tuple=2.0 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Dict=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[str]=1e-5 , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=10 , UpperCAmelCase : Dict=8 , UpperCAmelCase : str=["stage1", "stage2", "stage3"] , UpperCAmelCase : List[str]=[1, 2, 3] , ) -> Any: '''simple docstring''' lowercase : int =parent lowercase : List[str] =batch_size lowercase : List[str] =image_size lowercase : Optional[int] =patch_size lowercase : int =num_channels lowercase : Union[str, Any] =embed_dim lowercase : Tuple =depths lowercase : List[Any] =num_heads lowercase : int =window_size lowercase : int =mlp_ratio lowercase : Optional[Any] =qkv_bias lowercase : List[Any] =hidden_dropout_prob lowercase : Optional[int] =attention_probs_dropout_prob lowercase : Any =drop_path_rate lowercase : Optional[int] =hidden_act lowercase : Tuple =use_absolute_embeddings lowercase : Union[str, Any] =patch_norm lowercase : str =layer_norm_eps lowercase : List[str] =initializer_range lowercase : Optional[int] =is_training lowercase : str =scope lowercase : Tuple =use_labels lowercase : List[str] =type_sequence_label_size lowercase : Optional[int] =encoder_stride lowercase : str =out_features lowercase : Optional[Any] =out_indices def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : str =None if self.use_labels: lowercase : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[str] =self.get_config() return config, pixel_values, labels def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Dict =model(UpperCAmelCase ) lowercase : Optional[Any] =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase : List[str] =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : Any =MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : str =model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): lowercase : Dict =['''stem'''] lowercase : str =MaskFormerSwinBackbone(config=UpperCAmelCase ) def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : Tuple =self.prepare_config_and_inputs() lowercase , lowercase , lowercase : List[Any] =config_and_inputs lowercase : Any ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase_ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : Optional[Any] =MaskFormerSwinModelTester(self ) lowercase : List[str] =ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def A__ ( self : Any ) -> str: '''simple docstring''' pass def A__ ( self : str ) -> Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return def A__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip('''Swin does not support feedforward chunking''' ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' pass def A__ ( self : str ) -> str: '''simple docstring''' lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : int =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase , lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =model_class(UpperCAmelCase ) lowercase : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[Any] =[*signature.parameters.keys()] lowercase : Optional[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def A__ ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def A__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' pass def A__ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Tuple =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Union[str, Any] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Tuple =outputs.hidden_states lowercase : Union[str, Any] =getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length lowercase : int =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase : Dict =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase , lowercase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Dict =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase : List[Any] =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Union[str, Any] =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() lowercase : List[str] =3 lowercase : List[Any] =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase : List[str] =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase : Optional[Any] =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase : Optional[int] =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase : Union[str, Any] =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Any =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def A__ ( self : str ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def A__ ( self : int ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' pass def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase : List[str] ): lowercase : Optional[int] =0 return t def check_equivalence(UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]={} ): with torch.no_grad(): lowercase : int =model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) lowercase : Tuple =model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase : int , UpperCAmelCase : Tuple ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has' f' `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.' ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: lowercase : Any =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[int] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) lowercase : List[str] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowercase : List[str] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True} ) lowercase : int =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) lowercase : List[Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , __A ): """simple docstring""" UpperCamelCase_ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase_ = MaskFormerSwinConfig def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =MaskFormerSwinModelTester(self ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase , lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple =inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: lowercase : str =backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() lowercase : Optional[int] =backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase : List[Any] =backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase , lowercase , lowercase : str =hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase : str =backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
8
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowercase_ ( __A : List[str] , __A : Tuple ) -> List[Any]: """simple docstring""" lowercase : Optional[int] =np.argmax(__A , axis=1 ) return np.sum(outputs == labels ) def lowercase_ ( __A : int ) -> Optional[int]: """simple docstring""" with open(__A , encoding='''utf_8''' ) as f: lowercase : Union[str, Any] =csv.reader(__A ) lowercase : int =[] next(__A ) # skip the first line for line in tqdm(__A ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowercase_ ( __A : List[str] , __A : Dict , __A : List[str] , __A : int , __A : Dict , __A : Any ) -> Any: """simple docstring""" lowercase : Dict =[] for dataset in encoded_datasets: lowercase : Any =len(__A ) lowercase : Tuple =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowercase : Optional[Any] =np.zeros((n_batch, 2) , dtype=np.intaa ) lowercase : Tuple =np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowercase : List[Any] =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__A ): lowercase : int =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase : Optional[Any] =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase : Union[str, Any] =with_conta lowercase : Union[str, Any] =with_conta lowercase : Optional[int] =len(__A ) - 1 lowercase : Optional[int] =len(__A ) - 1 lowercase : List[Any] =with_conta lowercase : Any =with_conta lowercase : Any =mc_label lowercase : Any =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__A ) for t in all_inputs ) ) return tensor_datasets def lowercase_ ( ) -> Dict: """simple docstring""" lowercase : Optional[Any] =argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=__A , default='''''' ) parser.add_argument('''--eval_dataset''' , type=__A , default='''''' ) parser.add_argument('''--seed''' , type=__A , default=4_2 ) parser.add_argument('''--num_train_epochs''' , type=__A , default=3 ) parser.add_argument('''--train_batch_size''' , type=__A , default=8 ) parser.add_argument('''--eval_batch_size''' , type=__A , default=1_6 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=__A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=__A , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=__A , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__A , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=__A , default=6.25E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=__A , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=__A , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=__A , default=0.01 ) parser.add_argument('''--lm_coef''' , type=__A , default=0.9 ) parser.add_argument('''--n_valid''' , type=__A , default=3_7_4 ) parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) lowercase : List[Any] =parser.parse_args() print(__A ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowercase : int =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowercase : Optional[Any] =torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(__A , __A ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowercase : int =['''_start_''', '''_delimiter_''', '''_classify_'''] lowercase : Optional[int] =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__A ) lowercase : Dict =tokenizer.convert_tokens_to_ids(__A ) lowercase : str =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__A ) ) model.to(__A ) # Load and encode the datasets def tokenize_and_encode(__A : Tuple ): if isinstance(__A , __A ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__A ) ) elif isinstance(__A , __A ): return obj return [tokenize_and_encode(__A ) for o in obj] logger.info('''Encoding dataset...''' ) lowercase : List[str] =load_rocstories_dataset(args.train_dataset ) lowercase : Union[str, Any] =load_rocstories_dataset(args.eval_dataset ) lowercase : Optional[int] =(train_dataset, eval_dataset) lowercase : List[Any] =tokenize_and_encode(__A ) # Compute the max input length for the Transformer lowercase : List[str] =model.config.n_positions // 2 - 2 lowercase : str =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowercase : Dict =min(__A , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowercase : Optional[int] =pre_process_datasets(__A , __A , __A , *__A ) lowercase , lowercase : Dict =tensor_datasets[0], tensor_datasets[1] lowercase : Optional[Any] =TensorDataset(*__A ) lowercase : Any =RandomSampler(__A ) lowercase : Dict =DataLoader(__A , sampler=__A , batch_size=args.train_batch_size ) lowercase : int =TensorDataset(*__A ) lowercase : Optional[Any] =SequentialSampler(__A ) lowercase : Dict =DataLoader(__A , sampler=__A , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowercase : str =args.max_steps lowercase : Optional[int] =args.max_steps // (len(__A ) // args.gradient_accumulation_steps) + 1 else: lowercase : Any =len(__A ) // args.gradient_accumulation_steps * args.num_train_epochs lowercase : Optional[int] =list(model.named_parameters() ) lowercase : Union[str, Any] =['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] lowercase : Union[str, Any] =[ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] lowercase : Optional[int] =AdamW(__A , lr=args.learning_rate , eps=args.adam_epsilon ) lowercase : Optional[Any] =get_linear_schedule_with_warmup( __A , num_warmup_steps=args.warmup_steps , num_training_steps=__A ) if args.do_train: lowercase , lowercase , lowercase : Union[str, Any] =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): lowercase : List[Any] =0 lowercase : Tuple =0 lowercase : Tuple =tqdm(__A , desc='''Training''' ) for step, batch in enumerate(__A ): lowercase : List[str] =tuple(t.to(__A ) for t in batch ) lowercase , lowercase , lowercase , lowercase : str =batch lowercase : Any =model(__A , mc_token_ids=__A , lm_labels=__A , mc_labels=__A ) lowercase : List[str] =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowercase : int =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowercase : Union[str, Any] ='''Training loss: {:.2e} lr: {:.2e}'''.format(__A , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowercase : Tuple =model.module if hasattr(__A , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowercase : Dict =os.path.join(args.output_dir , __A ) lowercase : List[Any] =os.path.join(args.output_dir , __A ) torch.save(model_to_save.state_dict() , __A ) model_to_save.config.to_json_file(__A ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowercase : Union[str, Any] =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowercase : Any =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__A ) if args.do_eval: model.eval() lowercase , lowercase : List[str] =0, 0 lowercase , lowercase : Union[str, Any] =0, 0 for batch in tqdm(__A , desc='''Evaluating''' ): lowercase : Dict =tuple(t.to(__A ) for t in batch ) lowercase , lowercase , lowercase , lowercase : List[str] =batch with torch.no_grad(): lowercase , lowercase , lowercase , lowercase : Optional[int] =model( __A , mc_token_ids=__A , lm_labels=__A , mc_labels=__A ) lowercase : Optional[Any] =mc_logits.detach().cpu().numpy() lowercase : Tuple =mc_labels.to('''cpu''' ).numpy() lowercase : Dict =accuracy(__A , __A ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowercase : Any =eval_loss / nb_eval_steps lowercase : int =eval_accuracy / nb_eval_examples lowercase : List[Any] =tr_loss / nb_tr_steps if args.do_train else None lowercase : List[Any] ={'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} lowercase : List[Any] =os.path.join(args.output_dir , '''eval_results.txt''' ) with open(__A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , __A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
8
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''tapas''' def __init__( self : Optional[int] , UpperCAmelCase : Any=3_0522 , UpperCAmelCase : List[Any]=768 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Optional[Any]=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : int=1024 , UpperCAmelCase : int=[3, 256, 256, 2, 256, 256, 10] , UpperCAmelCase : List[str]=0.0_2 , UpperCAmelCase : List[str]=1e-12 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : int=1_0.0 , UpperCAmelCase : int=0 , UpperCAmelCase : str=1.0 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1.0 , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=1.0 , UpperCAmelCase : str=1.0 , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Dict="ratio" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Optional[int]=64 , UpperCAmelCase : List[str]=32 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase : List[Any] =vocab_size lowercase : Union[str, Any] =hidden_size lowercase : str =num_hidden_layers lowercase : Tuple =num_attention_heads lowercase : Any =hidden_act lowercase : Optional[int] =intermediate_size lowercase : List[str] =hidden_dropout_prob lowercase : str =attention_probs_dropout_prob lowercase : Union[str, Any] =max_position_embeddings lowercase : int =type_vocab_sizes lowercase : Optional[Any] =initializer_range lowercase : Optional[int] =layer_norm_eps # Fine-tuning task hyperparameters lowercase : Union[str, Any] =positive_label_weight lowercase : Tuple =num_aggregation_labels lowercase : Dict =aggregation_loss_weight lowercase : int =use_answer_as_supervision lowercase : Tuple =answer_loss_importance lowercase : Tuple =use_normalized_answer_loss lowercase : Tuple =huber_loss_delta lowercase : Union[str, Any] =temperature lowercase : Dict =aggregation_temperature lowercase : str =use_gumbel_for_cells lowercase : Any =use_gumbel_for_aggregation lowercase : Tuple =average_approximation_function lowercase : Union[str, Any] =cell_selection_preference lowercase : Tuple =answer_loss_cutoff lowercase : Tuple =max_num_rows lowercase : List[Any] =max_num_columns lowercase : Optional[Any] =average_logits_per_cell lowercase : Optional[Any] =select_one_column lowercase : Optional[Any] =allow_empty_column_selection lowercase : Union[str, Any] =init_cell_selection_weights_to_zero lowercase : Optional[int] =reset_position_index_per_cell lowercase : Tuple =disable_per_token_loss # Aggregation hyperparameters lowercase : Tuple =aggregation_labels lowercase : List[str] =no_aggregation_label_index if isinstance(self.aggregation_labels , UpperCAmelCase ): lowercase : List[str] ={int(UpperCAmelCase ): v for k, v in aggregation_labels.items()}
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
1
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __A , ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = RobertaConfig UpperCamelCase_ = '''roberta''' def __init__( self : Union[str, Any] , UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(UpperCAmelCase ) lowercase : List[str] =RobertaEmbeddings(UpperCAmelCase ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __A , ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = RobertaConfig UpperCamelCase_ = '''roberta''' def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase ) lowercase : Optional[int] =config.num_labels lowercase : List[Any] =config.num_hidden_layers lowercase : Any =DeeRobertaModel(UpperCAmelCase ) lowercase : str =nn.Dropout(config.hidden_dropout_prob ) lowercase : int =nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(UpperCAmelCase ) def A__ ( self : List[Any] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : int=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str=None , UpperCAmelCase : Any=-1 , UpperCAmelCase : Union[str, Any]=False , ) -> Dict: '''simple docstring''' lowercase : List[str] =self.num_layers try: lowercase : Tuple =self.roberta( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , ) lowercase : Optional[Any] =outputs[1] lowercase : Any =self.dropout(UpperCAmelCase ) lowercase : int =self.classifier(UpperCAmelCase ) lowercase : int =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowercase : List[str] =e.message lowercase : Optional[Any] =e.exit_layer lowercase : Any =outputs[0] if not self.training: lowercase : List[str] =entropy(UpperCAmelCase ) lowercase : int =[] lowercase : Optional[Any] =[] if labels is not None: if self.num_labels == 1: # We are doing regression lowercase : Dict =MSELoss() lowercase : Any =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowercase : str =CrossEntropyLoss() lowercase : Any =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowercase : List[Any] =[] for highway_exit in outputs[-1]: lowercase : Any =highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowercase : Union[str, Any] =MSELoss() lowercase : Optional[Any] =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowercase : Tuple =CrossEntropyLoss() lowercase : List[Any] =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase ) if train_highway: lowercase : int =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowercase : Any =(loss,) + outputs if not self.training: lowercase : Union[str, Any] =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowercase : Tuple =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
8
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
1
'''simple docstring''' from __future__ import annotations import pandas as pd def lowercase_ ( __A : list[int] , __A : list[int] , __A : int ) -> list[int]: """simple docstring""" lowercase : Tuple =[0] * no_of_processes lowercase : Any =[0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__A ): lowercase : List[str] =burst_time[i] lowercase : Any =0 lowercase : Optional[Any] =0 lowercase : str =9_9_9_9_9_9_9_9_9 lowercase : List[str] =0 lowercase : Tuple =False # Process until all processes are completed while complete != no_of_processes: for j in range(__A ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowercase : Optional[Any] =remaining_time[j] lowercase : Optional[int] =j lowercase : Union[str, Any] =True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowercase : Optional[int] =remaining_time[short] if minm == 0: lowercase : Optional[Any] =9_9_9_9_9_9_9_9_9 if remaining_time[short] == 0: complete += 1 lowercase : Optional[int] =False # Find finish time of current process lowercase : Dict =increment_time + 1 # Calculate waiting time lowercase : Tuple =finish_time - arrival_time[short] lowercase : int =finar - burst_time[short] if waiting_time[short] < 0: lowercase : List[Any] =0 # Increment time increment_time += 1 return waiting_time def lowercase_ ( __A : list[int] , __A : int , __A : list[int] ) -> list[int]: """simple docstring""" lowercase : List[Any] =[0] * no_of_processes for i in range(__A ): lowercase : Union[str, Any] =burst_time[i] + waiting_time[i] return turn_around_time def lowercase_ ( __A : list[int] , __A : list[int] , __A : int ) -> None: """simple docstring""" lowercase : Tuple =0 lowercase : Tuple =0 for i in range(__A ): lowercase : Any =total_waiting_time + waiting_time[i] lowercase : Tuple =total_turn_around_time + turn_around_time[i] print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') SCREAMING_SNAKE_CASE = int(input()) SCREAMING_SNAKE_CASE = [0] * no_of_processes SCREAMING_SNAKE_CASE = [0] * no_of_processes SCREAMING_SNAKE_CASE = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = map(int, input().split()) SCREAMING_SNAKE_CASE = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE = burst_time SCREAMING_SNAKE_CASE = no_of_processes SCREAMING_SNAKE_CASE = waiting_time SCREAMING_SNAKE_CASE = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) SCREAMING_SNAKE_CASE = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
8
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } SCREAMING_SNAKE_CASE = { 'allenai/longformer-base-4096': 4_096, 'allenai/longformer-large-4096': 4_096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase_ ( ) -> int: """simple docstring""" lowercase : Optional[Any] =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Optional[Any] =bs[:] lowercase : Any =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : List[str] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : int =set() lowercase : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : Any =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int]="replace" , UpperCAmelCase : Optional[int]="<s>" , UpperCAmelCase : Any="</s>" , UpperCAmelCase : List[str]="</s>" , UpperCAmelCase : List[str]="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : List[Any]="<mask>" , UpperCAmelCase : List[Any]=False , **UpperCAmelCase : int , ) -> int: '''simple docstring''' lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Tuple =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : Tuple =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Tuple =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Optional[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : Dict =json.load(UpperCAmelCase ) lowercase : str ={v: k for k, v in self.encoder.items()} lowercase : Dict =errors # how to handle errors in decoding lowercase : Any =bytes_to_unicode() lowercase : Union[str, Any] ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : List[str] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : List[Any] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : List[Any] ={} lowercase : Tuple =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : Any =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def A__ ( self : Optional[int] ) -> int: '''simple docstring''' return len(self.encoder ) def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : Any , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : Optional[int] =tuple(UpperCAmelCase ) lowercase : Any =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : List[str] =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : List[str] =bigram lowercase : List[str] =[] lowercase : Union[str, Any] =0 while i < len(UpperCAmelCase ): try: lowercase : List[Any] =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : List[str] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : Optional[int] =tuple(UpperCAmelCase ) lowercase : Any =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[int] =get_pairs(UpperCAmelCase ) lowercase : Dict =''' '''.join(UpperCAmelCase ) lowercase : int =word return word def A__ ( self : Union[str, Any] , UpperCAmelCase : int ) -> Tuple: '''simple docstring''' lowercase : str =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Union[str, Any] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Tuple , UpperCAmelCase : int ) -> List[str]: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =''''''.join(UpperCAmelCase ) lowercase : Optional[int] =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Any =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : int =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : Optional[int] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Tuple =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : Dict , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Dict =[self.cls_token_id] lowercase : int =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Union[str, Any] =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any]=False , **UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : List[str] =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs)
8
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
1
'''simple docstring''' from __future__ import annotations import math class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : int ) -> None: '''simple docstring''' lowercase : int =size # approximate the overall size of segment tree with given value lowercase : int =[0 for i in range(0 , 4 * size )] # create array to store lazy update lowercase : Dict =[0 for i in range(0 , 4 * size )] lowercase : Optional[Any] =[0 for i in range(0 , 4 * size )] # flag for lazy update def A__ ( self : Any , UpperCAmelCase : int ) -> int: '''simple docstring''' return idx * 2 def A__ ( self : int , UpperCAmelCase : int ) -> int: '''simple docstring''' return idx * 2 + 1 def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[int] ) -> None: '''simple docstring''' if left_element == right_element: lowercase : int =a[left_element - 1] else: lowercase : Union[str, Any] =(left_element + right_element) // 2 self.build(self.left(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.build(self.right(UpperCAmelCase ) , mid + 1 , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =max( self.segment_tree[self.left(UpperCAmelCase )] , self.segment_tree[self.right(UpperCAmelCase )] ) def A__ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> bool: '''simple docstring''' if self.flag[idx] is True: lowercase : Any =self.lazy[idx] lowercase : Any =False if left_element != right_element: lowercase : Tuple =self.lazy[idx] lowercase : Dict =self.lazy[idx] lowercase : Tuple =True lowercase : int =True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowercase : str =val if left_element != right_element: lowercase : Optional[int] =val lowercase : Any =val lowercase : int =True lowercase : int =True return True lowercase : Optional[int] =(left_element + right_element) // 2 self.update(self.left(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.update(self.right(UpperCAmelCase ) , mid + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : List[Any] =max( self.segment_tree[self.left(UpperCAmelCase )] , self.segment_tree[self.right(UpperCAmelCase )] ) return True def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> int | float: '''simple docstring''' if self.flag[idx] is True: lowercase : Union[str, Any] =self.lazy[idx] lowercase : int =False if left_element != right_element: lowercase : List[str] =self.lazy[idx] lowercase : Tuple =self.lazy[idx] lowercase : Dict =True lowercase : Tuple =True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowercase : Any =(left_element + right_element) // 2 lowercase : int =self.query(self.left(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : str =self.query(self.right(UpperCAmelCase ) , mid + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return max(UpperCAmelCase , UpperCAmelCase ) def __str__( self : Tuple ) -> str: '''simple docstring''' return str([self.query(1 , 1 , self.size , UpperCAmelCase , UpperCAmelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] SCREAMING_SNAKE_CASE = 15 SCREAMING_SNAKE_CASE = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' def lowercase_ ( __A : int = 2_0_0 ) -> int: """simple docstring""" lowercase : Dict =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] lowercase : Any =[0] * (pence + 1) lowercase : Optional[int] =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__A , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
8
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' def lowercase_ ( __A : int = 1_0 ) -> str: """simple docstring""" if not isinstance(__A , __A ) or n < 0: raise ValueError('''Invalid input''' ) lowercase : str =1_0**n lowercase : Optional[int] =2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , __A )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
8
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
1
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } SCREAMING_SNAKE_CASE = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def lowercase_ ( __A : List[Any] , __A : List[str] ) -> List[Any]: """simple docstring""" with open(__A , '''r''' , encoding='''utf-8''' ) as f: lowercase : List[Any] =json.loads(f.read() ) lowercase : Any =collections.OrderedDict() lowercase : Dict =collections.OrderedDict() lowercase : List[str] =collections.OrderedDict() with open(__A , '''r''' , encoding='''utf-8''' ) as f: lowercase : List[Any] =f.readlines() lowercase : List[Any] =[[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(__A ): lowercase : Optional[int] =b lowercase : Any =idx for wd in b: lowercase : Any =idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any]="<|endoftext|>" , UpperCAmelCase : str="<|endoftext|>" , UpperCAmelCase : List[Any]="<|startoftext|>" , UpperCAmelCase : Any="<|endoftext|>" , UpperCAmelCase : List[Any]=False , **UpperCAmelCase : Tuple , ) -> List[Any]: '''simple docstring''' super().__init__( unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , do_clean_text=UpperCAmelCase , **UpperCAmelCase , ) if not os.path.isfile(UpperCAmelCase ): raise ValueError( f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(UpperCAmelCase ): raise ValueError( f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) lowercase : str =do_clean_text lowercase , lowercase , lowercase , lowercase : int =load_vocab_and_emoji(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[int] =SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' return len(self.raw_vocab ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def A__ ( self : str , UpperCAmelCase : List[str] ) -> int: '''simple docstring''' return self.subword_tokenizer.tokenize(UpperCAmelCase , clean=self.do_clean_text ) def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' return self.vocab.get(UpperCAmelCase , self.vocab.get(self.unk_token ) ) def A__ ( self : int , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(UpperCAmelCase ) def A__ ( self : str , UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ).strip() return out_string def A__ ( self : Any , UpperCAmelCase : "Conversation" ) -> List[int]: '''simple docstring''' lowercase : List[str] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase : Dict =input_ids[-self.model_max_length :] return input_ids def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : Optional[Any] =0 if os.path.isdir(UpperCAmelCase ): lowercase : Dict =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Union[str, Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: lowercase : int =( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Union[str, Any] =( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) lowercase : str =token_index writer.write(''','''.join(UpperCAmelCase ) + '''\n''' ) index += 1 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , UpperCAmelCase ) return vocab_file, emoji_file class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[int] =vocab # same as swe lowercase : Dict =ids_to_tokens # same as bpe lowercase : Dict =emoji lowercase : List[Any] =np.max([len(UpperCAmelCase ) for w in self.vocab.keys()] ) lowercase : Tuple =re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) lowercase : Union[str, Any] =re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) lowercase : Optional[Any] =re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) lowercase : int =re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowercase : str =re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowercase : Union[str, Any] =re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) lowercase : List[Any] ='''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' lowercase : Optional[int] ='''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' lowercase : Any =str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : Union[str, Any] ) -> int: '''simple docstring''' return len(self.ids_to_tokens ) def A__ ( self : Optional[Any] , UpperCAmelCase : str ) -> List[str]: '''simple docstring''' lowercase : str =self.content_repattera.sub('''<URL>''' , UpperCAmelCase ) lowercase : int =self.content_repattera.sub('''<EMAIL>''' , UpperCAmelCase ) lowercase : List[Any] =self.content_repattera.sub('''<TEL>''' , UpperCAmelCase ) lowercase : List[Any] =self.content_repattera.sub('''<DATE>''' , UpperCAmelCase ) lowercase : Dict =self.content_repattera.sub('''<DATE>''' , UpperCAmelCase ) lowercase : Any =self.content_repattera.sub('''<PRICE>''' , UpperCAmelCase ) lowercase : Union[str, Any] =content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowercase : Dict =content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def A__ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple=False ) -> Dict: '''simple docstring''' lowercase : Dict =text.replace(''' ''' , '''<SP>''' ) lowercase : Optional[int] =text.replace(''' ''' , '''<SP>''' ) lowercase : List[Any] =text.replace('''\r\n''' , '''<BR>''' ) lowercase : Optional[int] =text.replace('''\n''' , '''<BR>''' ) lowercase : Tuple =text.replace('''\r''' , '''<BR>''' ) lowercase : Any =text.replace('''\t''' , '''<TAB>''' ) lowercase : Dict =text.replace('''—''' , '''ー''' ) lowercase : Dict =text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: lowercase : int =text.replace(UpperCAmelCase , UpperCAmelCase ) if clean: lowercase : Any =self.clean_text(UpperCAmelCase ) def check_simbol(UpperCAmelCase : Optional[Any] ): lowercase : List[str] =x.encode() if len(UpperCAmelCase ) == 1 and len(UpperCAmelCase ) == 2: lowercase : Any =(int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2A1 and c <= 0XC_2BF) or (c >= 0XC_780 and c <= 0XC_783) or (c >= 0XC_AB9 and c <= 0XC_BBF) or (c >= 0XC_C80 and c <= 0XC_DA2) ): return True return False def checkuae(UpperCAmelCase : str ): lowercase : Tuple =x.encode() if len(UpperCAmelCase ) == 1 and len(UpperCAmelCase ) == 3: lowercase : Dict =(int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28_080 and c <= 0XE2B_07F: return True return False lowercase : Dict =0 lowercase : Tuple =[] while pos < len(UpperCAmelCase ): lowercase : str =min(len(UpperCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 lowercase : List[Any] =[] # (token_id, token, pos) for e in range(UpperCAmelCase , UpperCAmelCase , -1 ): lowercase : Any =text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCAmelCase ) > 2: lowercase : Tuple =[(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(UpperCAmelCase ) > 0: # the smallest token_id is adopted lowercase , lowercase , lowercase : Union[str, Any] =sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[0] )[0] result.append(UpperCAmelCase ) lowercase : int =e else: lowercase : Optional[Any] =pos + 1 lowercase : str =text[pos:end] if check_simbol(UpperCAmelCase ): result.append('''<KIGOU>''' ) elif checkuae(UpperCAmelCase ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) lowercase : Union[str, Any] =end return result def A__ ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]="\n" ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =[] lowercase : Any =[] lowercase : Any =self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(UpperCAmelCase ) > 0: words.append(bytearray(UpperCAmelCase ).decode('''utf-8''' , errors='''replace''' ) ) lowercase : Tuple =[] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(UpperCAmelCase ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: words.append(bytearray(UpperCAmelCase ).decode('''utf-8''' , errors='''replace''' ) ) lowercase : Union[str, Any] =''''''.join(UpperCAmelCase ) return text
8
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ) -> Optional[Any]: """simple docstring""" lowercase : List[str] =ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__A , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__A , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__A ) return parser.parse_args() def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] =parse_args() # Import training_script as a module. lowercase : Optional[int] =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : List[Any] =script_fpath.stem lowercase : Union[str, Any] =importlib.import_module(__A ) # Patch sys.argv lowercase : Tuple =[args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
8
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants SCREAMING_SNAKE_CASE = Mapping[str, np.ndarray] SCREAMING_SNAKE_CASE = Mapping[str, Any] # Is a nested dict. SCREAMING_SNAKE_CASE = 0.01 @dataclasses.dataclass(frozen=__A ) class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. UpperCamelCase_ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. UpperCamelCase_ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. UpperCamelCase_ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. UpperCamelCase_ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions UpperCamelCase_ = None # Optional remark about the protein. Included as a comment in output PDB # files UpperCamelCase_ = None # Templates used to generate this protein (prediction-only) UpperCamelCase_ = None # Chain corresponding to each parent UpperCamelCase_ = None def lowercase_ ( __A : str ) -> Protein: """simple docstring""" lowercase : int =R'''(\[[A-Z]+\]\n)''' lowercase : List[str] =[tag.strip() for tag in re.split(__A , __A ) if len(__A ) > 0] lowercase : Iterator[Tuple[str, List[str]]] =zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase : List[str] =["N", "CA", "C"] lowercase : int =None lowercase : List[Any] =None lowercase : Dict =None for g in groups: if "[PRIMARY]" == g[0]: lowercase : List[Any] =g[1][0].strip() for i in range(len(__A ) ): if seq[i] not in residue_constants.restypes: lowercase : List[Any] ='''X''' # FIXME: strings are immutable lowercase : str =np.array( [residue_constants.restype_order.get(__A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase : List[List[float]] =[] for axis in range(3 ): tertiary.append(list(map(__A , g[1][axis].split() ) ) ) lowercase : int =np.array(__A ) lowercase : List[str] =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__A ): lowercase : Optional[int] =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase : Any =np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase : str =np.zeros( ( len(__A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__A ): lowercase : List[str] =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__A , atom_mask=__A , aatype=__A , residue_index=np.arange(len(__A ) ) , b_factors=__A , ) def lowercase_ ( __A : Protein , __A : int = 0 ) -> List[str]: """simple docstring""" lowercase : List[str] =[] lowercase : List[str] =prot.remark if remark is not None: pdb_headers.append(F'REMARK {remark}' ) lowercase : Union[str, Any] =prot.parents lowercase : Optional[int] =prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase : List[str] =[p for i, p in zip(__A , __A ) if i == chain_id] if parents is None or len(__A ) == 0: lowercase : Optional[Any] =['''N/A'''] pdb_headers.append(F'PARENT {" ".join(__A )}' ) return pdb_headers def lowercase_ ( __A : Protein , __A : str ) -> str: """simple docstring""" lowercase : List[str] =[] lowercase : Any =pdb_str.split('''\n''' ) lowercase : Tuple =prot.remark if remark is not None: out_pdb_lines.append(F'REMARK {remark}' ) lowercase : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: lowercase : List[str] =[] if prot.parents_chain_index is not None: lowercase : Dict[str, List[str]] ={} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__A ) , [] ) parent_dict[str(__A )].append(__A ) lowercase : int =max([int(__A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase : Union[str, Any] =parent_dict.get(str(__A ) , ['''N/A'''] ) parents_per_chain.append(__A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase : Optional[int] =[['''N/A''']] def make_parent_line(__A : Sequence[str] ) -> str: return F'PARENT {" ".join(__A )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase : Dict =0 for i, l in enumerate(__A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__A ): lowercase : Optional[Any] =parents_per_chain[chain_counter] else: lowercase : str =['''N/A'''] out_pdb_lines.append(make_parent_line(__A ) ) return "\n".join(__A ) def lowercase_ ( __A : Protein ) -> str: """simple docstring""" lowercase : List[str] =residue_constants.restypes + ['''X'''] def res_atoa(__A : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase : Union[str, Any] =residue_constants.atom_types lowercase : List[str] =[] lowercase : Dict =prot.atom_mask lowercase : Tuple =prot.aatype lowercase : List[Any] =prot.atom_positions lowercase : List[str] =prot.residue_index.astype(np.intaa ) lowercase : Dict =prot.b_factors lowercase : Optional[Any] =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase : List[str] =get_pdb_headers(__A ) if len(__A ) > 0: pdb_lines.extend(__A ) lowercase : Any =aatype.shape[0] lowercase : Any =1 lowercase : Any =0 lowercase : int =string.ascii_uppercase lowercase : List[str] =None # Add all atom sites. for i in range(__A ): lowercase : Any =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase : str ='''ATOM''' lowercase : Optional[int] =atom_name if len(__A ) == 4 else F' {atom_name}' lowercase : List[str] ='''''' lowercase : int ='''''' lowercase : Optional[Any] =1.00 lowercase : Tuple =atom_name[0] # Protein supports only C, N, O, S, this works. lowercase : Union[str, Any] ='''''' lowercase : List[str] ='''A''' if chain_index is not None: lowercase : List[Any] =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase : str =( F'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' F'{res_name_a:>3} {chain_tag:>1}' F'{residue_index[i]:>4}{insertion_code:>1} ' F'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' F'{occupancy:>6.2f}{b_factor:>6.2f} ' F'{element:>2}{charge:>2}' ) pdb_lines.append(__A ) atom_index += 1 lowercase : Union[str, Any] =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase : Optional[Any] =True lowercase : Dict =chain_index[i + 1] if should_terminate: # Close the chain. lowercase : Union[str, Any] ='''TER''' lowercase : Any =( F'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(__A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__A , __A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(__A ) def lowercase_ ( __A : Protein ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowercase_ ( __A : FeatureDict , __A : ModelOutput , __A : Optional[np.ndarray] = None , __A : Optional[np.ndarray] = None , __A : Optional[str] = None , __A : Optional[Sequence[str]] = None , __A : Optional[Sequence[int]] = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__A , remark=__A , parents=__A , parents_chain_index=__A , )
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
1
'''simple docstring''' from __future__ import annotations import math SCREAMING_SNAKE_CASE = '2020.9.26' SCREAMING_SNAKE_CASE = 'xcodz-dot, cclaus, dhruvmanila' def lowercase_ ( __A : float , __A : float , __A : float , __A : float , __A : float ) -> tuple[float, float]: """simple docstring""" if not all(isinstance(__A , (float, int) ) for val in locals().values() ): lowercase : Dict =F'Input values must either be float or int: {list(locals().values() )}' raise TypeError(__A ) lowercase : int =((x * distance) / (z + distance)) * scale lowercase : List[Any] =((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowercase_ ( __A : float , __A : float , __A : float , __A : str , __A : float ) -> tuple[float, float, float]: """simple docstring""" if not isinstance(__A , __A ): raise TypeError('''Axis must be a str''' ) lowercase : Dict =locals() del input_variables["axis"] if not all(isinstance(__A , (float, int) ) for val in input_variables.values() ): lowercase : Tuple =( '''Input values except axis must either be float or int: ''' F'{list(input_variables.values() )}' ) raise TypeError(__A ) lowercase : Optional[Any] =(angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": lowercase : List[Any] =x * math.cos(__A ) - y * math.sin(__A ) lowercase : List[str] =y * math.cos(__A ) + x * math.sin(__A ) lowercase : Union[str, Any] =z elif axis == "x": lowercase : int =y * math.cos(__A ) - z * math.sin(__A ) lowercase : Optional[Any] =z * math.cos(__A ) + y * math.sin(__A ) lowercase : Any =x elif axis == "y": lowercase : Any =x * math.cos(__A ) - z * math.sin(__A ) lowercase : Any =z * math.cos(__A ) + x * math.sin(__A ) lowercase : Optional[int] =y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @require_torch def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) lowercase : Optional[int] =load_dataset('''ashraq/esc50''' ) lowercase : int =dataset['''train''']['''audio'''][-1]['''array'''] lowercase : Union[str, Any] =audio_classifier(UpperCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' pass @slow @require_torch def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : str =pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog lowercase : Tuple =load_dataset('''ashraq/esc50''' ) lowercase : int =dataset['''train''']['''audio'''][-1]['''array'''] lowercase : Optional[Any] =audio_classifier(UpperCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) lowercase : Union[str, Any] =audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) lowercase : Union[str, Any] =audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def A__ ( self : Dict ) -> Any: '''simple docstring''' pass
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
'''simple docstring''' SCREAMING_SNAKE_CASE = 0 # The first color of the flag. SCREAMING_SNAKE_CASE = 1 # The second color of the flag. SCREAMING_SNAKE_CASE = 2 # The third color of the flag. SCREAMING_SNAKE_CASE = (red, white, blue) def lowercase_ ( __A : list ) -> list: """simple docstring""" if not sequence: return [] if len(__A ) == 1: return list(__A ) lowercase : Optional[Any] =0 lowercase : int =len(__A ) - 1 lowercase : List[str] =0 while mid <= high: if sequence[mid] == colors[0]: lowercase , lowercase : List[str] =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: lowercase , lowercase : Union[str, Any] =sequence[high], sequence[mid] high -= 1 else: lowercase : str =F'The elements inside the sequence must contains only {colors} values' raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE = input('Enter numbers separated by commas:\n').strip() SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(',')] print(f"""{dutch_national_flag_sort(unsorted)}""")
8
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
1
'''simple docstring''' import os SCREAMING_SNAKE_CASE = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : str =0 lowercase : List[Any] =0 while index < len(__A ) - 1: lowercase : List[Any] =SYMBOLS[numerals[index]] lowercase : Tuple =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowercase_ ( __A : int ) -> str: """simple docstring""" lowercase : Optional[Any] ='''''' lowercase : List[Any] =num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 lowercase : List[Any] =num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 lowercase : int =num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowercase_ ( __A : str = "/p089_roman.txt" ) -> int: """simple docstring""" lowercase : List[str] =0 with open(os.path.dirname(__A ) + roman_numerals_filename ) as filea: lowercase : List[Any] =filea.readlines() for line in lines: lowercase : List[Any] =line.strip() lowercase : Optional[int] =parse_roman_numerals(__A ) lowercase : int =generate_roman_numerals(__A ) savings += len(__A ) - len(__A ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : str ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : str , **UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Any , **UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : List[str] , **UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Any ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) def lowercase_ ( *__A : List[Any] , **__A : Tuple ) -> Dict: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Union[str, Any] , **__A : Dict ) -> str: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Any , **__A : Dict ) -> Any: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Dict , **__A : Dict ) -> Tuple: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Tuple , **__A : str ) -> Union[str, Any]: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Tuple , **__A : Optional[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Any , **__A : str ) -> Dict: """simple docstring""" requires_backends(__A , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : int , **UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : str , **UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : str ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : int ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : int ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Tuple ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : List[str] , **UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : List[str] , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : str , **UpperCAmelCase : str ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : int ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Dict , **UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] )
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''xmod''' def __init__( self : int , UpperCAmelCase : Tuple=3_0522 , UpperCAmelCase : Union[str, Any]=768 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Union[str, Any]=3072 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : int=2 , UpperCAmelCase : List[Any]=0.0_2 , UpperCAmelCase : List[Any]=1e-12 , UpperCAmelCase : Any=1 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int="absolute" , UpperCAmelCase : int=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : str=False , UpperCAmelCase : List[str]=2 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=("en_XX",) , UpperCAmelCase : int=None , **UpperCAmelCase : int , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowercase : Optional[int] =vocab_size lowercase : str =hidden_size lowercase : Optional[int] =num_hidden_layers lowercase : List[Any] =num_attention_heads lowercase : Optional[int] =hidden_act lowercase : Dict =intermediate_size lowercase : Dict =hidden_dropout_prob lowercase : Tuple =attention_probs_dropout_prob lowercase : str =max_position_embeddings lowercase : Union[str, Any] =type_vocab_size lowercase : List[Any] =initializer_range lowercase : Dict =layer_norm_eps lowercase : Any =position_embedding_type lowercase : List[Any] =use_cache lowercase : List[str] =classifier_dropout lowercase : Dict =pre_norm lowercase : List[Any] =adapter_reduction_factor lowercase : List[str] =adapter_layer_norm lowercase : Tuple =adapter_reuse_layer_norm lowercase : Dict =ln_before_adapter lowercase : Optional[Any] =list(UpperCAmelCase ) lowercase : Union[str, Any] =default_language class UpperCAmelCase_ ( __A ): """simple docstring""" @property def A__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowercase : Any ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Optional[Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
8
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Callable , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[dict] = None , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : str , ) -> str: '''simple docstring''' super().__init__( features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Tuple =Generator( cache_dir=UpperCAmelCase , features=UpperCAmelCase , generator=UpperCAmelCase , gen_kwargs=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : Dict ) -> Dict: '''simple docstring''' if self.streaming: lowercase : Optional[Any] =self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: lowercase : Union[str, Any] =None lowercase : Dict =None lowercase : Union[str, Any] =None lowercase : Tuple =None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) lowercase : Optional[Any] =self.builder.as_dataset( split='''train''' , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
8
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
1
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[str]=None , __A : Any=None ) -> List[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=__A ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) UpperCamelCase_ = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) UpperCamelCase_ = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Benchmark training of model'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Verbose memory tracing'''} ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) UpperCamelCase_ = field( default=__A , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Trace memory line by line'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Save result to a CSV file'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Save all print statements in a log file'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Whether to print environment information'''} ) UpperCamelCase_ = field( default=__A , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) UpperCamelCase_ = field( default=F"""inference_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) UpperCamelCase_ = field( default=F"""inference_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) UpperCamelCase_ = field( default=F"""train_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) UpperCamelCase_ = field( default=F"""train_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) UpperCamelCase_ = field( default=F"""env_info_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) UpperCamelCase_ = field( default=F"""log_{round(time() )}.csv""" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) UpperCamelCase_ = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) UpperCamelCase_ = field( default=__A , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , UpperCAmelCase , ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
8
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
1
'''simple docstring''' from PIL import Image def lowercase_ ( __A : Image , __A : float ) -> Image: """simple docstring""" def brightness(__A : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__A ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
8
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : str=1 , UpperCAmelCase : str=0 , UpperCAmelCase : Any=2 , UpperCAmelCase : Optional[Any]=512 , UpperCAmelCase : int="cls" , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : List[str]=True , **UpperCAmelCase : int , ) -> int: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowercase : List[str] =project_dim lowercase : int =pooler_fn lowercase : int =learn_encoder lowercase : List[Any] =use_attention_mask class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = [r'''pooler''', r'''logit_scale'''] UpperCamelCase_ = [r'''position_ids''', r'''predictions.decoder.bias'''] UpperCamelCase_ = '''roberta''' UpperCamelCase_ = RobertaSeriesConfig def __init__( self : List[Any] , UpperCAmelCase : int ) -> Any: '''simple docstring''' super().__init__(UpperCAmelCase ) lowercase : Tuple =XLMRobertaModel(UpperCAmelCase ) lowercase : Optional[Any] =nn.Linear(config.hidden_size , config.project_dim ) lowercase : Tuple =getattr(UpperCAmelCase , '''has_pre_transformation''' , UpperCAmelCase ) if self.has_pre_transformation: lowercase : Optional[int] =nn.Linear(config.hidden_size , config.project_dim ) lowercase : List[Any] =nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def A__ ( self : Optional[int] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , ) -> Optional[int]: '''simple docstring''' lowercase : Dict =return_dict if return_dict is not None else self.config.use_return_dict lowercase : Optional[Any] =self.base_model( input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_attentions=UpperCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCAmelCase , ) if self.has_pre_transformation: lowercase : Any =outputs['''hidden_states'''][-2] lowercase : Dict =self.pre_LN(UpperCAmelCase ) lowercase : str =self.transformation_pre(UpperCAmelCase ) return TransformationModelOutput( projection_state=UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: lowercase : Dict =self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''umt5''' UpperCamelCase_ = ['''past_key_values'''] def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int]=25_0112 , UpperCAmelCase : str=512 , UpperCAmelCase : Optional[int]=64 , UpperCAmelCase : List[Any]=1024 , UpperCAmelCase : Tuple=8 , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=6 , UpperCAmelCase : Dict=32 , UpperCAmelCase : List[str]=128 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Optional[int]=1e-6 , UpperCAmelCase : Optional[int]=1.0 , UpperCAmelCase : Optional[Any]="gated-gelu" , UpperCAmelCase : str=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]="T5Tokenizer" , UpperCAmelCase : int=True , UpperCAmelCase : Tuple=0 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : int=0 , **UpperCAmelCase : Union[str, Any] , ) -> List[Any]: '''simple docstring''' super().__init__( is_encoder_decoder=UpperCAmelCase , tokenizer_class=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Optional[Any] =vocab_size lowercase : List[Any] =d_model lowercase : Optional[Any] =d_kv lowercase : Any =d_ff lowercase : Union[str, Any] =num_layers lowercase : Optional[int] =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase : int =num_heads lowercase : Tuple =relative_attention_num_buckets lowercase : int =relative_attention_max_distance lowercase : Tuple =dropout_rate lowercase : List[str] =layer_norm_epsilon lowercase : Union[str, Any] =initializer_factor lowercase : int =feed_forward_proj lowercase : List[Any] =use_cache lowercase : List[Any] =self.feed_forward_proj.split('''-''' ) lowercase : Dict =act_info[-1] lowercase : Tuple =act_info[0] == '''gated''' if len(UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": lowercase : List[Any] ='''gelu_new''' @property def A__ ( self : Any ) -> List[Any]: '''simple docstring''' return self.d_model @property def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return self.num_heads @property def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return self.num_layers class UpperCAmelCase_ ( __A ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase : List[str] ={ '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: lowercase : Union[str, Any] ='''past_encoder_sequence + sequence''' lowercase : Tuple ={0: '''batch'''} lowercase : Any ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase : Dict ={0: '''batch''', 1: '''decoder_sequence'''} lowercase : List[str] ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A__ ( self : List[Any] ) -> int: '''simple docstring''' return 13 @property def A__ ( self : Union[str, Any] ) -> float: '''simple docstring''' return 5e-4
8
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
1
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowercase_ ( __A : int ) -> Optional[int]: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowercase_ ( ) -> Any: """simple docstring""" with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowercase : List[str] =[1, 2, 3] with pytest.raises(__A ): with parallel_backend('''unsupported backend''' ): map_nested(__A , __A , num_proc=2 ) with pytest.raises(__A ): with parallel_backend('''unsupported backend''' ): map_nested(__A , __A , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def lowercase_ ( __A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any =[1, 2] lowercase : Dict ={'''a''': 1, '''b''': 2} lowercase : str ={'''a''': [1, 2], '''b''': [3, 4]} lowercase : List[str] ={'''a''': {'''1''': 1}, '''b''': 2} lowercase : Union[str, Any] ={'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowercase : str =[2, 3] lowercase : Dict ={'''a''': 2, '''b''': 3} lowercase : int ={'''a''': [2, 3], '''b''': [4, 5]} lowercase : Tuple ={'''a''': {'''1''': 2}, '''b''': 3} lowercase : Tuple ={'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
8
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Dict , UpperCAmelCase : int=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=512 , UpperCAmelCase : Optional[Any]=16 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[Any]=4 , ) -> Any: '''simple docstring''' lowercase : Optional[int] =parent lowercase : Optional[Any] =batch_size lowercase : Tuple =seq_length lowercase : Any =is_training lowercase : Optional[int] =use_attention_mask lowercase : Optional[int] =use_token_type_ids lowercase : Tuple =use_labels lowercase : Any =vocab_size lowercase : int =hidden_size lowercase : str =num_hidden_layers lowercase : Any =num_attention_heads lowercase : str =intermediate_size lowercase : Optional[Any] =hidden_act lowercase : str =hidden_dropout_prob lowercase : List[Any] =attention_probs_dropout_prob lowercase : Union[str, Any] =max_position_embeddings lowercase : Tuple =type_vocab_size lowercase : Optional[int] =type_sequence_label_size lowercase : List[Any] =initializer_range lowercase : Dict =num_choices def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' lowercase : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : List[Any] =None if self.use_attention_mask: lowercase : str =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[int] =None if self.use_token_type_ids: lowercase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Dict =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase : List[str] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : str =config_and_inputs lowercase : Union[str, Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : Tuple =config_and_inputs lowercase : Dict =True lowercase : Union[str, Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : str =FlaxRobertaModelTester(self ) @slow def A__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase : Optional[Any] =model_class_name.from_pretrained('''roberta-base''' , from_pt=UpperCAmelCase ) lowercase : Optional[int] =model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
8
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py SCREAMING_SNAKE_CASE = 'src/diffusers' SCREAMING_SNAKE_CASE = '.' # This is to make sure the diffusers module imported is the one in the repo. SCREAMING_SNAKE_CASE = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) SCREAMING_SNAKE_CASE = spec.loader.load_module() def lowercase_ ( __A : int , __A : Dict ) -> Optional[int]: """simple docstring""" return line.startswith(__A ) or len(__A ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , __A ) is not None def lowercase_ ( __A : str ) -> str: """simple docstring""" lowercase : List[Any] =object_name.split('''.''' ) lowercase : Union[str, Any] =0 # First let's find the module where our object lives. lowercase : Dict =parts[i] while i < len(__A ) and not os.path.isfile(os.path.join(__A , F'{module}.py' ) ): i += 1 if i < len(__A ): lowercase : Dict =os.path.join(__A , parts[i] ) if i >= len(__A ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__A , F'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase : Tuple =f.readlines() # Now let's find the class / func in the code! lowercase : Union[str, Any] ='''''' lowercase : Union[str, Any] =0 for name in parts[i + 1 :]: while ( line_index < len(__A ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__A ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase : Any =line_index while line_index < len(__A ) and _should_continue(lines[line_index] , __A ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase : Union[str, Any] =lines[start_index:line_index] return "".join(__A ) SCREAMING_SNAKE_CASE = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') SCREAMING_SNAKE_CASE = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') SCREAMING_SNAKE_CASE = re.compile(r'<FILL\s+[^>]*>') def lowercase_ ( __A : Optional[int] ) -> int: """simple docstring""" lowercase : int =code.split('''\n''' ) lowercase : Optional[int] =0 while idx < len(__A ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__A ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def lowercase_ ( __A : Dict ) -> List[str]: """simple docstring""" lowercase : Union[str, Any] =len(get_indent(__A ) ) > 0 if has_indent: lowercase : str =F'class Bla:\n{code}' lowercase : List[str] =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=__A ) lowercase : int =black.format_str(__A , mode=__A ) lowercase , lowercase : Dict =style_docstrings_in_code(__A ) return result[len('''class Bla:\n''' ) :] if has_indent else result def lowercase_ ( __A : Tuple , __A : Dict=False ) -> Union[str, Any]: """simple docstring""" with open(__A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase : Optional[int] =f.readlines() lowercase : int =[] lowercase : Optional[Any] =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__A ): lowercase : int =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase , lowercase , lowercase : Dict =search.groups() lowercase : Dict =find_code_in_diffusers(__A ) lowercase : Dict =get_indent(__A ) lowercase : List[str] =line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase : Any =theoretical_indent lowercase : Dict =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase : List[Any] =True while line_index < len(__A ) and should_continue: line_index += 1 if line_index >= len(__A ): break lowercase : Tuple =lines[line_index] lowercase : Optional[Any] =_should_continue(__A , __A ) and re.search(F'^{indent}# End copy' , __A ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase : Any =lines[start_index:line_index] lowercase : List[str] =''''''.join(__A ) # Remove any nested `Copied from` comments to avoid circular copies lowercase : List[Any] =[line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__A ) is None] lowercase : Tuple ='''\n'''.join(__A ) # Before comparing, use the `replace_pattern` on the original code. if len(__A ) > 0: lowercase : List[str] =replace_pattern.replace('''with''' , '''''' ).split(''',''' ) lowercase : List[Any] =[_re_replace_pattern.search(__A ) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase , lowercase , lowercase : List[str] =pattern.groups() lowercase : Union[str, Any] =re.sub(__A , __A , __A ) if option.strip() == "all-casing": lowercase : str =re.sub(obja.lower() , obja.lower() , __A ) lowercase : Dict =re.sub(obja.upper() , obja.upper() , __A ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase : str =blackify(lines[start_index - 1] + theoretical_code ) lowercase : Union[str, Any] =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowercase : Any =lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase : int =start_index + 1 if overwrite and len(__A ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(__A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__A ) return diffs def lowercase_ ( __A : bool = False ) -> Optional[Any]: """simple docstring""" lowercase : int =glob.glob(os.path.join(__A , '''**/*.py''' ) , recursive=__A ) lowercase : List[Any] =[] for filename in all_files: lowercase : Any =is_copy_consistent(__A , __A ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__A ) > 0: lowercase : Optional[int] ='''\n'''.join(__A ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE = parser.parse_args() check_copies(args.fix_and_overwrite)
8
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
1
'''simple docstring''' import enum import shutil import sys SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shutil.get_terminal_size() SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCamelCase_ = 0 UpperCamelCase_ = 1 def lowercase_ ( __A : Optional[Any] , __A : Optional[int]="" ) -> List[str]: """simple docstring""" sys.stdout.write(str(__A ) + end ) sys.stdout.flush() def lowercase_ ( __A : Union[str, Any] , __A : Tuple , __A : Optional[Any]="" ) -> List[Any]: """simple docstring""" forceWrite(F'\u001b[{color}m{content}\u001b[0m' , __A ) def lowercase_ ( ) -> int: """simple docstring""" forceWrite('''\r''' ) def lowercase_ ( __A : int , __A : str ) -> Optional[int]: """simple docstring""" forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def lowercase_ ( ) -> int: """simple docstring""" forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def lowercase_ ( ) -> Any: """simple docstring""" reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
8
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __A : List[str] , __A : int , __A : Optional[int] ) -> List[Any]: """simple docstring""" lowercase : Union[str, Any] =LxmertConfig.from_json_file(__A ) print(F'Building PyTorch model from configuration: {config}' ) lowercase : int =LxmertForPreTraining(__A ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__A , __A , __A ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
8
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
1
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : List[str]=30 , UpperCAmelCase : Tuple=400 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase : List[str]=True , UpperCAmelCase : int=1 / 255 , UpperCAmelCase : List[Any]=True , ) -> Optional[int]: '''simple docstring''' lowercase : Any =size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowercase : Dict =parent lowercase : Union[str, Any] =batch_size lowercase : List[str] =num_channels lowercase : int =min_resolution lowercase : Union[str, Any] =max_resolution lowercase : str =do_resize lowercase : Dict =size lowercase : List[Any] =do_normalize lowercase : int =image_mean lowercase : Optional[int] =image_std lowercase : Union[str, Any] =do_rescale lowercase : Dict =rescale_factor lowercase : Union[str, Any] =do_pad def A__ ( self : List[str] ) -> int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=False ) -> str: '''simple docstring''' if not batched: lowercase : Tuple =image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): lowercase , lowercase : List[str] =image.size else: lowercase , lowercase : Union[str, Any] =image.shape[1], image.shape[2] if w < h: lowercase : Dict =int(self.size['''shortest_edge'''] * h / w ) lowercase : Optional[Any] =self.size['''shortest_edge'''] elif w > h: lowercase : int =self.size['''shortest_edge'''] lowercase : int =int(self.size['''shortest_edge'''] * w / h ) else: lowercase : Optional[Any] =self.size['''shortest_edge'''] lowercase : List[str] =self.size['''shortest_edge'''] else: lowercase : str =[] for image in image_inputs: lowercase , lowercase : List[str] =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase : List[Any] =max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] lowercase : List[str] =max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = DeformableDetrImageProcessor if is_vision_available() else None def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Tuple =DeformableDetrImageProcessingTester(self ) @property def A__ ( self : str ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : List[str] ) -> str: '''simple docstring''' lowercase : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''size''' ) ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) lowercase : int =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' pass def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : int =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowercase : List[str] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : int =self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase : str =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowercase : List[str] =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowercase : str =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Optional[int] =self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : Tuple =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Union[str, Any] =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase : Optional[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : List[str] =self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : int =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase , lowercase : List[str] =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase : Any =json.loads(f.read() ) lowercase : Optional[int] ={'''image_id''': 3_9769, '''annotations''': target} # encode them lowercase : Union[str, Any] =DeformableDetrImageProcessor() lowercase : List[Any] =image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase : Tuple =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase ) lowercase : Optional[int] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase : Any =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase ) ) # verify boxes lowercase : Optional[Any] =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase ) lowercase : List[str] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase : Optional[int] =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase ) ) # verify is_crowd lowercase : Dict =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase ) ) # verify class_labels lowercase : List[str] =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase ) ) # verify orig_size lowercase : Tuple =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase ) ) # verify size lowercase : int =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase ) ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : List[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase : Optional[Any] =json.loads(f.read() ) lowercase : Optional[Any] ={'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} lowercase : Any =pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase : int =DeformableDetrImageProcessor(format='''coco_panoptic''' ) lowercase : List[Any] =image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase : Optional[Any] =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase ) lowercase : Optional[int] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase : Tuple =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase ) ) # verify boxes lowercase : List[Any] =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase ) lowercase : str =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase : Dict =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase ) ) # verify is_crowd lowercase : str =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase ) ) # verify class_labels lowercase : Optional[int] =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase ) ) # verify masks lowercase : Union[str, Any] =82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase ) # verify orig_size lowercase : Union[str, Any] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase ) ) # verify size lowercase : Dict =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase ) )
8
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Optional[NestedDataStructureLike[PathLike]] = None , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Dict , ) -> Any: '''simple docstring''' lowercase : Optional[int] =path_or_paths lowercase : int =split if split or isinstance(UpperCAmelCase , UpperCAmelCase ) else '''train''' lowercase : Union[str, Any] =features lowercase : List[Any] =cache_dir lowercase : Optional[int] =keep_in_memory lowercase : Tuple =streaming lowercase : Dict =num_proc lowercase : Optional[Any] =kwargs @abstractmethod def A__ ( self : List[str] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =features lowercase : Any =cache_dir lowercase : Union[str, Any] =keep_in_memory lowercase : int =streaming lowercase : Dict =num_proc lowercase : Optional[int] =kwargs @abstractmethod def A__ ( self : List[Any] ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
8
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } SCREAMING_SNAKE_CASE = {'mgp-str': 27} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int="[GO]" , UpperCAmelCase : Union[str, Any]="[GO]" , UpperCAmelCase : Optional[Any]="[s]" , UpperCAmelCase : Any="[GO]" , **UpperCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' super().__init__( unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , pad_token=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : List[str] =json.load(UpperCAmelCase ) lowercase : Optional[Any] ={v: k for k, v in self.vocab.items()} @property def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return len(self.vocab ) def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def A__ ( self : Optional[int] , UpperCAmelCase : str ) -> Dict: '''simple docstring''' lowercase : List[str] =[] for s in text: char_tokens.extend(UpperCAmelCase ) return char_tokens def A__ ( self : List[str] , UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' return self.vocab.get(UpperCAmelCase , self.vocab.get(self.unk_token ) ) def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(UpperCAmelCase ) ) return lowercase : Optional[int] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) return (vocab_file,)
8
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def lowercase_ ( __A : Dict ) -> Tuple: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowercase : Optional[int] =k.replace(__A , __A ) if k.startswith('''encoder''' ): lowercase : Any =k.replace('''.attn''' , '''.self_attn''' ) lowercase : List[Any] =k.replace('''norm1''' , '''self_attn_layer_norm''' ) lowercase : List[Any] =k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): lowercase : str =k.replace('''norm1''' , '''self_attn_layer_norm''' ) lowercase : int =k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) lowercase : Optional[int] =k.replace('''norm3''' , '''final_layer_norm''' ) return k def lowercase_ ( __A : Dict ) -> Optional[int]: """simple docstring""" lowercase : Tuple =[ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: lowercase : Optional[int] =sd.pop(__A ) lowercase : List[str] =k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd lowercase : List[str] =v SCREAMING_SNAKE_CASE = ['START'] @torch.no_grad() def lowercase_ ( __A : List[str] , __A : Optional[Any] , __A : str ) -> Any: """simple docstring""" lowercase : Optional[Any] =torch.load(__A , map_location='''cpu''' ) lowercase : Optional[int] =model['''model'''] lowercase : List[str] =BlenderbotConfig.from_json_file(__A ) lowercase : Union[str, Any] =BlenderbotForConditionalGeneration(__A ) lowercase : Tuple =m.model.state_dict().keys() lowercase : Optional[Any] =[] lowercase : Union[str, Any] ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowercase : int =rename_state_dict_key(__A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowercase : List[Any] =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__A ) m.model.load_state_dict(__A , strict=__A ) m.half() m.save_pretrained(__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
1
'''simple docstring''' def lowercase_ ( __A : int ) -> int: """simple docstring""" lowercase : str =[1] lowercase , lowercase , lowercase : Dict =0, 0, 0 lowercase : List[Any] =ugly_nums[ia] * 2 lowercase : str =ugly_nums[ia] * 3 lowercase : List[str] =ugly_nums[ia] * 5 for _ in range(1 , __A ): lowercase : str =min(__A , __A , __A ) ugly_nums.append(__A ) if next_num == next_a: ia += 1 lowercase : Union[str, Any] =ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase : Any =ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase : Optional[int] =ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(200) = }""")
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str]=7 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=30 , UpperCAmelCase : Union[str, Any]=400 , UpperCAmelCase : Any=True , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=0.9 , UpperCAmelCase : str=None , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =size if size is not None else {'''shortest_edge''': 30} lowercase : Any =crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} lowercase : List[str] =parent lowercase : Any =batch_size lowercase : Tuple =num_channels lowercase : List[Any] =min_resolution lowercase : Union[str, Any] =max_resolution lowercase : int =do_resize_and_center_crop lowercase : Any =size lowercase : Union[str, Any] =crop_pct lowercase : List[str] =crop_size lowercase : Any =do_normalize lowercase : Any =image_mean lowercase : Union[str, Any] =image_std def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = PoolFormerImageProcessor if is_vision_available() else None def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Tuple =PoolFormerImageProcessingTester(self ) @property def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : List[str] ) -> Any: '''simple docstring''' lowercase : Optional[int] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''crop_pct''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''image_std''' ) ) def A__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) lowercase : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def A__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' pass def A__ ( self : Optional[Any] ) -> str: '''simple docstring''' lowercase : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowercase : List[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : str =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowercase : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowercase : Optional[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : Optional[Any] =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : Tuple =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase : List[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : Optional[Any] =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : Dict=[30, 30] , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int=32 , UpperCAmelCase : Any=5 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : str=37 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[int]=0.0_2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : Union[str, Any]=10 , ) -> Optional[int]: '''simple docstring''' lowercase : int =parent lowercase : str =batch_size lowercase : List[Any] =image_size lowercase : Tuple =patch_size lowercase : str =num_channels lowercase : int =is_training lowercase : Dict =use_labels lowercase : Dict =hidden_size lowercase : Any =num_hidden_layers lowercase : Optional[Any] =num_attention_heads lowercase : Optional[int] =intermediate_size lowercase : int =hidden_act lowercase : Dict =hidden_dropout_prob lowercase : int =attention_probs_dropout_prob lowercase : List[str] =type_sequence_label_size lowercase : Any =initializer_range lowercase : str =num_labels lowercase : str =scope lowercase : Dict =n_targets lowercase : Any =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase : int =(image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase : Tuple =num_patches + 1 + self.num_detection_tokens def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase : Dict =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase : Union[str, Any] =[] for i in range(self.batch_size ): lowercase : Tuple ={} lowercase : str =torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCAmelCase ) lowercase : List[Any] =torch.rand(self.n_targets , 4 , device=UpperCAmelCase ) labels.append(UpperCAmelCase ) lowercase : Any =self.get_config() return config, pixel_values, labels def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def A__ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =YolosModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def A__ ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Tuple =YolosForObjectDetection(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Tuple =model(pixel_values=UpperCAmelCase ) lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase : str =model(pixel_values=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : Dict =self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Union[str, Any] =config_and_inputs lowercase : Union[str, Any] ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCamelCase_ = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : int=False ) -> Any: '''simple docstring''' lowercase : Dict =super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase : Any =[] for i in range(self.model_tester.batch_size ): lowercase : Optional[Any] ={} lowercase : int =torch.ones( size=(self.model_tester.n_targets,) , device=UpperCAmelCase , dtype=torch.long ) lowercase : Tuple =torch.ones( self.model_tester.n_targets , 4 , device=UpperCAmelCase , dtype=torch.float ) labels.append(UpperCAmelCase ) lowercase : int =labels return inputs_dict def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' lowercase : List[str] =YolosModelTester(self ) lowercase : Optional[Any] =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Dict ) -> List[str]: '''simple docstring''' pass def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] =model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self : List[Any] ) -> Any: '''simple docstring''' lowercase , lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any =model_class(UpperCAmelCase ) lowercase : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : str =[*signature.parameters.keys()] lowercase : Optional[int] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any =True # in YOLOS, the seq_len is different lowercase : Union[str, Any] =self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase : Optional[int] =True lowercase : int =False lowercase : Any =True lowercase : Optional[Any] =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Optional[int] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : List[Any] =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase : Dict =True lowercase : List[Any] =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : List[str] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : int =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase : Dict =len(UpperCAmelCase ) # Check attention is always last and order is fine lowercase : Optional[int] =True lowercase : Tuple =True lowercase : Dict =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Tuple =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Optional[int] =1 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase ) ) lowercase : Optional[int] =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] ): lowercase : List[Any] =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Dict =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Optional[Any] =outputs.hidden_states lowercase : Any =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # YOLOS has a different seq_length lowercase : int =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Dict =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCAmelCase ) @slow def A__ ( self : Any ) -> int: '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : str =YolosModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : Optional[int] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCAmelCase ) lowercase : Optional[int] =self.default_image_processor lowercase : Optional[Any] =prepare_img() lowercase : Tuple =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase : Optional[Any] =model(inputs.pixel_values ) # verify outputs lowercase : Dict =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase : Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCAmelCase , ) lowercase : str =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify postprocessing lowercase : int =image_processor.post_process_object_detection( UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase : Union[str, Any] =torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCAmelCase ) lowercase : List[Any] =[75, 75, 17, 63, 17] lowercase : Union[str, Any] =torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCAmelCase ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCAmelCase , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCAmelCase ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCAmelCase ) )
8
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCamelCase_ = field( default=__A , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) UpperCamelCase_ = field( default=__A , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) UpperCamelCase_ = field( default=__A , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] =super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : List[str] =v.to_dict() return d
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase_ ( __A : Dict ) -> Tuple: """simple docstring""" if not is_accelerate_available(): return method lowercase : Union[str, Any] =version.parse(accelerate.__version__ ).base_version if version.parse(__A ) < version.parse('''0.17.0''' ): return method def wrapper(self : str , *__A : Union[str, Any] , **__A : Tuple ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *__A , **__A ) return wrapper
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' def lowercase_ ( __A : int , __A : int , __A : int ) -> float: """simple docstring""" lowercase : Union[str, Any] =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" print(sum_of_series(1 , 1 , 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
1
'''simple docstring''' from __future__ import annotations import queue class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =data lowercase : str =None lowercase : Dict =None def lowercase_ ( ) -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) lowercase : List[str] =input('''Enter the value of the root node: ''' ).strip().lower() lowercase : queue.Queue =queue.Queue() lowercase : Union[str, Any] =TreeNode(int(__A ) ) q.put(__A ) while not q.empty(): lowercase : Dict =q.get() lowercase : Optional[Any] =F'Enter the left node of {node_found.data}: ' lowercase : Tuple =input(__A ).strip().lower() or '''n''' if check == "n": return tree_node lowercase : Tuple =TreeNode(int(__A ) ) lowercase : Optional[int] =left_node q.put(__A ) lowercase : Union[str, Any] =F'Enter the right node of {node_found.data}: ' lowercase : Tuple =input(__A ).strip().lower() or '''n''' if check == "n": return tree_node lowercase : Optional[Any] =TreeNode(int(__A ) ) lowercase : List[str] =right_node q.put(__A ) raise def lowercase_ ( __A : TreeNode ) -> None: """simple docstring""" if not isinstance(__A , __A ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def lowercase_ ( __A : TreeNode ) -> None: """simple docstring""" if not isinstance(__A , __A ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def lowercase_ ( __A : TreeNode ) -> None: """simple docstring""" if not isinstance(__A , __A ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def lowercase_ ( __A : TreeNode ) -> None: """simple docstring""" if not isinstance(__A , __A ) or not node: return lowercase : queue.Queue =queue.Queue() q.put(__A ) while not q.empty(): lowercase : List[Any] =q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase_ ( __A : TreeNode ) -> None: """simple docstring""" if not isinstance(__A , __A ) or not node: return lowercase : queue.Queue =queue.Queue() q.put(__A ) while not q.empty(): lowercase : Optional[Any] =[] while not q.empty(): lowercase : Tuple =q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__A ) def lowercase_ ( __A : TreeNode ) -> None: """simple docstring""" if not isinstance(__A , __A ) or not node: return lowercase : list[TreeNode] =[] lowercase : Union[str, Any] =node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__A ) lowercase : Dict =n.left # end of while means current node doesn't have left child lowercase : List[str] =stack.pop() # start to traverse its right child lowercase : List[str] =n.right def lowercase_ ( __A : TreeNode ) -> None: """simple docstring""" if not isinstance(__A , __A ) or not node: return lowercase : list[TreeNode] =[] lowercase : List[str] =node while n or stack: while n: stack.append(__A ) lowercase : Optional[Any] =n.left lowercase : Tuple =stack.pop() print(n.data , end=''',''' ) lowercase : Union[str, Any] =n.right def lowercase_ ( __A : TreeNode ) -> None: """simple docstring""" if not isinstance(__A , __A ) or not node: return lowercase , lowercase : Tuple =[], [] lowercase : Optional[int] =node stacka.append(__A ) while stacka: # to find the reversed order of post order, store it in stack2 lowercase : Union[str, Any] =stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__A ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def lowercase_ ( __A : str = "" , __A : List[Any]=5_0 , __A : List[Any]="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char lowercase , lowercase : Optional[int] =divmod(width - len(__A ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
8
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''sew-d''' def __init__( self : Optional[Any] , UpperCAmelCase : Any=32 , UpperCAmelCase : str=768 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : List[Any]=3072 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : str=256 , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : str=("p2c", "c2p") , UpperCAmelCase : Optional[Any]="layer_norm" , UpperCAmelCase : Dict="gelu_python" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[str]=1e-7 , UpperCAmelCase : Dict=1e-5 , UpperCAmelCase : Optional[Any]="group" , UpperCAmelCase : str="gelu" , UpperCAmelCase : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Dict=128 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=0.0_5 , UpperCAmelCase : Tuple=10 , UpperCAmelCase : Any=2 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Tuple=10 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Optional[Any]="mean" , UpperCAmelCase : Any=False , UpperCAmelCase : int=False , UpperCAmelCase : List[str]=256 , UpperCAmelCase : str=0 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Tuple=2 , **UpperCAmelCase : int , ) -> str: '''simple docstring''' super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowercase : Union[str, Any] =hidden_size lowercase : Optional[Any] =feat_extract_norm lowercase : Dict =feat_extract_activation lowercase : Optional[Any] =list(UpperCAmelCase ) lowercase : Optional[int] =list(UpperCAmelCase ) lowercase : List[Any] =list(UpperCAmelCase ) lowercase : Dict =conv_bias lowercase : Any =num_conv_pos_embeddings lowercase : Tuple =num_conv_pos_embedding_groups lowercase : List[Any] =len(self.conv_dim ) lowercase : Any =num_hidden_layers lowercase : List[Any] =intermediate_size lowercase : Any =squeeze_factor lowercase : Dict =max_position_embeddings lowercase : Union[str, Any] =position_buckets lowercase : List[Any] =share_att_key lowercase : Optional[int] =relative_attention lowercase : List[Any] =norm_rel_ebd lowercase : List[str] =list(UpperCAmelCase ) lowercase : Optional[Any] =hidden_act lowercase : Optional[int] =num_attention_heads lowercase : int =hidden_dropout lowercase : Optional[Any] =attention_dropout lowercase : Optional[Any] =activation_dropout lowercase : Union[str, Any] =feat_proj_dropout lowercase : Union[str, Any] =final_dropout lowercase : Dict =layer_norm_eps lowercase : Tuple =feature_layer_norm_eps lowercase : Optional[Any] =initializer_range lowercase : Optional[int] =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase : str =apply_spec_augment lowercase : str =mask_time_prob lowercase : int =mask_time_length lowercase : Tuple =mask_time_min_masks lowercase : Dict =mask_feature_prob lowercase : Any =mask_feature_length lowercase : Dict =mask_feature_min_masks # ctc loss lowercase : List[str] =ctc_loss_reduction lowercase : Dict =ctc_zero_infinity # sequence classification lowercase : int =use_weighted_layer_sum lowercase : Dict =classifier_proj_size @property def A__ ( self : int ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
8
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
1
'''simple docstring''' SCREAMING_SNAKE_CASE = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } SCREAMING_SNAKE_CASE = {value: key for key, value in encode_dict.items()} def lowercase_ ( __A : str ) -> str: """simple docstring""" lowercase : Tuple ='''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def lowercase_ ( __A : str ) -> str: """simple docstring""" if set(__A ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase : Any ='''''' for word in coded.split(): while len(__A ) != 0: decoded += decode_dict[word[:5]] lowercase : List[str] =word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
8
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
1
'''simple docstring''' def lowercase_ ( __A : str ) -> Tuple: # noqa: E741 """simple docstring""" lowercase : Optional[int] =len(__A ) lowercase : Optional[Any] =0 lowercase : Any =[0] * n lowercase : List[Any] =[False] * n lowercase : List[Any] =[False] * n def dfs(__A : Any , __A : int , __A : Tuple , __A : Any ): if parent == root: out_edge_count += 1 lowercase : List[str] =True lowercase : Tuple =at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase : int =dfs(__A , __A , __A , __A ) lowercase : Optional[int] =min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase : List[str] =True # AP found via cycle if at == low[to]: lowercase : Optional[int] =True else: lowercase : int =min(low[at] , __A ) return out_edge_count for i in range(__A ): if not visited[i]: lowercase : Optional[Any] =0 lowercase : List[str] =dfs(__A , __A , -1 , __A ) lowercase : Dict =out_edge_count > 1 for x in range(len(__A ) ): if is_art[x] is True: print(__A ) # Adjacency list of graph SCREAMING_SNAKE_CASE = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
1
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowercase_ ( __A : Union[str, Any] , __A : Dict , __A : List[str]=0 ) -> Union[str, Any]: """simple docstring""" if name is None: lowercase : Optional[Any] =None else: lowercase : int ='''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(5_0 - spaces ) + '''s}''' lowercase : Optional[int] =fmt.format(__A ) # Print and recurse (if needed). if isinstance(__A , __A ): if msg is not None: print(__A ) for k in val.keys(): recursive_print(__A , val[k] , spaces + 2 ) elif isinstance(__A , torch.Tensor ): print(__A , ''':''' , val.size() ) else: print(__A , ''':''' , __A ) def lowercase_ ( __A : Optional[Any] , __A : Optional[int] , __A : Optional[Any] , __A : Optional[int] , __A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] =param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowercase : int =(num_heads, hidden_size, num_splits) + input_shape[1:] lowercase : int =param.view(*__A ) lowercase : Optional[Any] =param.transpose(0 , 2 ) lowercase : Union[str, Any] =param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowercase : List[Any] =(num_heads, num_splits, hidden_size) + input_shape[1:] lowercase : Tuple =param.view(*__A ) lowercase : Any =param.transpose(0 , 1 ).contiguous() lowercase : str =param.view(*__A ) return param def lowercase_ ( __A : Dict , __A : Union[str, Any] , __A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Union[str, Any] ={} # old versions did not store training args lowercase : int =input_state_dict.get('''args''' , __A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowercase : Tuple =ds_args.padded_vocab_size lowercase : Any =ds_args.max_position_embeddings lowercase : Dict =ds_args.hidden_size lowercase : Any =ds_args.num_layers lowercase : Dict =ds_args.num_attention_heads lowercase : int =ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowercase : Any =config.n_head # The hidden_size per head. lowercase : Optional[int] =config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowercase : str =input_state_dict['''checkpoint_version'''] else: lowercase : Any =0.0 # The model. lowercase : Tuple =input_state_dict['''model'''] # The language model. lowercase : Any =model['''language_model'''] # The embeddings. lowercase : Union[str, Any] =lm['''embedding'''] # The word embeddings. lowercase : Optional[Any] =embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. lowercase : Dict =word_embeddings[: config.vocab_size, :] lowercase : str =word_embeddings # The position embeddings. lowercase : int =embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowercase : List[str] =pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. lowercase : List[Any] =pos_embeddings # The transformer. lowercase : Dict =lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. lowercase : Dict =re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. lowercase : List[str] ={ '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowercase : Optional[Any] =layer_re.match(__A ) # Stop if that's not a layer if m is None: break # The index of the layer. lowercase : List[Any] =int(m.group(1 ) ) # The name of the operation. lowercase : Dict =m.group(2 ) # Is it a weight or a bias? lowercase : Any =m.group(3 ) # The name of the layer. lowercase : int =F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): lowercase : List[Any] ='''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' lowercase : Any =val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowercase : List[str] =torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __A , __A ) lowercase : Any =causal_mask # Insert a "dummy" tensor for masked_bias. lowercase : Tuple =torch.tensor(-1E4 , dtype=torch.floataa ) lowercase : int =masked_bias lowercase : Optional[Any] =fix_query_key_value_ordering(__A , __A , 3 , __A , __A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowercase : Tuple =out_val.transpose(0 , 1 ).contiguous() # Store. lowercase : Any =out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowercase : List[str] =fix_query_key_value_ordering(__A , __A , 3 , __A , __A ) # Store. No change of shape. lowercase : Union[str, Any] =out_val # Transpose the weights. elif weight_or_bias == "weight": lowercase : List[str] =megatron_to_transformers[op_name] lowercase : Any =val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowercase : str =megatron_to_transformers[op_name] lowercase : str =val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowercase : List[Any] =transformer['''final_layernorm.weight'''] lowercase : str =transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. lowercase : List[str] =word_embeddings # It should be done! return output_state_dict def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] =argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=__A , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=__A , help='''An optional config json file describing the pre-trained model.''' , ) lowercase : Dict =parser.parse_args() # Extract the basename. lowercase : Dict =os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: lowercase : Optional[Any] =torch.load(__A , map_location='''cpu''' ) else: lowercase : str =torch.load(args.path_to_checkpoint , map_location='''cpu''' ) lowercase : List[Any] =input_state_dict.get('''args''' , __A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowercase : Optional[Any] ='''gelu_fast''' elif ds_args.openai_gelu: lowercase : Tuple ='''gelu_new''' else: lowercase : str ='''gelu''' else: # in the very early days this used to be "gelu_new" lowercase : Dict ='''gelu_new''' # Spell out all parameters in case the defaults change. lowercase : List[str] =GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=__A , summary_activation=__A , summary_proj_to_labels=__A , summary_first_dropout=0.1 , scale_attn_weights=__A , use_cache=__A , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: lowercase : List[Any] =GPTaConfig.from_json_file(args.config_file ) lowercase : Any =['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) lowercase : Dict =convert_megatron_checkpoint(__A , __A , __A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__A , __A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowercase : Tuple =ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowercase : Optional[int] ='''gpt2''' elif tokenizer_type == "PretrainedFromHF": lowercase : Any =ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: lowercase : List[Any] ='''gpt2''' lowercase : Optional[int] =AutoTokenizer.from_pretrained(__A ) lowercase : Any =type(__A ).__name__ lowercase : Union[str, Any] =tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(__A ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__A ) # Store the state_dict to file. lowercase : Any =os.path.join(__A , '''pytorch_model.bin''' ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__A , __A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
8
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : str , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : bool = True , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Union[str, Any] =size if size is not None else {'''shortest_edge''': 224} lowercase : List[str] =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase : Union[str, Any] =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : int =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase , param_name='''crop_size''' ) lowercase : List[str] =do_resize lowercase : Dict =size lowercase : Any =resample lowercase : str =do_center_crop lowercase : Optional[int] =crop_size lowercase : List[str] =do_rescale lowercase : List[str] =rescale_factor lowercase : Optional[Any] =do_normalize lowercase : str =image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else OPENAI_CLIP_STD lowercase : str =do_convert_rgb def A__ ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ) -> np.ndarray: '''simple docstring''' lowercase : str =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase : Optional[int] =get_resize_output_image_size(UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ) -> np.ndarray: '''simple docstring''' lowercase : Dict =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : int = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase : Dict , ) -> PIL.Image.Image: '''simple docstring''' lowercase : int =do_resize if do_resize is not None else self.do_resize lowercase : Any =size if size is not None else self.size lowercase : List[str] =get_size_dict(UpperCAmelCase , param_name='''size''' , default_to_square=UpperCAmelCase ) lowercase : Tuple =resample if resample is not None else self.resample lowercase : Any =do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str =crop_size if crop_size is not None else self.crop_size lowercase : Tuple =get_size_dict(UpperCAmelCase , param_name='''crop_size''' , default_to_square=UpperCAmelCase ) lowercase : Optional[int] =do_rescale if do_rescale is not None else self.do_rescale lowercase : Dict =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] =do_normalize if do_normalize is not None else self.do_normalize lowercase : int =image_mean if image_mean is not None else self.image_mean lowercase : Dict =image_std if image_std is not None else self.image_std lowercase : Any =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase : Optional[int] =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase : Dict =[convert_to_rgb(UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase : Union[str, Any] =[to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowercase : Optional[Any] =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: lowercase : Optional[int] =[self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : Dict =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Tuple =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Optional[Any] ={'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
8
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
1
'''simple docstring''' from math import sqrt def lowercase_ ( __A : int ) -> bool: """simple docstring""" assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : int =True # 0 and 1 are none primes. if number <= 1: lowercase : Optional[Any] =False for divisor in range(2 , int(round(sqrt(__A ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Optional[int] =False break # precondition assert isinstance(__A , __A ), "'status' must been from type bool" return status def lowercase_ ( __A : Tuple ) -> int: """simple docstring""" assert isinstance(__A , __A ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : Union[str, Any] =list(range(2 , n + 1 ) ) lowercase : str =[] # this list will be returns. # actual sieve of erathostenes for i in range(len(__A ) ): for j in range(i + 1 , len(__A ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : str =0 # filters actual prime numbers. lowercase : List[Any] =[x for x in begin_list if x != 0] # precondition assert isinstance(__A , __A ), "'ans' must been from type list" return ans def lowercase_ ( __A : str ) -> Dict: """simple docstring""" assert isinstance(__A , __A ) and (n > 2), "'N' must been an int and > 2" lowercase : Optional[int] =[] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__A ): ans.append(__A ) # precondition assert isinstance(__A , __A ), "'ans' must been from type list" return ans def lowercase_ ( __A : List[str] ) -> Optional[Any]: """simple docstring""" assert isinstance(__A , __A ) and number >= 0, "'number' must been an int and >= 0" lowercase : Dict =[] # this list will be returns of the function. # potential prime number factors. lowercase : Dict =2 lowercase : Tuple =number if number == 0 or number == 1: ans.append(__A ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__A ): while quotient != 1: if is_prime(__A ) and (quotient % factor == 0): ans.append(__A ) quotient /= factor else: factor += 1 else: ans.append(__A ) # precondition assert isinstance(__A , __A ), "'ans' must been from type list" return ans def lowercase_ ( __A : Tuple ) -> Optional[int]: """simple docstring""" assert isinstance(__A , __A ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] =0 # prime factorization of 'number' lowercase : Optional[Any] =prime_factorization(__A ) lowercase : str =max(__A ) # precondition assert isinstance(__A , __A ), "'ans' must been from type int" return ans def lowercase_ ( __A : str ) -> str: """simple docstring""" assert isinstance(__A , __A ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : List[Any] =0 # prime factorization of 'number' lowercase : Tuple =prime_factorization(__A ) lowercase : Tuple =min(__A ) # precondition assert isinstance(__A , __A ), "'ans' must been from type int" return ans def lowercase_ ( __A : List[Any] ) -> Any: """simple docstring""" assert isinstance(__A , __A ), "'number' must been an int" assert isinstance(number % 2 == 0 , __A ), "compare bust been from type bool" return number % 2 == 0 def lowercase_ ( __A : int ) -> str: """simple docstring""" assert isinstance(__A , __A ), "'number' must been an int" assert isinstance(number % 2 != 0 , __A ), "compare bust been from type bool" return number % 2 != 0 def lowercase_ ( __A : str ) -> List[str]: """simple docstring""" assert ( isinstance(__A , __A ) and (number > 2) and is_even(__A ) ), "'number' must been an int, even and > 2" lowercase : List[Any] =[] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : Any =get_prime_numbers(__A ) lowercase : Tuple =len(__A ) # run variable for while-loops. lowercase : str =0 lowercase : Dict =None # exit variable. for break up the loops lowercase : Any =True while i < len_pn and loop: lowercase : int =i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Any =False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__A , __A ) and (len(__A ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowercase_ ( __A : int , __A : Dict ) -> str: """simple docstring""" assert ( isinstance(__A , __A ) and isinstance(__A , __A ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : List[str] =0 while numbera != 0: lowercase : int =numbera % numbera lowercase : int =numbera lowercase : Union[str, Any] =rest # precondition assert isinstance(__A , __A ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowercase_ ( __A : Optional[Any] , __A : Any ) -> Union[str, Any]: """simple docstring""" assert ( isinstance(__A , __A ) and isinstance(__A , __A ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Optional[int] =1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[int] =prime_factorization(__A ) lowercase : Dict =prime_factorization(__A ) elif numbera == 1 or numbera == 1: lowercase : List[Any] =[] lowercase : str =[] lowercase : int =max(__A , __A ) lowercase : int =0 lowercase : Optional[int] =0 lowercase : str =[] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Any =prime_fac_a.count(__A ) lowercase : int =prime_fac_a.count(__A ) for _ in range(max(__A , __A ) ): ans *= n else: lowercase : Optional[Any] =prime_fac_a.count(__A ) for _ in range(__A ): ans *= n done.append(__A ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Union[str, Any] =prime_fac_a.count(__A ) for _ in range(__A ): ans *= n done.append(__A ) # precondition assert isinstance(__A , __A ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowercase_ ( __A : Any ) -> Union[str, Any]: """simple docstring""" assert isinstance(__A , __A ) and (n >= 0), "'number' must been a positive int" lowercase : str =0 lowercase : str =2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__A ): ans += 1 # precondition assert isinstance(__A , __A ) and is_prime( __A ), "'ans' must been a prime number and from type int" return ans def lowercase_ ( __A : Tuple , __A : List[Any] ) -> Tuple: """simple docstring""" assert ( is_prime(__A ) and is_prime(__A ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : Any =p_number_a + 1 # jump to the next number lowercase : str =[] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__A ): number += 1 while number < p_number_a: ans.append(__A ) number += 1 # fetch the next prime number. while not is_prime(__A ): number += 1 # precondition assert ( isinstance(__A , __A ) and ans[0] != p_number_a and ans[len(__A ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" assert isinstance(__A , __A ) and (n >= 1), "'n' must been int and >= 1" lowercase : Union[str, Any] =[] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__A ) # precondition assert ans[0] == 1 and ans[len(__A ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowercase_ ( __A : str ) -> Any: """simple docstring""" assert isinstance(__A , __A ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : List[str] =get_divisors(__A ) # precondition assert ( isinstance(__A , __A ) and (divisors[0] == 1) and (divisors[len(__A ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowercase_ ( __A : Dict , __A : List[str] ) -> List[Any]: """simple docstring""" assert ( isinstance(__A , __A ) and isinstance(__A , __A ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Any =gcd(abs(__A ) , abs(__A ) ) # precondition assert ( isinstance(__A , __A ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowercase_ ( __A : List[str] ) -> Tuple: """simple docstring""" assert isinstance(__A , __A ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] =1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowercase_ ( __A : Union[str, Any] ) -> Optional[int]: """simple docstring""" assert isinstance(__A , __A ) and (n >= 0), "'n' must been an int and >= 0" lowercase : Union[str, Any] =0 lowercase : List[str] =1 lowercase : Any =1 # this will be return for _ in range(n - 1 ): lowercase : str =ans ans += fiba lowercase : Tuple =tmp return ans
8
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : List[Any] , UpperCAmelCase : Any ) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): lowercase : str =model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase ) def A__ ( self : List[Any] ) -> int: '''simple docstring''' lowercase : Any ='''sshleifer/tiny-gpt2''' lowercase : int =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , ) lowercase : List[Any] =TensorFlowBenchmark(UpperCAmelCase ) lowercase : int =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : List[str] ) -> int: '''simple docstring''' lowercase : Dict ='''sgugger/tiny-distilbert-classification''' lowercase : Tuple =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , ) lowercase : List[str] =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] ='''sshleifer/tiny-gpt2''' lowercase : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : int =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Dict =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : List[Any] ='''sshleifer/tiny-gpt2''' lowercase : Dict =AutoConfig.from_pretrained(UpperCAmelCase ) lowercase : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , ) lowercase : Union[str, Any] =TensorFlowBenchmark(UpperCAmelCase , [config] ) lowercase : Optional[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Any ) -> Dict: '''simple docstring''' lowercase : List[str] ='''sshleifer/tiny-gpt2''' lowercase : Any =AutoConfig.from_pretrained(UpperCAmelCase ) lowercase : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : Optional[Any] =TensorFlowBenchmark(UpperCAmelCase , [config] ) lowercase : Dict =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : Optional[int] ='''sshleifer/tiny-gpt2''' lowercase : Union[str, Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : Tuple =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowercase : str ='''sshleifer/tiny-gpt2''' lowercase : int =AutoConfig.from_pretrained(UpperCAmelCase ) lowercase : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : Any =TensorFlowBenchmark(UpperCAmelCase , [config] ) lowercase : Dict =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : Union[str, Any] ='''patrickvonplaten/t5-tiny-random''' lowercase : str =AutoConfig.from_pretrained(UpperCAmelCase ) lowercase : Optional[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) lowercase : int =TensorFlowBenchmark(UpperCAmelCase , configs=[config] ) lowercase : int =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def A__ ( self : int ) -> Dict: '''simple docstring''' lowercase : List[Any] ='''sshleifer/tiny-gpt2''' lowercase : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCAmelCase , multi_process=UpperCAmelCase , ) lowercase : int =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str ='''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[str] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(UpperCAmelCase , '''env.csv''' ) , multi_process=UpperCAmelCase , ) lowercase : Optional[Any] =TensorFlowBenchmark(UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , '''env.csv''' ) ).exists() ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase : int ='''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(UpperCAmelCase : List[Any] ): self.assertTrue(hasattr(UpperCAmelCase , '''sequential''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''cumulative''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''current''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , '''log.txt''' ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , ) lowercase : Any =TensorFlowBenchmark(UpperCAmelCase ) lowercase : Optional[int] =benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCAmelCase , '''log.txt''' ) ).exists() )
8
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller SCREAMING_SNAKE_CASE = 3 def lowercase_ ( __A : int ) -> int: """simple docstring""" print('''Generating primitive root of p''' ) while True: lowercase : List[str] =random.randrange(3 , __A ) if pow(__A , 2 , __A ) == 1: continue if pow(__A , __A , __A ) == 1: continue return g def lowercase_ ( __A : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: """simple docstring""" print('''Generating prime p...''' ) lowercase : Any =rabin_miller.generate_large_prime(__A ) # select large prime number. lowercase : List[str] =primitive_root(__A ) # one primitive root on modulo p. lowercase : List[str] =random.randrange(3 , __A ) # private_key -> have to be greater than 2 for safety. lowercase : List[str] =cryptomath.find_mod_inverse(pow(__A , __A , __A ) , __A ) lowercase : Union[str, Any] =(key_size, e_a, e_a, p) lowercase : Optional[Any] =(key_size, d) return public_key, private_key def lowercase_ ( __A : str , __A : int ) -> None: """simple docstring""" if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('''\nWARNING:''' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() lowercase , lowercase : str =generate_key(__A ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , '''w''' ) as fo: fo.write(F'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , '''w''' ) as fo: fo.write(F'{private_key[0]},{private_key[1]}' ) def lowercase_ ( ) -> None: """simple docstring""" print('''Making key files...''' ) make_key_files('''elgamal''' , 2_0_4_8 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
8
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
1
'''simple docstring''' import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' SCREAMING_SNAKE_CASE = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' SCREAMING_SNAKE_CASE = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def A__ ( self : str ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def A__ ( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : str ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowercase : int =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowercase : Union[str, Any] =evaluate(dataset=UpperCAmelCase , predictions=UpperCAmelCase ) return score
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import os from pathlib import Path def lowercase_ ( ) -> str: """simple docstring""" from torch.utils.cpp_extension import load lowercase : Dict =Path(__A ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' lowercase : int =[ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __A , with_cuda=__A , extra_include_paths=[str(__A )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
8
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =inspect.getfile(accelerate.test_utils ) lowercase : Any =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowercase : Union[str, Any] =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) lowercase : Union[str, Any] =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def A__ ( self : str ) -> Optional[int]: '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.' ) lowercase : int =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.' ) lowercase : List[str] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(f'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : Optional[int] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self : str ) -> List[Any]: '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices, using 2 devices only' ) lowercase : List[str] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = (accelerator.state.process_index + 2, 10) SCREAMING_SNAKE_CASE = torch.randint(0, 10, shape).to(accelerator.device) SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
8
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
1
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''sequence-classification''' def __init__( self : Any , UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' if type(UpperCAmelCase ) == dict: lowercase : Any =Namespace(**UpperCAmelCase ) lowercase : int =glue_output_modes[hparams.task] lowercase : Any =glue_tasks_num_labels[hparams.task] super().__init__(UpperCAmelCase , UpperCAmelCase , self.mode ) def A__ ( self : Dict , **UpperCAmelCase : Any ) -> str: '''simple docstring''' return self.model(**UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Optional[int] ={'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase : str =batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase : Union[str, Any] =self(**UpperCAmelCase ) lowercase : List[Any] =outputs[0] lowercase : str =self.trainer.lr_schedulers[0]['''scheduler'''] lowercase : Union[str, Any] ={'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Union[str, Any] =self.hparams lowercase : str =processors[args.task]() lowercase : Optional[int] =processor.get_labels() for mode in ["train", "dev"]: lowercase : List[str] =self._feature_file(UpperCAmelCase ) if os.path.exists(UpperCAmelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCAmelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowercase : Optional[int] =( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) lowercase : Optional[int] =convert_examples_to_features( UpperCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , UpperCAmelCase ) torch.save(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : bool = False ) -> DataLoader: '''simple docstring''' lowercase : Tuple ='''dev''' if mode == '''test''' else mode lowercase : Any =self._feature_file(UpperCAmelCase ) logger.info('''Loading features from cached file %s''' , UpperCAmelCase ) lowercase : Optional[Any] =torch.load(UpperCAmelCase ) lowercase : int =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase : str =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowercase : Tuple =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowercase : int =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowercase : int =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , batch_size=UpperCAmelCase , shuffle=UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' lowercase : Any ={'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase : Any =batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase : Union[str, Any] =self(**UpperCAmelCase ) lowercase , lowercase : List[Any] =outputs[:2] lowercase : Union[str, Any] =logits.detach().cpu().numpy() lowercase : int =inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A__ ( self : List[str] , UpperCAmelCase : Dict ) -> tuple: '''simple docstring''' lowercase : Optional[Any] =torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() lowercase : List[str] =np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowercase : Optional[Any] =np.argmax(UpperCAmelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowercase : int =np.squeeze(UpperCAmelCase ) lowercase : Any =np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowercase : int =[[] for _ in range(out_label_ids.shape[0] )] lowercase : Tuple =[[] for _ in range(out_label_ids.shape[0] )] lowercase : Any ={**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , UpperCAmelCase , UpperCAmelCase )} lowercase : Optional[Any] =dict(results.items() ) lowercase : str =results return ret, preds_list, out_label_list def A__ ( self : Optional[Any] , UpperCAmelCase : list ) -> dict: '''simple docstring''' lowercase , lowercase , lowercase : Dict =self._eval_end(UpperCAmelCase ) lowercase : Any =ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A__ ( self : int , UpperCAmelCase : Tuple ) -> dict: '''simple docstring''' lowercase , lowercase , lowercase : Union[str, Any] =self._eval_end(UpperCAmelCase ) lowercase : Optional[Any] =ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A__ ( UpperCAmelCase : str , UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCAmelCase , UpperCAmelCase ) parser.add_argument( '''--max_seq_length''' , default=128 , type=UpperCAmelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=UpperCAmelCase , required=UpperCAmelCase , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCAmelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" lowercase : Tuple =argparse.ArgumentParser() add_generic_args(__A , os.getcwd() ) lowercase : Any =GLUETransformer.add_model_specific_args(__A , os.getcwd() ) lowercase : Optional[Any] =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase : Tuple =os.path.join( '''./results''' , F'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) lowercase : str =GLUETransformer(__A ) lowercase : Any =generic_train(__A , __A ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase : Tuple =sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__A ) ) lowercase : int =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__A ) if __name__ == "__main__": main()
8
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
1
'''simple docstring''' def lowercase_ ( __A : float ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__A , __A ): raise ValueError('''Length must be a positive.''' ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowercase_ ( __A : float ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__A , __A ): raise ValueError('''Length must be a positive.''' ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
1
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE = getLogger(__name__) SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' def lowercase_ ( __A : List[str] , __A : str , __A : str , __A : int = 8 , __A : str = DEFAULT_DEVICE , __A : str=False , __A : Union[str, Any]="summarization" , __A : Tuple=None , **__A : Dict , ) -> Dict: """simple docstring""" lowercase : List[str] =Path(__A ).open('''w''' , encoding='''utf-8''' ) lowercase : int =str(__A ) lowercase : Optional[Any] =AutoModelForSeqaSeqLM.from_pretrained(__A ).to(__A ) if fpaa: lowercase : List[str] =model.half() lowercase : str =AutoTokenizer.from_pretrained(__A ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. lowercase : Optional[int] =time.time() # update config with task specific params use_task_specific_params(__A , __A ) if prefix is None: lowercase : str =prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(__A , __A ) ) ): lowercase : Any =[prefix + text for text in examples_chunk] lowercase : Optional[int] =tokenizer(__A , return_tensors='''pt''' , truncation=__A , padding='''longest''' ).to(__A ) lowercase : List[str] =model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__A , ) lowercase : Dict =tokenizer.batch_decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() lowercase : Optional[int] =int(time.time() - start_time ) # seconds lowercase : List[Any] =len(__A ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase_ ( ) -> Optional[Any]: """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowercase_ ( __A : Tuple=True ) -> List[Any]: """simple docstring""" lowercase : Optional[int] =argparse.ArgumentParser() parser.add_argument('''model_name''' , type=__A , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=__A , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=__A , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=__A , required=__A , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=__A , required=__A , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=__A , required=__A , default=__A , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=__A , required=__A , default=__A , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=__A , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=__A , default=8 , required=__A , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=__A , default=-1 , required=__A , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=__A , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowercase , lowercase : Dict =parser.parse_known_args() lowercase : Any =parse_numeric_n_bool_cl_kwargs(__A ) if parsed_args and verbose: print(F'parsed the following generate kwargs: {parsed_args}' ) lowercase : Tuple =[''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowercase : List[str] =examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__A ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) lowercase : Union[str, Any] =generate_summaries_or_translations( __A , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__A , ) if args.reference_path is None: return {} # Compute scores lowercase : int =calculate_bleu if '''translation''' in args.task else calculate_rouge lowercase : List[str] =[x.rstrip() for x in open(args.save_path ).readlines()] lowercase : List[Any] =[x.rstrip() for x in open(args.reference_path ).readlines()][: len(__A )] lowercase : dict =score_fn(__A , __A ) scores.update(__A ) if args.dump_args: scores.update(__A ) if args.info: lowercase : Tuple =args.info if verbose: print(__A ) if args.score_path is not None: json.dump(__A , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert' SCREAMING_SNAKE_CASE = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') SCREAMING_SNAKE_CASE = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : List[Any] =cached_file(UpperCAmelCase , UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) ) with open(os.path.join(UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase : List[str] =f.read() self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , '''snapshots''' , UpperCAmelCase , UpperCAmelCase ) ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase : Optional[int] =cached_file(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase : str =cached_file(UpperCAmelCase , UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , '''snapshots''' , UpperCAmelCase , UpperCAmelCase ) ) def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase , '''is not a valid model identifier''' ): lowercase : List[str] =cached_file('''tiny-random-bert''' , UpperCAmelCase ) with self.assertRaisesRegex(UpperCAmelCase , '''is not a valid git identifier''' ): lowercase : Optional[Any] =cached_file(UpperCAmelCase , UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(UpperCAmelCase , '''does not appear to have a file named''' ): lowercase : Optional[Any] =cached_file(UpperCAmelCase , '''conf''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase , '''does not appear to have a file named''' ): lowercase : Any =cached_file(UpperCAmelCase , '''conf''' ) with open(os.path.join(UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase : Optional[int] =f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase , '''.no_exist''' , UpperCAmelCase , '''conf''' ) ) ) lowercase : Dict =cached_file(UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) lowercase : str =cached_file(UpperCAmelCase , '''conf''' , local_files_only=UpperCAmelCase , _raise_exceptions_for_missing_entries=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) lowercase : Tuple =mock.Mock() lowercase : Dict =500 lowercase : Union[str, Any] ={} lowercase : Dict =HTTPError lowercase : List[str] ={} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase ) as mock_head: lowercase : List[Any] =cached_file(UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self : List[Any] ) -> int: '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCAmelCase ) ) def A__ ( self : Dict ) -> Any: '''simple docstring''' self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , UpperCAmelCase , revision='''ahaha''' ) lowercase : Dict =get_file_from_repo('''bert-base-cased''' , UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase : Any =json.loads(open(UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Dict =Path(UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase , '''a.txt''' ) , str(UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase , '''b.txt''' ) )
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''dandelin/vilt-b32-finetuned-vqa''' UpperCamelCase_ = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) UpperCamelCase_ = '''image_qa''' UpperCamelCase_ = AutoProcessor UpperCamelCase_ = AutoModelForVisualQuestionAnswering UpperCamelCase_ = ['''image''', '''text'''] UpperCamelCase_ = ['''text'''] def __init__( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Tuple , UpperCAmelCase : "Image" , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' return self.pre_processor(UpperCAmelCase , UpperCAmelCase , return_tensors='''pt''' ) def A__ ( self : Dict , UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): return self.model(**UpperCAmelCase ).logits def A__ ( self : Dict , UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' lowercase : str =outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure)
8
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ViTImageProcessor if is_vision_available() else None @property def A__ ( self : Optional[int] ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : int ) -> str: '''simple docstring''' lowercase : Tuple =(3, 32, 128) lowercase : str =tempfile.mkdtemp() # fmt: off lowercase : Tuple =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase : Union[str, Any] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) lowercase : Any ={ '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } lowercase : List[Any] =os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Dict , **UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : str , **UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : Any =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) lowercase : List[Any] =Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) return image_input def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Tuple =self.get_tokenizer() lowercase : Dict =self.get_image_processor() lowercase : Tuple =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase : str =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =self.get_tokenizer() lowercase : List[Any] =self.get_image_processor() lowercase : Dict =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase : str =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase : str =self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowercase : Any =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =self.get_image_processor() lowercase : Dict =self.get_tokenizer() lowercase : List[Any] =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Any =self.prepare_image_inputs() lowercase : List[Any] =image_processor(UpperCAmelCase , return_tensors='''np''' ) lowercase : str =processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =self.get_image_processor() lowercase : List[Any] =self.get_tokenizer() lowercase : str =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : List[str] ='''test''' lowercase : Optional[int] =processor(text=UpperCAmelCase ) lowercase : Union[str, Any] =tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : Optional[Any] =self.get_image_processor() lowercase : Optional[int] =self.get_tokenizer() lowercase : Optional[Any] =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Any ='''test''' lowercase : Any =self.prepare_image_inputs() lowercase : str =processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def A__ ( self : List[str] ) -> str: '''simple docstring''' lowercase : str =self.get_image_processor() lowercase : Optional[Any] =self.get_tokenizer() lowercase : Dict =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[int] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase : Optional[int] =processor.char_decode(UpperCAmelCase ) lowercase : Union[str, Any] =tokenizer.batch_decode(UpperCAmelCase ) lowercase : Tuple =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' lowercase : str =self.get_image_processor() lowercase : List[Any] =self.get_tokenizer() lowercase : Any =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : str =None lowercase : Optional[int] =self.prepare_image_inputs() lowercase : Optional[int] =processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =self.get_image_processor() lowercase : Dict =self.get_tokenizer() lowercase : int =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : str =torch.randn(1 , 27 , 38 ) lowercase : List[Any] =torch.randn(1 , 27 , 5_0257 ) lowercase : Union[str, Any] =torch.randn(1 , 27 , 3_0522 ) lowercase : Union[str, Any] =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = [] def lowercase_ ( __A : list[list[int]] , __A : int , __A : int ) -> bool: """simple docstring""" for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def lowercase_ ( __A : list[list[int]] , __A : int ) -> bool: """simple docstring""" if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): lowercase : Dict =1 solve(__A , row + 1 ) lowercase : Optional[int] =0 return False def lowercase_ ( __A : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' import torch from diffusers import DiffusionPipeline class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) def __call__( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowercase : Tuple =1 lowercase : Union[str, Any] =self.unet(UpperCAmelCase , UpperCAmelCase ).sample lowercase : Dict =self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample lowercase : Any =scheduler_output - scheduler_output + torch.ones_like(UpperCAmelCase ) return result
8
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
1
'''simple docstring''' import torch from torch import nn class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : List[str]=False ) -> int: '''simple docstring''' super().__init__() lowercase : Optional[Any] =n_token lowercase : List[Any] =d_embed lowercase : Dict =d_proj lowercase : Dict =cutoffs + [n_token] lowercase : List[str] =[0] + self.cutoffs lowercase : Union[str, Any] =div_val lowercase : int =self.cutoffs[0] lowercase : Dict =len(self.cutoffs ) - 1 lowercase : Dict =self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase : Any =nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowercase : Any =nn.Parameter(torch.zeros(self.n_clusters ) ) lowercase : int =nn.ModuleList() lowercase : str =nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) else: self.out_projs.append(UpperCAmelCase ) self.out_layers.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): lowercase , lowercase : Union[str, Any] =self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase : Optional[int] =d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(UpperCAmelCase , r_idx - l_idx ) ) lowercase : Optional[Any] =keep_order def A__ ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' if proj is None: lowercase : Any =nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase : Dict =nn.functional.linear(UpperCAmelCase , proj.t().contiguous() ) lowercase : Dict =nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A__ ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=False ) -> str: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowercase : Dict =hidden[..., :-1, :].contiguous() lowercase : Dict =labels[..., 1:].contiguous() lowercase : int =hidden.view(-1 , hidden.size(-1 ) ) lowercase : Optional[Any] =labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: lowercase : Tuple =hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowercase : Any =self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowercase : List[str] =labels != -100 lowercase : List[Any] =torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowercase : Optional[int] =( -nn.functional.log_softmax(UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowercase : Tuple =nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowercase , lowercase : List[str] =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase , lowercase : Any =self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase : Optional[Any] =self.out_layers[0].weight[l_idx:r_idx] lowercase : str =self.out_layers[0].bias[l_idx:r_idx] else: lowercase : Union[str, Any] =self.out_layers[i].weight lowercase : Dict =self.out_layers[i].bias if i == 0: lowercase : List[str] =torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase : List[str] =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) lowercase , lowercase , lowercase : Any =weights[0], biases[0], self.out_projs[0] lowercase : Optional[int] =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : str =nn.functional.log_softmax(UpperCAmelCase , dim=1 ) if labels is None: lowercase : Any =hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowercase : List[Any] =torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowercase : Dict =0 lowercase : List[Any] =[0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): lowercase , lowercase : List[Any] =cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase : List[str] =(labels >= l_idx) & (labels < r_idx) lowercase : Optional[Any] =mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase : Any =labels.index_select(0 , UpperCAmelCase ) - l_idx lowercase : str =head_logprob.index_select(0 , UpperCAmelCase ) lowercase : int =hidden.index_select(0 , UpperCAmelCase ) else: lowercase : Dict =hidden if i == 0: if labels is not None: lowercase : Optional[int] =head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowercase : Union[str, Any] =head_logprob[:, : self.cutoffs[0]] else: lowercase , lowercase , lowercase : int =weights[i], biases[i], self.out_projs[i] lowercase : Union[str, Any] =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowercase : Any =self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase : Any =head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowercase : int =head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase : Union[str, Any] =logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A__ ( self : List[Any] , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if self.n_clusters == 0: lowercase : str =self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowercase , lowercase : Union[str, Any] =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase , lowercase : Union[str, Any] =self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase : int =self.out_layers[0].weight[l_idx:r_idx] lowercase : int =self.out_layers[0].bias[l_idx:r_idx] else: lowercase : str =self.out_layers[i].weight lowercase : Union[str, Any] =self.out_layers[i].bias if i == 0: lowercase : str =torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase : Dict =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) lowercase , lowercase , lowercase : Optional[int] =weights[0], biases[0], self.out_projs[0] lowercase : str =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : int =hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowercase : List[str] =nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowercase : str =[0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): lowercase , lowercase : Any =cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase : Optional[int] =head_logprob[:, : self.cutoffs[0]] else: lowercase , lowercase , lowercase : List[str] =weights[i], biases[i], self.out_projs[i] lowercase : str =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Dict =nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowercase : Optional[int] =head_logprob[:, -i] + tail_logprob_i lowercase : str =logprob_i return out
8
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
1
'''simple docstring''' import math class UpperCAmelCase_ : """simple docstring""" def __init__( self : str , UpperCAmelCase : int=0 ) -> List[str]: # a graph with Node 0,1,...,N-1 '''simple docstring''' lowercase : str =n lowercase : Dict =[ [math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase ) ] # adjacency matrix for weight lowercase : Optional[Any] =[ [math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A__ ( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =w def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase : List[Any] =min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": SCREAMING_SNAKE_CASE = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
8
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
1
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCAmelCase_ : """simple docstring""" def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]=sys.maxsize ) -> Tuple: '''simple docstring''' lowercase : Optional[int] ='''bilinear''' lowercase : Optional[Any] =max_size lowercase : List[Any] =short_edge_length def __call__( self : int , UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' lowercase : Any =[] for img in imgs: lowercase , lowercase : Optional[Any] =img.shape[:2] # later: provide list and randomly choose index for resize lowercase : str =np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase : int =size * 1.0 / min(UpperCAmelCase , UpperCAmelCase ) if h < w: lowercase , lowercase : Dict =size, scale * w else: lowercase , lowercase : str =scale * h, size if max(UpperCAmelCase , UpperCAmelCase ) > self.max_size: lowercase : Any =self.max_size * 1.0 / max(UpperCAmelCase , UpperCAmelCase ) lowercase : Tuple =newh * scale lowercase : Any =neww * scale lowercase : List[str] =int(neww + 0.5 ) lowercase : List[str] =int(newh + 0.5 ) if img.dtype == np.uinta: lowercase : Optional[int] =Image.fromarray(UpperCAmelCase ) lowercase : List[str] =pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase : Optional[Any] =np.asarray(UpperCAmelCase ) else: lowercase : Any =img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase : Union[str, Any] =nn.functional.interpolate( UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=UpperCAmelCase ).squeeze(0 ) img_augs.append(UpperCAmelCase ) return img_augs class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Optional[Any] =ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase : Any =cfg.INPUT.FORMAT lowercase : List[Any] =cfg.SIZE_DIVISIBILITY lowercase : List[str] =cfg.PAD_VALUE lowercase : Dict =cfg.INPUT.MAX_SIZE_TEST lowercase : Optional[Any] =cfg.MODEL.DEVICE lowercase : int =torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase : Tuple =torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase : int =lambda UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def A__ ( self : List[Any] , UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =tuple(max(UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) lowercase : Union[str, Any] =[im.shape[-2:] for im in images] lowercase : Tuple =[ nn.functional.pad( UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCAmelCase , UpperCAmelCase ) ] return torch.stack(UpperCAmelCase ), torch.tensor(UpperCAmelCase ) def __call__( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=False ) -> List[Any]: '''simple docstring''' with torch.no_grad(): if not isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Any =[images] if single_image: assert len(UpperCAmelCase ) == 1 for i in range(len(UpperCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCAmelCase , images.pop(UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(UpperCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase : Union[str, Any] =torch.tensor([im.shape[:2] for im in images] ) lowercase : Dict =self.aug(UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase : List[str] =[self.normalizer(UpperCAmelCase ) for x in images] # now pad them to do the following operations lowercase , lowercase : Dict =self.pad(UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase : Union[str, Any] =torch.true_divide(UpperCAmelCase , UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowercase_ ( __A : Tuple , __A : Union[str, Any] ) -> Optional[int]: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowercase_ ( __A : Dict , __A : Tuple[int, int] ) -> Union[str, Any]: """simple docstring""" assert torch.isfinite(__A ).all(), "Box tensor contains infinite or NaN!" lowercase , lowercase : Optional[Any] =box_size tensor[:, 0].clamp_(min=0 , max=__A ) tensor[:, 1].clamp_(min=0 , max=__A ) tensor[:, 2].clamp_(min=0 , max=__A ) tensor[:, 3].clamp_(min=0 , max=__A )
8
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCAmelCase_ ( __A , __A ): """simple docstring""" @register_to_config def __init__( self : str , UpperCAmelCase : int = 128 , UpperCAmelCase : int = 256 , UpperCAmelCase : float = 2_0_0_0.0 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2048 , UpperCAmelCase : float = 0.1 , ) -> int: '''simple docstring''' super().__init__() lowercase : Optional[int] =nn.Sequential( nn.Linear(UpperCAmelCase , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , ) lowercase : Any =nn.Embedding(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[Any] =False lowercase : Optional[int] =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowercase : Optional[int] =nn.Dropout(p=UpperCAmelCase ) lowercase : Tuple =nn.ModuleList() for lyr_num in range(UpperCAmelCase ): # FiLM conditional T5 decoder lowercase : Dict =DecoderLayer(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) self.decoders.append(UpperCAmelCase ) lowercase : Optional[int] =TaLayerNorm(UpperCAmelCase ) lowercase : str =nn.Dropout(p=UpperCAmelCase ) lowercase : Dict =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase , lowercase , lowercase : int =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowercase : int =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowercase : int =self.conditioning_emb(UpperCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowercase : int =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowercase : str =torch.broadcast_to( torch.arange(UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowercase : Tuple =self.position_encoding(UpperCAmelCase ) lowercase : Any =self.continuous_inputs_projection(UpperCAmelCase ) inputs += position_encodings lowercase : Optional[int] =self.dropout(UpperCAmelCase ) # decoder: No padding present. lowercase : List[Any] =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowercase : Any =[(x, self.encoder_decoder_mask(UpperCAmelCase , UpperCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowercase : Optional[Any] =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowercase : str =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowercase : List[str] =lyr( UpperCAmelCase , conditioning_emb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )[0] lowercase : Any =self.decoder_norm(UpperCAmelCase ) lowercase : List[Any] =self.post_dropout(UpperCAmelCase ) lowercase : Any =self.spec_out(UpperCAmelCase ) return spec_out class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : int=1e-6 ) -> Any: '''simple docstring''' super().__init__() lowercase : str =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase ) ) def A__ ( self : Any , UpperCAmelCase : int , UpperCAmelCase : int=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=None , ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =self.layer[0]( UpperCAmelCase , conditioning_emb=UpperCAmelCase , attention_mask=UpperCAmelCase , ) if encoder_hidden_states is not None: lowercase : Union[str, Any] =torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) lowercase : List[str] =self.layer[1]( UpperCAmelCase , key_value_states=UpperCAmelCase , attention_mask=UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer lowercase : List[str] =self.layer[-1](UpperCAmelCase , UpperCAmelCase ) return (hidden_states,) class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase : Optional[int] =TaLayerNorm(UpperCAmelCase ) lowercase : List[str] =TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) lowercase : Optional[Any] =Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) lowercase : Any =nn.Dropout(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[int] =self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: lowercase : Tuple =self.FiLMLayer(UpperCAmelCase , UpperCAmelCase ) # Self-attention block lowercase : Tuple =self.attention(UpperCAmelCase ) lowercase : Dict =hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' super().__init__() lowercase : str =Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) lowercase : Any =TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) lowercase : Any =nn.Dropout(UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str]=None , UpperCAmelCase : Any=None , ) -> int: '''simple docstring''' lowercase : List[str] =self.layer_norm(UpperCAmelCase ) lowercase : List[Any] =self.attention( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) lowercase : Tuple =hidden_states + self.dropout(UpperCAmelCase ) return layer_output class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' super().__init__() lowercase : List[str] =TaDenseGatedActDense(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) lowercase : str =TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) lowercase : Optional[Any] =TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) lowercase : Any =nn.Dropout(UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=None ) -> int: '''simple docstring''' lowercase : List[Any] =self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: lowercase : Tuple =self.film(UpperCAmelCase , UpperCAmelCase ) lowercase : List[Any] =self.DenseReluDense(UpperCAmelCase ) lowercase : List[str] =hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' super().__init__() lowercase : List[str] =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowercase : Dict =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowercase : Optional[Any] =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowercase : Optional[int] =nn.Dropout(UpperCAmelCase ) lowercase : Union[str, Any] =NewGELUActivation() def A__ ( self : List[str] , UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : int =self.act(self.wi_a(UpperCAmelCase ) ) lowercase : Optional[Any] =self.wi_a(UpperCAmelCase ) lowercase : Dict =hidden_gelu * hidden_linear lowercase : Optional[int] =self.dropout(UpperCAmelCase ) lowercase : Union[str, Any] =self.wo(UpperCAmelCase ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : Tuple=1e-6 ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase : str =nn.Parameter(torch.ones(UpperCAmelCase ) ) lowercase : Union[str, Any] =eps def A__ ( self : List[Any] , UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCAmelCase ) lowercase : Dict =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowercase : Union[str, Any] =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def A__ ( self : Union[str, Any] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(UpperCAmelCase , 3.0 )) )) class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' super().__init__() lowercase : Any =nn.Linear(UpperCAmelCase , out_features * 2 , bias=UpperCAmelCase ) def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Union[str, Any] =self.scale_bias(UpperCAmelCase ) lowercase , lowercase : Dict =torch.chunk(UpperCAmelCase , 2 , -1 ) lowercase : Optional[int] =x * (1 + scale) + shift return x
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') SCREAMING_SNAKE_CASE = parser.parse_args() if args.model_type == "bert": SCREAMING_SNAKE_CASE = BertForMaskedLM.from_pretrained(args.model_name) SCREAMING_SNAKE_CASE = 'bert' else: raise ValueError('args.model_type should be "bert".') SCREAMING_SNAKE_CASE = model.state_dict() SCREAMING_SNAKE_CASE = {} for w in ["word_embeddings", "position_embeddings"]: SCREAMING_SNAKE_CASE = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] SCREAMING_SNAKE_CASE = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] SCREAMING_SNAKE_CASE = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] SCREAMING_SNAKE_CASE = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] SCREAMING_SNAKE_CASE = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] SCREAMING_SNAKE_CASE = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] SCREAMING_SNAKE_CASE = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] SCREAMING_SNAKE_CASE = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] SCREAMING_SNAKE_CASE = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 SCREAMING_SNAKE_CASE = state_dict['cls.predictions.decoder.weight'] SCREAMING_SNAKE_CASE = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE = state_dict[f"""cls.predictions.transform.dense.{w}"""] SCREAMING_SNAKE_CASE = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
8
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
1
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowercase_ ( __A : int , __A : str , __A : str , __A : Union[str, Any] ) -> int: """simple docstring""" lowercase : Optional[int] ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase : Optional[Any] ={ '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } lowercase : Tuple =F'{src_lang}-{tgt_lang}' lowercase : List[Any] =F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=__A , exist_ok=__A ) lowercase : str =os.path.join(__A , '''README.md''' ) print(F'Generating {path}' ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(__A ) # make sure we are under the root of the project SCREAMING_SNAKE_CASE = Path(__file__).resolve().parent.parent.parent SCREAMING_SNAKE_CASE = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: SCREAMING_SNAKE_CASE = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
8
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
1
'''simple docstring''' import os def lowercase_ ( __A : str = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(__A ) , __A ) ) as in_file: lowercase : Union[str, Any] =in_file.read() lowercase : str =[[int(__A ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] lowercase : Optional[int] =[[0 for cell in row] for row in grid] lowercase : List[str] =len(grid[0] ) lowercase : Tuple =[[0 for i in range(__A )] for j in range(__A )] lowercase : Optional[int] =grid[0][0] for i in range(1 , __A ): lowercase : List[str] =grid[0][i] + dp[0][i - 1] for i in range(1 , __A ): lowercase : Union[str, Any] =grid[i][0] + dp[i - 1][0] for i in range(1 , __A ): for j in range(1 , __A ): lowercase : str =grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
1
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> int: """simple docstring""" while b: lowercase , lowercase : Union[str, Any] =b, a % b return a def lowercase_ ( __A : int , __A : int ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__A , a % b ) def lowercase_ ( ) -> Any: """simple docstring""" print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
8
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : Any =tempfile.mkdtemp() # fmt: off lowercase : Optional[int] =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowercase : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase : List[Any] ={ '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowercase : Dict =os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : Tuple , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self : List[str] ) -> int: '''simple docstring''' lowercase : Optional[int] =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase : Any =[Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase : Optional[Any] =self.get_tokenizer() lowercase : Optional[int] =self.get_image_processor() lowercase : int =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase : Optional[int] =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : Optional[Any] =VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : Optional[int] =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase : str =self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowercase : str =VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self : List[Any] ) -> str: '''simple docstring''' lowercase : Any =self.get_image_processor() lowercase : Optional[int] =self.get_tokenizer() lowercase : Union[str, Any] =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : str =self.prepare_image_inputs() lowercase : Any =image_processor(UpperCAmelCase , return_tensors='''np''' ) lowercase : Union[str, Any] =processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : str =self.get_image_processor() lowercase : Optional[Any] =self.get_tokenizer() lowercase : Dict =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : int ='''lower newer''' lowercase : List[str] =processor(text=UpperCAmelCase ) lowercase : Tuple =tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =self.get_image_processor() lowercase : Dict =self.get_tokenizer() lowercase : Dict =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Dict ='''lower newer''' lowercase : List[Any] =self.prepare_image_inputs() lowercase : Dict =processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(UpperCAmelCase ): processor() def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =self.get_image_processor() lowercase : str =self.get_tokenizer() lowercase : str =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Tuple =processor.batch_decode(UpperCAmelCase ) lowercase : Optional[int] =tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =self.get_image_processor() lowercase : List[str] =self.get_tokenizer() lowercase : Tuple =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[int] ='''lower newer''' lowercase : Dict =self.prepare_image_inputs() lowercase : Any =processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
8
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowercase_ ( __A : str , __A : str , **__A : Optional[Any] ) -> List[str]: """simple docstring""" lowercase : int =AutoConfig.from_pretrained(__A , **__A ) lowercase : int =AutoModelForSeqaSeqLM.from_config(__A ) model.save_pretrained(__A ) AutoTokenizer.from_pretrained(__A ).save_pretrained(__A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import os import re SCREAMING_SNAKE_CASE = 'src/diffusers' # Pattern that looks at the indentation in a line. SCREAMING_SNAKE_CASE = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'\[([^\]]+)\]') def lowercase_ ( __A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Dict =_re_indent.search(__A ) return "" if search is None else search.groups()[0] def lowercase_ ( __A : List[str] , __A : Tuple="" , __A : List[str]=None , __A : Dict=None ) -> str: """simple docstring""" lowercase : List[str] =0 lowercase : List[Any] =code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(__A ): index += 1 lowercase : Tuple =['''\n'''.join(lines[:index] )] else: lowercase : Optional[Any] =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase : List[str] =[lines[index]] index += 1 while index < len(__A ) and (end_prompt is None or not lines[index].startswith(__A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(__A ) ) if index < len(__A ) - 1: lowercase : Tuple =[lines[index + 1]] index += 1 else: lowercase : List[Any] =[] else: blocks.append('''\n'''.join(__A ) ) lowercase : Any =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__A ) > 0: blocks.append('''\n'''.join(__A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__A ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def lowercase_ ( __A : List[Any] ) -> Union[str, Any]: """simple docstring""" def _inner(__A : Tuple ): return key(__A ).lower().replace('''_''' , '''''' ) return _inner def lowercase_ ( __A : str , __A : Union[str, Any]=None ) -> Union[str, Any]: """simple docstring""" def noop(__A : Optional[Any] ): return x if key is None: lowercase : str =noop # Constants are all uppercase, they go first. lowercase : int =[obj for obj in objects if key(__A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase : Tuple =[obj for obj in objects if key(__A )[0].isupper() and not key(__A ).isupper()] # Functions begin with a lowercase, they go last. lowercase : List[str] =[obj for obj in objects if not key(__A )[0].isupper()] lowercase : Dict =ignore_underscore(__A ) return sorted(__A , key=__A ) + sorted(__A , key=__A ) + sorted(__A , key=__A ) def lowercase_ ( __A : Union[str, Any] ) -> int: """simple docstring""" def _replace(__A : List[str] ): lowercase : Dict =match.groups()[0] if "," not in imports: return F'[{imports}]' lowercase : Union[str, Any] =[part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase : Any =keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(__A )] ) + "]" lowercase : Tuple =import_statement.split('''\n''' ) if len(__A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase : int =2 if lines[1].strip() == '''[''' else 1 lowercase : List[str] =[(i, _re_strip_line.search(__A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase : Tuple =sort_objects(__A , key=lambda __A : x[1] ) lowercase : List[Any] =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase : Union[str, Any] =_re_bracket_content.sub(_replace , lines[1] ) else: lowercase : List[str] =[part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase : Union[str, Any] =keys[:-1] lowercase : Optional[int] =get_indent(lines[1] ) + ''', '''.join([F'"{k}"' for k in sort_objects(__A )] ) return "\n".join(__A ) else: # Finally we have to deal with imports fitting on one line lowercase : Optional[Any] =_re_bracket_content.sub(_replace , __A ) return import_statement def lowercase_ ( __A : int , __A : int=True ) -> int: """simple docstring""" with open(__A , '''r''' ) as f: lowercase : Optional[Any] =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase : Tuple =split_code_in_indented_blocks( __A , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase : int =main_blocks[block_idx] lowercase : List[Any] =block.split('''\n''' ) # Get to the start of the imports. lowercase : List[str] =0 while line_idx < len(__A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase : int =len(__A ) else: line_idx += 1 if line_idx >= len(__A ): continue # Ignore beginning and last line: they don't contain anything. lowercase : int ='''\n'''.join(block_lines[line_idx:-1] ) lowercase : List[Any] =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase : int =split_code_in_indented_blocks(__A , indent_level=__A ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase : List[str] =_re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase : int =[(pattern.search(__A ).groups()[0] if pattern.search(__A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase : List[Any] =[(i, key) for i, key in enumerate(__A ) if key is not None] lowercase : Optional[int] =[x[0] for x in sorted(__A , key=lambda __A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase : Optional[Any] =0 lowercase : str =[] for i in range(len(__A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowercase : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__A ) count += 1 # And we put our main block back together with its first and last line. lowercase : Any ='''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__A ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(__A , '''w''' ) as f: f.write('''\n'''.join(__A ) ) def lowercase_ ( __A : Tuple=True ) -> List[str]: """simple docstring""" lowercase : Tuple =[] for root, _, files in os.walk(__A ): if "__init__.py" in files: lowercase : Optional[int] =sort_imports(os.path.join(__A , '''__init__.py''' ) , check_only=__A ) if result: lowercase : Optional[Any] =[os.path.join(__A , '''__init__.py''' )] if len(__A ) > 0: raise ValueError(F'Would overwrite {len(__A )} files, run `make style`.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') SCREAMING_SNAKE_CASE = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = OpenAIGPTTokenizer UpperCamelCase_ = OpenAIGPTTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = False def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : int =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase : List[str] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : int =['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] lowercase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def A__ ( self : Tuple , UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' return "lower newer", "lower newer" def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : str =OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowercase : Any ='''lower''' lowercase : Dict =['''low''', '''er</w>'''] lowercase : int =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tokens + ['''<unk>'''] lowercase : Tuple =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def A__ ( self : Optional[Any] , UpperCAmelCase : Dict=15 ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase : List[Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) # Simple input lowercase : str ='''This is a simple input''' lowercase : int =['''This is a simple input 1''', '''This is a simple input 2'''] lowercase : Optional[int] =('''This is a simple input''', '''This is a pair''') lowercase : List[str] =[ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) def A__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class UpperCAmelCase_ ( __A ): """simple docstring""" pass
8
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } SCREAMING_SNAKE_CASE = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } SCREAMING_SNAKE_CASE = { 'ctrl': 256, } SCREAMING_SNAKE_CASE = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def lowercase_ ( __A : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase : Tuple =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : Any =char lowercase : Union[str, Any] =set(__A ) return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = CONTROL_CODES def __init__( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Dict="<unk>" , **UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' super().__init__(unk_token=UpperCAmelCase , **UpperCAmelCase ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : List[Any] =json.load(UpperCAmelCase ) lowercase : Union[str, Any] ={v: k for k, v in self.encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Tuple =merges_handle.read().split('''\n''' )[1:-1] lowercase : List[str] =[tuple(merge.split() ) for merge in merges] lowercase : Tuple =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Dict ={} @property def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' return len(self.encoder ) def A__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : str , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : Dict =tuple(UpperCAmelCase ) lowercase : Any =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase : Dict =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : List[Any] =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Tuple =bigram lowercase : Union[str, Any] =[] lowercase : Dict =0 while i < len(UpperCAmelCase ): try: lowercase : List[Any] =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : int =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : int =tuple(UpperCAmelCase ) lowercase : Optional[Any] =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : int =get_pairs(UpperCAmelCase ) lowercase : List[str] ='''@@ '''.join(UpperCAmelCase ) lowercase : Optional[Any] =word[:-4] lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : int =[] lowercase : Any =re.findall(R'''\S+\n?''' , UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(''' ''' ) ) ) return split_tokens def A__ ( self : int , UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Tuple , UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' return self.decoder.get(UpperCAmelCase , self.unk_token ) def A__ ( self : Optional[Any] , UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def A__ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Union[str, Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Union[str, Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : Dict =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : List[str] =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
8
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any=13 , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : int=3 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : str=[1, 2, 1] , UpperCAmelCase : Optional[Any]=[2, 2, 4] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Union[str, Any]=2.0 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=0.0_2 , UpperCAmelCase : str=1e-5 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=10 , UpperCAmelCase : Tuple=8 , ) -> Optional[Any]: '''simple docstring''' lowercase : Any =parent lowercase : int =batch_size lowercase : List[Any] =image_size lowercase : int =patch_size lowercase : List[Any] =num_channels lowercase : Dict =embed_dim lowercase : List[Any] =depths lowercase : List[Any] =num_heads lowercase : int =window_size lowercase : Optional[Any] =mlp_ratio lowercase : List[str] =qkv_bias lowercase : str =hidden_dropout_prob lowercase : Any =attention_probs_dropout_prob lowercase : List[str] =drop_path_rate lowercase : Tuple =hidden_act lowercase : Optional[int] =use_absolute_embeddings lowercase : Dict =patch_norm lowercase : str =layer_norm_eps lowercase : Tuple =initializer_range lowercase : List[str] =is_training lowercase : List[str] =scope lowercase : Optional[Any] =use_labels lowercase : Optional[Any] =type_sequence_label_size lowercase : str =encoder_stride def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Union[str, Any] =None if self.use_labels: lowercase : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =self.get_config() return config, pixel_values, labels def A__ ( self : str ) -> Optional[int]: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : str =SwinvaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Any =model(UpperCAmelCase ) lowercase : Union[str, Any] =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase : Any =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> List[str]: '''simple docstring''' lowercase : str =SwinvaForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase : int =1 lowercase : Tuple =SwinvaForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Tuple =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase : Any =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : int =self.type_sequence_label_size lowercase : str =SwinvaForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Optional[int] =model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self : int ) -> int: '''simple docstring''' lowercase : List[Any] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase : List[Any] =config_and_inputs lowercase : Dict ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase_ = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : List[str] =SwinvaModelTester(self ) lowercase : List[str] =ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def A__ ( self : Dict ) -> int: '''simple docstring''' pass def A__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : Dict =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase , lowercase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =model_class(UpperCAmelCase ) lowercase : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Dict =[*signature.parameters.keys()] lowercase : Optional[int] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() lowercase : int =True for model_class in self.all_model_classes: lowercase : List[str] =True lowercase : Tuple =False lowercase : Any =True lowercase : Dict =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Any =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : int =outputs.attentions lowercase : Dict =len(self.model_tester.depths ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase : List[Any] =True lowercase : Union[str, Any] =config.window_size**2 lowercase : Tuple =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Any =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Union[str, Any] =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowercase : Optional[int] =len(UpperCAmelCase ) # Check attention is always last and order is fine lowercase : int =True lowercase : Union[str, Any] =True lowercase : List[Any] =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Optional[int] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowercase : Tuple =self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase : List[Any] =2 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase ) ) lowercase : Optional[Any] =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def A__ ( self : int , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' lowercase : Dict =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : int =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Tuple =outputs.hidden_states lowercase : List[Any] =getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swinv2 has a different seq_length lowercase : Optional[int] =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase : Any =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase : Union[str, Any] =outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase , lowercase , lowercase , lowercase : List[str] =reshaped_hidden_states[0].shape lowercase : List[Any] =( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() lowercase : int =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase : int =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Tuple =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' lowercase , lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any =3 lowercase : int =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase : Optional[int] =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase : Dict =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase : Optional[Any] =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase : List[str] =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Tuple =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : int =SwinvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowercase , lowercase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() lowercase : int =_config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase : str =model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : str ) -> Any: '''simple docstring''' return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def A__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowercase : List[str] =SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( UpperCAmelCase ) lowercase : Any =self.default_image_processor lowercase : List[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase : List[str] =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase : Optional[Any] =model(**UpperCAmelCase ) # verify the logits lowercase : Union[str, Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase : Union[str, Any] =torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
1
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def lowercase_ ( __A : str=None ) -> List[str]: """simple docstring""" if subparsers is not None: lowercase : Optional[int] =subparsers.add_parser('''tpu-config''' , description=_description ) else: lowercase : List[Any] =argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments lowercase : Dict =parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=__A , default=__A , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=__A , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=__A , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) lowercase : Any =parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=__A , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=__A ) return parser def lowercase_ ( __A : Dict ) -> List[str]: """simple docstring""" lowercase : List[str] =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__A ): lowercase : List[Any] =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowercase : Any =defaults.command_file if not args.command and defaults.commands is not None: lowercase : List[Any] =defaults.commands if not args.tpu_name: lowercase : Dict =defaults.tpu_name if not args.tpu_zone: lowercase : Dict =defaults.tpu_zone if args.accelerate_version == "dev": lowercase : str ='''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": lowercase : int ='''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , __A ): lowercase : Any =F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: lowercase : List[str] =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __A ): lowercase : Union[str, Any] =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowercase : Tuple =['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command lowercase : Dict ='''; '''.join(__A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowercase : int =['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(__A )}' ) return subprocess.run(__A ) print('''Successfully setup pod.''' ) def lowercase_ ( ) -> Any: """simple docstring""" lowercase : str =tpu_command_parser() lowercase : Any =parser.parse_args() tpu_command_launcher(__A )
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self : List[str] , UpperCAmelCase : Any=None ) -> Optional[int]: '''simple docstring''' lowercase : Tuple ={} if top_k is not None: lowercase : Optional[Any] =top_k return {}, {}, postprocess_params def __call__( self : Dict , UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =load_image(UpperCAmelCase ) lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self : Dict , UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[int] =self.model(**UpperCAmelCase ) return model_outputs def A__ ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=5 ) -> Optional[Any]: '''simple docstring''' if top_k > self.model.config.num_labels: lowercase : int =self.model.config.num_labels if self.framework == "pt": lowercase : Dict =model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Tuple =probs.topk(UpperCAmelCase ) elif self.framework == "tf": lowercase : Dict =stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase : Dict =tf.math.top_k(UpperCAmelCase , k=UpperCAmelCase ) lowercase , lowercase : Tuple =topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase : Optional[Any] =scores.tolist() lowercase : Optional[Any] =ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase , UpperCAmelCase )]
8
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
1
'''simple docstring''' def lowercase_ ( __A : int , __A : list ) -> Union[str, Any]: """simple docstring""" _enforce_args(__A , __A ) if n == 0: return 0 lowercase : List[str] =float('''-inf''' ) for i in range(1 , n + 1 ): lowercase : List[Any] =max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def lowercase_ ( __A : int , __A : list ) -> Dict: """simple docstring""" _enforce_args(__A , __A ) lowercase : Any =[float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def lowercase_ ( __A : int , __A : list , __A : list ) -> Optional[int]: """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowercase : Optional[int] =float('''-inf''' ) for i in range(1 , n + 1 ): lowercase : List[str] =max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) lowercase : List[str] =max_revenue return max_rev[n] def lowercase_ ( __A : int , __A : list ) -> Optional[Any]: """simple docstring""" _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowercase : List[Any] =[float('''-inf''' ) for _ in range(n + 1 )] lowercase : Optional[int] =0 for i in range(1 , n + 1 ): lowercase : int =max_rev[i] for j in range(1 , i + 1 ): lowercase : Union[str, Any] =max(__A , prices[j - 1] + max_rev[i - j] ) lowercase : Union[str, Any] =max_revenue_i return max_rev[n] def lowercase_ ( __A : int , __A : list ) -> Tuple: """simple docstring""" if n < 0: lowercase : List[str] =F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(__A ) if n > len(__A ): lowercase : List[Any] =( '''Each integral piece of rod must have a corresponding price. ''' F'Got n = {n} but length of prices = {len(__A )}' ) raise ValueError(__A ) def lowercase_ ( ) -> Tuple: """simple docstring""" lowercase : str =[6, 1_0, 1_2, 1_5, 2_0, 2_3] lowercase : Optional[Any] =len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowercase : int =3_6 lowercase : str =top_down_cut_rod(__A , __A ) lowercase : int =bottom_up_cut_rod(__A , __A ) lowercase : str =naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False, False, False @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = None # Automatically constructed UpperCamelCase_ = "dict" UpperCamelCase_ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCamelCase_ = field(default='''Audio''' , init=__A , repr=__A ) def __call__( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.pa_type def A__ ( self : Any , UpperCAmelCase : Union[str, bytes, dict] ) -> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(UpperCAmelCase , UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(UpperCAmelCase , UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase : List[Any] =BytesIO() sf.write(UpperCAmelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase : Union[str, Any] =np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: lowercase : List[Any] =np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2767 lowercase : List[str] =BytesIO(bytes() ) sf.write(UpperCAmelCase , UpperCAmelCase , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def A__ ( self : str , UpperCAmelCase : dict , UpperCAmelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) lowercase , lowercase : List[str] =(value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err lowercase : Optional[int] =xsplitext(UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: lowercase : List[Any] =token_per_repo_id or {} lowercase : List[Any] =path.split('''::''' )[-1] try: lowercase : Union[str, Any] =string_to_dict(UpperCAmelCase , config.HUB_DATASETS_URL )['''repo_id'''] lowercase : List[Any] =token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase : Any =None with xopen(UpperCAmelCase , '''rb''' , use_auth_token=UpperCAmelCase ) as f: lowercase , lowercase : List[str] =sf.read(UpperCAmelCase ) else: lowercase , lowercase : int =sf.read(UpperCAmelCase ) lowercase : List[Any] =array.T if self.mono: lowercase : List[str] =librosa.to_mono(UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase : Dict =librosa.resample(UpperCAmelCase , orig_sr=UpperCAmelCase , target_sr=self.sampling_rate ) lowercase : Any =self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def A__ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def A__ ( self : Optional[int] , UpperCAmelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): lowercase : Optional[int] =pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) lowercase : Optional[Any] =pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase : Union[str, Any] =pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) lowercase : List[Any] =pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): lowercase : List[Any] =pa.array([Audio().encode_example(UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: lowercase : List[Any] =storage.field('''bytes''' ) else: lowercase : Any =pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: lowercase : Any =storage.field('''path''' ) else: lowercase : int =pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) lowercase : Union[str, Any] =pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(UpperCAmelCase , self.pa_type ) def A__ ( self : List[Any] , UpperCAmelCase : pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase : Dict ): with xopen(UpperCAmelCase , '''rb''' ) as f: lowercase : str =f.read() return bytes_ lowercase : List[str] =pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase : str =pa.array( [os.path.basename(UpperCAmelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) lowercase : Optional[int] =pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase , self.pa_type )
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = BioGptTokenizer UpperCamelCase_ = False def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : Tuple =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase : List[Any] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : int =['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowercase : Union[str, Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def A__ ( self : str , UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' lowercase : Dict ='''lower newer''' lowercase : Optional[int] ='''lower newer''' return input_text, output_text def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : Any =BioGptTokenizer(self.vocab_file , self.merges_file ) lowercase : str ='''lower''' lowercase : str =['''low''', '''er</w>'''] lowercase : List[str] =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[Any] =tokens + ['''<unk>'''] lowercase : Dict =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) @slow def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase : List[str] =BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) lowercase : int =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase ) lowercase : List[Any] =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase ) lowercase : str =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowercase : List[str] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
8
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowercase_ ( __A : int ) -> Union[str, Any]: """simple docstring""" lowercase : str =[tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase_ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = StableDiffusionLatentUpscalePipeline UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } UpperCamelCase_ = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ = frozenset([] ) UpperCamelCase_ = True @property def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : str =1 lowercase : List[str] =4 lowercase : Union[str, Any] =(16, 16) lowercase : Dict =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase : Optional[int] =UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=UpperCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=UpperCAmelCase , only_cross_attention=UpperCAmelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) lowercase : List[str] =AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) lowercase : Union[str, Any] =EulerDiscreteScheduler(prediction_type='''sample''' ) lowercase : int =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) lowercase : Dict =CLIPTextModel(UpperCAmelCase ) lowercase : int =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : List[Any] ={ '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=0 ) -> List[str]: '''simple docstring''' if str(UpperCAmelCase ).startswith('''mps''' ): lowercase : int =torch.manual_seed(UpperCAmelCase ) else: lowercase : Union[str, Any] =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase : List[str] ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : str ='''cpu''' lowercase : List[str] =self.get_dummy_components() lowercase : str =self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : List[str] =self.get_dummy_inputs(UpperCAmelCase ) lowercase : int =pipe(**UpperCAmelCase ).images lowercase : str =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowercase : Dict =np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) lowercase : int =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def A__ ( self : str ) -> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def A__ ( self : str ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def A__ ( self : Dict ) -> int: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def A__ ( self : int ) -> Tuple: '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : Dict =[ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] lowercase : int =self.get_dummy_components() lowercase : Dict =self.pipeline_class(**UpperCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : int =self.get_dummy_inputs(UpperCAmelCase ) lowercase : int =2 lowercase : Optional[Any] =[] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase : Dict =getattr(UpperCAmelCase , scheduler_enum.name ) lowercase : Tuple =scheduler_cls.from_config(pipe.scheduler.config ) lowercase : Dict =pipe(**UpperCAmelCase )[0] outputs.append(UpperCAmelCase ) assert check_same_shape(UpperCAmelCase ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase : Tuple =torch.manual_seed(33 ) lowercase : Dict =StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) lowercase : List[str] =StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase : str ='''a photo of an astronaut high resolution, unreal engine, ultra realistic''' lowercase : Dict =pipe(UpperCAmelCase , generator=UpperCAmelCase , output_type='''latent''' ).images lowercase : Union[str, Any] =upscaler( prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase , output_type='''np''' , ).images[0] lowercase : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : str =torch.manual_seed(33 ) lowercase : Optional[int] =StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase : Union[str, Any] ='''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' lowercase : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) lowercase : Optional[Any] =upscaler( prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase , output_type='''np''' , ).images[0] lowercase : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
8
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Dict ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self : Any ) -> List[str]: '''simple docstring''' lowercase : int =1 lowercase : List[str] =3 lowercase : Optional[int] =(32, 32) lowercase : List[Any] =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase : Optional[int] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase : int =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase : Dict =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): class UpperCAmelCase_ : """simple docstring""" def __init__( self : int ) -> str: '''simple docstring''' lowercase : Any =torch.ones([0] ) def A__ ( self : List[Any] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self : Any ) -> List[str]: '''simple docstring''' lowercase : Optional[Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Dict =self.dummy_cond_unet lowercase : Dict =PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase : str =self.dummy_vae lowercase : str =self.dummy_text_encoder lowercase : Dict =XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase : str =77 lowercase : Any =self.dummy_image.to(UpperCAmelCase ) lowercase : Dict =init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase : Union[str, Any] =AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase : Optional[int] =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase : Any =alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : List[Any] ='''A painting of a squirrel eating a burger''' lowercase : List[Any] =torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase : Optional[int] =alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=UpperCAmelCase , ) lowercase : List[str] =output.images lowercase : Any =torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase : Dict =alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase : List[Any] =image[0, -3:, -3:, -1] lowercase : int =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : Any =np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =self.dummy_cond_unet lowercase : int =PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase : List[str] =self.dummy_vae lowercase : List[str] =self.dummy_text_encoder lowercase : int =XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase : str =77 lowercase : Dict =self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase : Union[str, Any] =unet.half() lowercase : Dict =vae.half() lowercase : Optional[Any] =bert.half() # make sure here that pndm scheduler skips prk lowercase : Union[str, Any] =AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase : Dict =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase : Optional[Any] =alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : str ='''A painting of a squirrel eating a burger''' lowercase : Optional[int] =torch.manual_seed(0 ) lowercase : Any =alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : Dict =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase : Optional[Any] =init_image.resize((760, 504) ) lowercase : Optional[Any] ='''BAAI/AltDiffusion''' lowercase : Union[str, Any] =AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase : List[str] ='''A fantasy landscape, trending on artstation''' lowercase : str =torch.manual_seed(0 ) lowercase : List[str] =pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type='''np''' , ) lowercase : List[str] =output.images[0] lowercase : List[Any] =image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase : List[Any] =np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase : Dict =init_image.resize((768, 512) ) lowercase : Dict =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowercase : Any ='''BAAI/AltDiffusion''' lowercase : Any =AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase : Tuple ='''A fantasy landscape, trending on artstation''' lowercase : Union[str, Any] =torch.manual_seed(0 ) lowercase : Union[str, Any] =pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type='''np''' , ) lowercase : List[Any] =output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
8
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
1