code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
SCREAMING_SNAKE_CASE = False
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : str , UpperCAmelCase : Optional[Any]=32 ) -> List[str]:
'''simple docstring'''
set_seed(0 )
lowercase : str =UNetaDModel(sample_size=UpperCAmelCase , in_channels=3 , out_channels=3 )
lowercase : int =torch.optim.SGD(model.parameters() , lr=0.0_0_0_1 )
return model, optimizer
@slow
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : int ='''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowercase : Tuple =DDPMScheduler(
num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=UpperCAmelCase , )
lowercase : Union[str, Any] =DDIMScheduler(
num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=UpperCAmelCase , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowercase : Any =[torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCAmelCase ) for _ in range(4 )]
lowercase : Tuple =[torch.randn((4, 3, 32, 32) ).to(UpperCAmelCase ) for _ in range(4 )]
lowercase : str =[torch.randint(0 , 1000 , (4,) ).long().to(UpperCAmelCase ) for _ in range(4 )]
# train with a DDPM scheduler
lowercase , lowercase : List[str] =self.get_model_optimizer(resolution=32 )
model.train().to(UpperCAmelCase )
for i in range(4 ):
optimizer.zero_grad()
lowercase : Any =ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowercase : List[Any] =model(UpperCAmelCase , timesteps[i] ).sample
lowercase : Any =torch.nn.functional.mse_loss(UpperCAmelCase , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowercase , lowercase : Union[str, Any] =self.get_model_optimizer(resolution=32 )
model.train().to(UpperCAmelCase )
for i in range(4 ):
optimizer.zero_grad()
lowercase : Dict =ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowercase : Any =model(UpperCAmelCase , timesteps[i] ).sample
lowercase : Optional[Any] =torch.nn.functional.mse_loss(UpperCAmelCase , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) )
self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) )
| 8 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class UpperCAmelCase_ :
"""simple docstring"""
@staticmethod
def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
pass
def lowercase_ ( __A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
SCREAMING_SNAKE_CASE = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : Dict =pipeline(
'''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Optional[Any] =INVOICE_URL
lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
lowercase : Dict ='''What is the placebo?'''
lowercase : Optional[Any] =[
{
'''image''': load_image(UpperCAmelCase ),
'''question''': question,
},
{
'''image''': image,
'''question''': question,
},
{
'''image''': image,
'''question''': question,
'''word_boxes''': word_boxes,
},
]
return dqa_pipeline, examples
def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 )
self.assertEqual(
UpperCAmelCase , [
[
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' )
lowercase : Union[str, Any] =INVOICE_URL
lowercase : Tuple ='''How many cats are there?'''
lowercase : Optional[int] =[
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39},
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40},
]
lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
# We can optionnally pass directly the words and bounding boxes
lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Dict =[]
lowercase : str =[]
lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , )
lowercase : Dict =INVOICE_URL
lowercase : str ='''What is the invoice number?'''
lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , )
lowercase : Dict =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Any =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : str ) -> Dict:
'''simple docstring'''
lowercase : Any =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : Tuple =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , )
lowercase : Tuple =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : str =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
]
]
* 2 , )
lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
lowercase : Dict =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : List[Any] =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , )
lowercase : str =INVOICE_URL
lowercase : int ='''What is the invoice number?'''
lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Union[str, Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
@slow
@require_torch
def A__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , )
lowercase : Any =INVOICE_URL
lowercase : Union[str, Any] ='''What is the invoice number?'''
lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] )
@require_tf
@unittest.skip('''Document question answering not implemented in TF''' )
def A__ ( self : Any ) -> Any:
'''simple docstring'''
pass
| 8 | 1 |
'''simple docstring'''
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class UpperCAmelCase_ ( yaml.SafeLoader ):
"""simple docstring"""
def A__ ( self : int , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =[self.constructed_objects[key_node] for key_node, _ in node.value]
lowercase : int =[tuple(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else key for key in keys]
lowercase : str =Counter(UpperCAmelCase )
lowercase : List[str] =[key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(f'Got duplicate yaml keys: {duplicate_keys}' )
def A__ ( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict=False ) -> Dict:
'''simple docstring'''
lowercase : str =super().construct_mapping(UpperCAmelCase , deep=UpperCAmelCase )
self._check_no_duplicates_on_constructed_node(UpperCAmelCase )
return mapping
def lowercase_ ( __A : str ) -> Tuple[Optional[str], str]:
"""simple docstring"""
lowercase : int =list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
lowercase : Union[str, Any] =full_content[1:].index('''---''' ) + 1
lowercase : int ='''\n'''.join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(__A )
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = {'''train_eval_index'''} # train-eval-index in the YAML metadata
@classmethod
def A__ ( cls : Optional[Any] , UpperCAmelCase : Path ) -> "DatasetMetadata":
'''simple docstring'''
with open(UpperCAmelCase , encoding='''utf-8''' ) as readme_file:
lowercase , lowercase : List[str] =_split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(UpperCAmelCase )
else:
return cls()
def A__ ( self : Dict , UpperCAmelCase : Path ) -> int:
'''simple docstring'''
if path.exists():
with open(UpperCAmelCase , encoding='''utf-8''' ) as readme_file:
lowercase : Tuple =readme_file.read()
else:
lowercase : str =None
lowercase : Dict =self._to_readme(UpperCAmelCase )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as readme_file:
readme_file.write(UpperCAmelCase )
def A__ ( self : List[Any] , UpperCAmelCase : Optional[str] = None ) -> str:
'''simple docstring'''
if readme_content is not None:
lowercase , lowercase : List[Any] =_split_yaml_from_readme(UpperCAmelCase )
lowercase : Optional[Any] ='''---\n''' + self.to_yaml_string() + '''---\n''' + content
else:
lowercase : Tuple ='''---\n''' + self.to_yaml_string() + '''---\n'''
return full_content
@classmethod
def A__ ( cls : List[str] , UpperCAmelCase : str ) -> "DatasetMetadata":
'''simple docstring'''
lowercase : Dict =yaml.load(UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
lowercase : Tuple ={
(key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**UpperCAmelCase )
def A__ ( self : Tuple ) -> str:
'''simple docstring'''
return yaml.safe_dump(
{
(key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=UpperCAmelCase , allow_unicode=UpperCAmelCase , encoding='''utf-8''' , ).decode('''utf-8''' )
SCREAMING_SNAKE_CASE = {
'image-classification': [],
'translation': [],
'image-segmentation': [],
'fill-mask': [],
'automatic-speech-recognition': [],
'token-classification': [],
'sentence-similarity': [],
'audio-classification': [],
'question-answering': [],
'summarization': [],
'zero-shot-classification': [],
'table-to-text': [],
'feature-extraction': [],
'other': [],
'multiple-choice': [],
'text-classification': [],
'text-to-image': [],
'text2text-generation': [],
'zero-shot-image-classification': [],
'tabular-classification': [],
'tabular-regression': [],
'image-to-image': [],
'tabular-to-text': [],
'unconditional-image-generation': [],
'text-retrieval': [],
'text-to-speech': [],
'object-detection': [],
'audio-to-audio': [],
'text-generation': [],
'conversational': [],
'table-question-answering': [],
'visual-question-answering': [],
'image-to-text': [],
'reinforcement-learning': [],
'voice-activity-detection': [],
'time-series-forecasting': [],
'document-question-answering': [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
SCREAMING_SNAKE_CASE = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.')
ap.add_argument('readme_filepath')
SCREAMING_SNAKE_CASE = ap.parse_args()
SCREAMING_SNAKE_CASE = Path(args.readme_filepath)
SCREAMING_SNAKE_CASE = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 8 |
'''simple docstring'''
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
if digit_amount > 0:
return round(number - int(__A ) , __A )
return number - int(__A )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 8 | 1 |
'''simple docstring'''
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Any ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[int] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Any ='''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Tuple ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : Tuple =self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Optional[Any] ='''1'''
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
lowercase : str ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Optional[int] ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : str =self.get_env()
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''
from transformers import BertConfig, BertModel, BertTokenizer
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
lowercase : int ='''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Any ='''1'''
lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] ='''
from transformers import pipeline
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
lowercase : Tuple ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
lowercase : Tuple =self.get_env()
lowercase : Optional[int] ='''1'''
lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def A__ ( self : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[str] ='''
from transformers import AutoModel
'''
lowercase : Dict ='''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : List[str] ='''1'''
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 8 |
'''simple docstring'''
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]:
"""simple docstring"""
return [
int(1_0_0_0 * (box[0] / width) ),
int(1_0_0_0 * (box[1] / height) ),
int(1_0_0_0 * (box[2] / width) ),
int(1_0_0_0 * (box[3] / height) ),
]
def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase : int =to_pil_image(__A )
lowercase , lowercase : Tuple =pil_image.size
lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A )
lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()]
lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowercase : Tuple =[]
for x, y, w, h in zip(__A , __A , __A , __A ):
lowercase : str =[x, y, x + w, y + h]
actual_boxes.append(__A )
# finally, normalize the bounding boxes
lowercase : List[str] =[]
for box in actual_boxes:
normalized_boxes.append(normalize_box(__A , __A , __A ) )
assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''pixel_values''']
def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224}
lowercase : Optional[Any] =get_size_dict(UpperCAmelCase )
lowercase : Optional[Any] =do_resize
lowercase : List[Any] =size
lowercase : List[str] =resample
lowercase : Dict =do_rescale
lowercase : str =rescale_value
lowercase : Optional[int] =do_normalize
lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD
lowercase : List[Any] =apply_ocr
lowercase : Union[str, Any] =ocr_lang
lowercase : str =tesseract_config
def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
lowercase : Tuple =get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
lowercase : Optional[Any] =(size['''height'''], size['''width'''])
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image:
'''simple docstring'''
lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize
lowercase : Tuple =size if size is not None else self.size
lowercase : Optional[int] =get_size_dict(UpperCAmelCase )
lowercase : List[str] =resample if resample is not None else self.resample
lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale
lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize
lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean
lowercase : Optional[int] =image_std if image_std is not None else self.image_std
lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr
lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang
lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config
lowercase : str =make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' )
# All transformations expect numpy arrays.
lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , '''pytesseract''' )
lowercase : int =[]
lowercase : Tuple =[]
for image in images:
lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
words_batch.append(UpperCAmelCase )
boxes_batch.append(UpperCAmelCase )
if do_resize:
lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_rescale:
lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase )
if apply_ocr:
lowercase : int =words_batch
lowercase : List[str] =boxes_batch
return data
| 8 | 1 |
'''simple docstring'''
class UpperCAmelCase_ : # Public class to implement a graph
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[bool]] ) -> None:
'''simple docstring'''
lowercase : Optional[int] =row
lowercase : Union[str, Any] =col
lowercase : List[str] =graph
def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[bool]] ) -> bool:
'''simple docstring'''
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[bool]] ) -> None:
'''simple docstring'''
lowercase : List[str] =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
lowercase : Dict =[-1, 0, 1, -1, 1, -1, 0, 1]
lowercase : List[str] =True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase )
def A__ ( self : Tuple ) -> int: # And finally, count all islands.
'''simple docstring'''
lowercase : Tuple =[[False for j in range(self.COL )] for i in range(self.ROW )]
lowercase : List[Any] =0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
count += 1
return count
| 8 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =parent
lowercase : Any =13
lowercase : Any =7
lowercase : Optional[int] =True
lowercase : Optional[int] =True
lowercase : Tuple =False
lowercase : Optional[Any] =True
lowercase : Dict =99
lowercase : Union[str, Any] =32
lowercase : Union[str, Any] =2
lowercase : Union[str, Any] =4
lowercase : List[str] =37
lowercase : str ='''gelu'''
lowercase : Dict =0.1
lowercase : List[Any] =0.1
lowercase : List[str] =512
lowercase : Optional[int] =16
lowercase : Optional[Any] =2
lowercase : List[str] =0.0_2
lowercase : Any =3
lowercase : Optional[Any] =4
lowercase : int =None
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Any =None
if self.use_input_mask:
lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Union[str, Any] =None
lowercase : Any =None
lowercase : str =None
if self.use_labels:
lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices )
lowercase : Dict =DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =TFDistilBertModel(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : List[str] =model(UpperCAmelCase )
lowercase : str =[input_ids, input_mask]
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase )
lowercase : int ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase )
lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]:
'''simple docstring'''
lowercase : List[Any] =self.num_choices
lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase )
lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : Tuple ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase )
lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : str =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : int =self.prepare_config_and_inputs()
((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs
lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
UpperCamelCase_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Dict ) -> str:
'''simple docstring'''
lowercase : str =TFDistilBertModelTester(self )
lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase )
def A__ ( self : Tuple ) -> Any:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase )
def A__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
lowercase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase )
def A__ ( self : Any ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase )
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase )
@slow
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase : List[Any] =model(UpperCAmelCase )[0]
lowercase : str =[1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
lowercase : Optional[int] =tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
| 8 | 1 |
'''simple docstring'''
import logging
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import librosa
import torch
from datasets import DatasetDict, load_dataset
from packaging import version
from torch import nn
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForPreTraining,
is_apex_available,
trainer_utils,
)
from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'):
SCREAMING_SNAKE_CASE = True
from torch.cuda.amp import autocast
SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
UpperCamelCase_ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''Whether to log verbose messages or not.'''} , )
UpperCamelCase_ = field(
default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} )
UpperCamelCase_ = field(
default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} )
UpperCamelCase_ = field(
default=0.999995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} )
def lowercase_ ( __A : ModelArguments , __A : TrainingArguments ) -> int:
"""simple docstring"""
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
lowercase : Optional[int] =logging.WARNING
if model_args.verbose_logging:
lowercase : str =logging.DEBUG
elif trainer_utils.is_main_process(training_args.local_rank ):
lowercase : Union[str, Any] =logging.INFO
logger.setLevel(__A )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCamelCase_ = field(
default='''train''' , metadata={
'''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\''''
} , )
UpperCamelCase_ = field(
default='''validation''' , metadata={
'''help''': (
'''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\''''
)
} , )
UpperCamelCase_ = field(
default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} )
UpperCamelCase_ = field(
default=1 , metadata={
'''help''': '''The percentage of the train set used as validation set in case there\'s no validation split'''
} , )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ = field(
default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
UpperCamelCase_ = 42
UpperCamelCase_ = 42
UpperCamelCase_ = "longest"
UpperCamelCase_ = None
UpperCamelCase_ = None
def __call__( self : Tuple , UpperCAmelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]:
'''simple docstring'''
lowercase : Any =self.feature_extractor.pad(
UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
lowercase : List[str] =self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] )
lowercase : Tuple =batch['''input_values'''].shape[0]
# make sure that no loss is computed on padded inputs
if batch["attention_mask"] is not None:
# compute real output lengths according to convolution formula
lowercase : str =self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to(
torch.long )
lowercase : Optional[Any] =torch.zeros(
(batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device )
# these two operations makes sure that all values
# before the output lengths indices are attended to
lowercase : Tuple =1
lowercase : Optional[Any] =attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool()
# sample randomly masked indices
lowercase : Optional[Any] =_compute_mask_indices(
(batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase , min_masks=2 , )
return batch
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : Union[str, Any] , *UpperCAmelCase : int , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : str=0 , UpperCAmelCase : Optional[Any]=1.0 , **UpperCAmelCase : List[str] ) -> Any:
'''simple docstring'''
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
lowercase : Any =0
lowercase : List[str] =max_gumbel_temp
lowercase : List[str] =min_gumbel_temp
lowercase : str =gumbel_temp_decay
def A__ ( self : Optional[Any] , UpperCAmelCase : nn.Module , UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor:
'''simple docstring'''
model.train()
lowercase : Any =self._prepare_inputs(UpperCAmelCase )
if self.use_amp:
with autocast():
lowercase : Union[str, Any] =self.compute_loss(UpperCAmelCase , UpperCAmelCase )
else:
lowercase : List[str] =self.compute_loss(UpperCAmelCase , UpperCAmelCase )
if self.args.n_gpu > 1 or self.deepspeed:
if model.module.config.ctc_loss_reduction == "mean":
lowercase : Any =loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
lowercase : Union[str, Any] =loss.sum() / (inputs['''mask_time_indices''']).sum()
else:
raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' )
if self.args.gradient_accumulation_steps > 1:
lowercase : Optional[Any] =loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(UpperCAmelCase ).backward()
elif self.use_apex:
with amp.scale_loss(UpperCAmelCase , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(UpperCAmelCase )
else:
loss.backward()
self.num_update_step += 1
# make sure gumbel softmax temperature is decayed
if self.args.n_gpu > 1 or self.deepspeed:
model.module.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) )
else:
model.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) )
return loss.detach()
def lowercase_ ( ) -> List[str]:
"""simple docstring"""
lowercase : List[str] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowercase , lowercase , lowercase : Union[str, Any] =parser.parse_args_into_dataclasses()
configure_logger(__A , __A )
# Downloading and loading a dataset from the hub.
lowercase : Optional[Any] =load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
if "validation" not in datasets.keys():
# make sure only "validation" and "train" keys remain"
lowercase : Optional[int] =DatasetDict()
lowercase : Dict =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , )
lowercase : str =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , )
else:
# make sure only "validation" and "train" keys remain"
lowercase : int =DatasetDict()
lowercase : Union[str, Any] =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , )
lowercase : str =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , )
# only normalized-inputs-training is supported
lowercase : Dict =WavaVecaFeatureExtractor.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__A )
def prepare_dataset(__A : Optional[Any] ):
# check that all files have the correct sampling rate
lowercase , lowercase : int =librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate )
return batch
# load audio files into numpy arrays
lowercase : Dict =datasets.map(
__A , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names )
# filter audio files that are too long
lowercase : List[str] =vectorized_datasets.filter(
lambda __A : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) )
def normalize(__A : Any ):
return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate )
# normalize and transform to `BatchFeatures`
lowercase : Dict =vectorized_datasets.map(
__A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , )
# pretraining is only supported for "newer" stable layer norm architecture
# apply_spec_augment has to be True, mask_feature_prob has to be 0.0
lowercase : Dict =WavaVecaConfig.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , )
if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
raise ValueError(
'''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and'''
''' ``config.feat_extract_norm=\'layer\'''' )
lowercase : Dict =WavaVecaForPreTraining(__A )
lowercase : Any =DataCollatorForWavaVecaPretraining(model=__A , feature_extractor=__A )
lowercase : Optional[int] =WavaVecaPreTrainer(
model=__A , data_collator=__A , args=__A , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=__A , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , )
trainer.train()
if __name__ == "__main__":
main()
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RemBertForCausalLM',
'RemBertForMaskedLM',
'RemBertForMultipleChoice',
'RemBertForQuestionAnswering',
'RemBertForSequenceClassification',
'RemBertForTokenClassification',
'RemBertLayer',
'RemBertModel',
'RemBertPreTrainedModel',
'load_tf_weights_in_rembert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRemBertForCausalLM',
'TFRemBertForMaskedLM',
'TFRemBertForMultipleChoice',
'TFRemBertForQuestionAnswering',
'TFRemBertForSequenceClassification',
'TFRemBertForTokenClassification',
'TFRemBertLayer',
'TFRemBertModel',
'TFRemBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE = {
'configuration_blip_2': [
'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Blip2Config',
'Blip2QFormerConfig',
'Blip2VisionConfig',
],
'processing_blip_2': ['Blip2Processor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Blip2Model',
'Blip2QFormerModel',
'Blip2PreTrainedModel',
'Blip2ForConditionalGeneration',
'Blip2VisionModel',
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 |
'''simple docstring'''
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch'))
def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]:
"""simple docstring"""
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' )
lowercase : Any =STR_OPERATION_TO_FUNC[operation]
if isinstance(__A , __A ):
lowercase : List[Any] =parse(importlib.metadata.version(__A ) )
return operation(__A , parse(__A ) )
def lowercase_ ( __A : str , __A : str ) -> Tuple:
"""simple docstring"""
return compare_versions(__A , __A , __A )
| 8 | 1 |
'''simple docstring'''
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class UpperCAmelCase_ ( __A , __A ):
"""simple docstring"""
@register_to_config
def __init__( self : Dict , *,
UpperCAmelCase : int = 4 , UpperCAmelCase : int = 768 , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , ) -> int:
'''simple docstring'''
super().__init__()
lowercase : Optional[Any] =nn.Parameter(torch.zeros(UpperCAmelCase ) )
# parameters for additional clip time embeddings
lowercase : int =nn.Linear(UpperCAmelCase , UpperCAmelCase )
lowercase : Optional[Any] =nn.Linear(UpperCAmelCase , UpperCAmelCase )
# parameters for encoder hidden states
lowercase : List[Any] =clip_extra_context_tokens
lowercase : int =nn.Linear(
UpperCAmelCase , self.clip_extra_context_tokens * cross_attention_dim )
lowercase : Optional[int] =nn.Linear(UpperCAmelCase , UpperCAmelCase )
lowercase : Union[str, Any] =nn.LayerNorm(UpperCAmelCase )
def A__ ( self : Any , *, UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]:
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
lowercase : Any =image_embeddings.shape[0]
lowercase : int =self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
lowercase : List[str] =classifier_free_guidance_embeddings.expand(
UpperCAmelCase , -1 )
lowercase : Union[str, Any] =torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
lowercase : str =prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
lowercase : str =self.embedding_proj(UpperCAmelCase )
lowercase : str =self.clip_image_embeddings_project_to_time_embeddings(UpperCAmelCase )
lowercase : List[str] =time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
lowercase : List[str] =self.clip_extra_context_tokens_proj(UpperCAmelCase )
lowercase : List[Any] =clip_extra_context_tokens.reshape(UpperCAmelCase , -1 , self.clip_extra_context_tokens )
lowercase : str =clip_extra_context_tokens.permute(0 , 2 , 1 )
lowercase : Any =self.encoder_hidden_states_proj(UpperCAmelCase )
lowercase : Optional[Any] =self.text_encoder_hidden_states_norm(UpperCAmelCase )
lowercase : str =torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 8 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 8 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {
'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json',
}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = '''lxmert'''
UpperCamelCase_ = {}
def __init__( self : Optional[Any] , UpperCAmelCase : Dict=3_0522 , UpperCAmelCase : int=768 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Tuple=9500 , UpperCAmelCase : List[str]=1600 , UpperCAmelCase : Union[str, Any]=400 , UpperCAmelCase : Optional[int]=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[Any]=0.0_2 , UpperCAmelCase : int=1e-12 , UpperCAmelCase : int=9 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : int=2048 , UpperCAmelCase : Dict=4 , UpperCAmelCase : int=6.6_7 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=True , **UpperCAmelCase : Tuple , ) -> List[str]:
'''simple docstring'''
lowercase : Dict =vocab_size
lowercase : Optional[int] =hidden_size
lowercase : int =num_attention_heads
lowercase : int =hidden_act
lowercase : List[Any] =intermediate_size
lowercase : str =hidden_dropout_prob
lowercase : Optional[Any] =attention_probs_dropout_prob
lowercase : Union[str, Any] =max_position_embeddings
lowercase : int =type_vocab_size
lowercase : Tuple =initializer_range
lowercase : Optional[Any] =layer_norm_eps
lowercase : Dict =num_qa_labels
lowercase : List[str] =num_object_labels
lowercase : Optional[Any] =num_attr_labels
lowercase : Tuple =l_layers
lowercase : Optional[Any] =x_layers
lowercase : List[str] =r_layers
lowercase : List[Any] =visual_feat_dim
lowercase : List[str] =visual_pos_dim
lowercase : Tuple =visual_loss_normalizer
lowercase : Optional[int] =task_matched
lowercase : Tuple =task_mask_lm
lowercase : Union[str, Any] =task_obj_predict
lowercase : List[Any] =task_qa
lowercase : Dict =visual_obj_loss
lowercase : int =visual_attr_loss
lowercase : List[Any] =visual_feat_loss
lowercase : Union[str, Any] ={'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**UpperCAmelCase )
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( __A : Optional[Any] , __A : List[str] , __A : Any , __A : Optional[int] ) -> Dict:
"""simple docstring"""
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'
def lowercase_ ( __A : str , __A : Any , __A : Optional[int] , __A : Tuple , __A : Optional[Any]=True ) -> str:
"""simple docstring"""
model.train()
lowercase : List[str] =model(__A )
lowercase : str =F.mse_loss(__A , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(__A )
def lowercase_ ( __A : Dict , __A : Optional[Any]=False ) -> Optional[Any]:
"""simple docstring"""
set_seed(4_2 )
lowercase : str =RegressionModel()
lowercase : str =deepcopy(__A )
lowercase : Dict =RegressionDataset(length=8_0 )
lowercase : Union[str, Any] =DataLoader(__A , batch_size=1_6 )
model.to(accelerator.device )
if sched:
lowercase : int =AdamW(params=model.parameters() , lr=1E-3 )
lowercase : Dict =AdamW(params=ddp_model.parameters() , lr=1E-3 )
lowercase : List[str] =LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 )
lowercase : str =LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 )
# Make a copy of `model`
if sched:
lowercase , lowercase , lowercase , lowercase : List[Any] =accelerator.prepare(__A , __A , __A , __A )
else:
lowercase , lowercase : Any =accelerator.prepare(__A , __A )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( __A : List[str] ) -> Tuple:
"""simple docstring"""
lowercase , lowercase , lowercase : str =get_training_setup(__A )
# Use a single batch
lowercase , lowercase : Optional[int] =next(iter(__A ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
lowercase , lowercase : List[Any] =accelerator.gather((ddp_input, ddp_target) )
lowercase , lowercase : Any =input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__A , __A , __A , __A )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__A ):
step_model(__A , __A , __A , __A )
else:
# Sync grads
step_model(__A , __A , __A , __A )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(__A , __A , __A , __A )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
lowercase : Any =ddp_input[torch.randperm(len(__A ) )]
def lowercase_ ( __A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
lowercase , lowercase , lowercase : List[Any] =get_training_setup(__A )
# Use a single batch
lowercase , lowercase : Optional[Any] =next(iter(__A ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
lowercase , lowercase : Tuple =accelerator.gather((ddp_input, ddp_target) )
lowercase , lowercase : List[str] =input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__A , __A , __A , __A )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__A ):
step_model(__A , __A , __A , __A )
else:
# Sync grads
step_model(__A , __A , __A , __A )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
lowercase : int =ddp_input[torch.randperm(len(__A ) )]
def lowercase_ ( __A : Dict=False , __A : Tuple=False ) -> Union[str, Any]:
"""simple docstring"""
lowercase : List[Any] =Accelerator(
split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
lowercase , lowercase , lowercase : Dict =get_training_setup(__A )
for iteration, batch in enumerate(__A ):
lowercase , lowercase : Optional[int] =batch.values()
# Gather the distributed inputs and targs for the base model
lowercase , lowercase : Tuple =accelerator.gather((ddp_input, ddp_target) )
lowercase , lowercase : Dict =input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__A , __A , __A , __A , __A )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(__A ):
step_model(__A , __A , __A , __A )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(__A ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
lowercase : Optional[int] =ddp_input[torch.randperm(len(__A ) )]
GradientState._reset_state()
def lowercase_ ( __A : Optional[Any]=False , __A : List[str]=False ) -> Union[str, Any]:
"""simple docstring"""
lowercase : int =Accelerator(
split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase : Optional[int] =get_training_setup(__A , __A )
for iteration, batch in enumerate(__A ):
lowercase , lowercase : int =batch.values()
# Gather the distributed inputs and targs for the base model
lowercase , lowercase : Any =accelerator.gather((ddp_input, ddp_target) )
lowercase , lowercase : Optional[int] =input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(__A , __A , __A , __A , __A )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__A )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(__A ):
step_model(__A , __A , __A , __A )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'
lowercase : Union[str, Any] =(((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__A ))
if accelerator.num_processes > 1:
check_model_parameters(__A , __A , __A , __A )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def lowercase_ ( ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Tuple =Accelerator()
lowercase : str =RegressionDataset(length=8_0 )
lowercase : Tuple =DataLoader(__A , batch_size=1_6 )
lowercase : Tuple =RegressionDataset(length=9_6 )
lowercase : Tuple =DataLoader(__A , batch_size=1_6 )
lowercase , lowercase : int =accelerator.prepare(__A , __A )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(__A ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__A )
if iteration < len(__A ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(__A ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__A )
if batch_num < len(__A ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ) -> Tuple:
"""simple docstring"""
lowercase : List[str] =Accelerator()
lowercase : int =accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(__A )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(__A )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , )
test_gradient_accumulation(__A , __A )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , )
test_gradient_accumulation_with_opt_and_scheduler(__A , __A )
def lowercase_ ( __A : Tuple ) -> Tuple:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegaForCausalLM',
'MegaForMaskedLM',
'MegaForMultipleChoice',
'MegaForQuestionAnswering',
'MegaForSequenceClassification',
'MegaForTokenClassification',
'MegaModel',
'MegaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : List[Any] =str(bin(__A ) )
binary_number += "0" * shift_amount
return binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : Union[str, Any] =str(bin(__A ) )[2:]
if shift_amount >= len(__A ):
return "0b0"
lowercase : Any =binary_number[: len(__A ) - shift_amount]
return "0b" + shifted_binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number
lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:]
lowercase : int =(
'''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number
)
if shift_amount >= len(__A ):
return "0b" + binary_number[0] * len(__A )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__A ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 |
'''simple docstring'''
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514}
SCREAMING_SNAKE_CASE = {}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = HerbertTokenizer
def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(
UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , )
def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : List[Any] =[self.cls_token_id]
lowercase : Any =[self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Optional[Any] =[self.sep_token_id]
lowercase : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 8 | 1 |
'''simple docstring'''
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def lowercase_ ( __A : Any , __A : str ) -> List[Any]:
"""simple docstring"""
lowercase : List[str] =XCLIPTextConfig()
# derive patch size from model name
lowercase : List[str] =model_name.find('''patch''' )
lowercase : Any =int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] )
lowercase : Dict =XCLIPVisionConfig(patch_size=__A , num_frames=__A )
if "large" in model_name:
lowercase : Any =7_6_8
lowercase : Optional[Any] =3_0_7_2
lowercase : Union[str, Any] =1_2
lowercase : str =1_0_2_4
lowercase : Any =4_0_9_6
lowercase : List[Any] =1_6
lowercase : Optional[int] =2_4
lowercase : Optional[Any] =7_6_8
lowercase : str =3_0_7_2
if model_name == "xclip-large-patch14-16-frames":
lowercase : Tuple =3_3_6
lowercase : Tuple =XCLIPConfig.from_text_vision_configs(__A , __A )
if "large" in model_name:
lowercase : Dict =7_6_8
return config
def lowercase_ ( __A : str ) -> Dict:
"""simple docstring"""
if name == "token_embedding.weight":
lowercase : List[Any] =name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' )
if name == "positional_embedding":
lowercase : Tuple =name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' )
if "ln_1" in name:
lowercase : Optional[int] =name.replace('''ln_1''' , '''layer_norm1''' )
if "ln_2" in name:
lowercase : int =name.replace('''ln_2''' , '''layer_norm2''' )
if "c_fc" in name:
lowercase : Tuple =name.replace('''c_fc''' , '''fc1''' )
if "c_proj" in name:
lowercase : Tuple =name.replace('''c_proj''' , '''fc2''' )
if name.startswith('''transformer.resblocks''' ):
lowercase : Tuple =name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' )
if "attn.out_proj" in name and "message" not in name:
lowercase : Optional[Any] =name.replace('''attn.out_proj''' , '''self_attn.out_proj''' )
if "ln_final" in name:
lowercase : str =name.replace('''ln_final''' , '''text_model.final_layer_norm''' )
# visual encoder
if name == "visual.class_embedding":
lowercase : str =name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' )
if name == "visual.positional_embedding":
lowercase : Tuple =name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' )
if name.startswith('''visual.transformer.resblocks''' ):
lowercase : Tuple =name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' )
if "visual.conv1" in name:
lowercase : Optional[int] =name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' )
if "visual.ln_pre" in name:
lowercase : int =name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' )
if "visual.ln_post" in name:
lowercase : Tuple =name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' )
if "visual.proj" in name:
lowercase : str =name.replace('''visual.proj''' , '''visual_projection.weight''' )
if "text_projection" in name:
lowercase : Tuple =name.replace('''text_projection''' , '''text_projection.weight''' )
# things on top
if "prompts_visual_proj" in name:
lowercase : List[Any] =name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' )
if "prompts_visual_ln" in name:
lowercase : Tuple =name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' )
# mit
if name == "mit.positional_embedding":
lowercase : Optional[int] =name.replace('''positional''' , '''position''' )
if name.startswith('''mit.resblocks''' ):
lowercase : int =name.replace('''mit.resblocks''' , '''mit.encoder.layers''' )
# prompts generator
if name.startswith('''prompts_generator.norm''' ):
lowercase : Union[str, Any] =name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' )
return name
def lowercase_ ( __A : Optional[int] , __A : Tuple ) -> Dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowercase : Union[str, Any] =orig_state_dict.pop(__A )
if "attn.in_proj" in key:
lowercase : int =key.split('''.''' )
if key.startswith('''visual''' ):
lowercase : Dict =key_split[3]
lowercase : List[str] =config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
lowercase : List[str] =val[
:dim, :
]
lowercase : List[str] =val[
dim : dim * 2, :
]
lowercase : Optional[Any] =val[
-dim:, :
]
else:
lowercase : List[str] =val[
:dim
]
lowercase : Dict =val[
dim : dim * 2
]
lowercase : Any =val[
-dim:
]
else:
if "weight" in key:
lowercase : Optional[Any] =val[
:dim, :
]
lowercase : Union[str, Any] =val[
dim : dim * 2, :
]
lowercase : int =val[
-dim:, :
]
else:
lowercase : Optional[Any] =val[:dim]
lowercase : Tuple =val[
dim : dim * 2
]
lowercase : List[Any] =val[-dim:]
elif key.startswith('''mit''' ):
lowercase : str =key_split[2]
lowercase : Dict =config.vision_config.mit_hidden_size
if "weight" in key:
lowercase : Any =val[:dim, :]
lowercase : Optional[int] =val[dim : dim * 2, :]
lowercase : Tuple =val[-dim:, :]
else:
lowercase : List[Any] =val[:dim]
lowercase : int =val[dim : dim * 2]
lowercase : Union[str, Any] =val[-dim:]
else:
lowercase : Dict =key_split[2]
lowercase : str =config.text_config.hidden_size
if "weight" in key:
lowercase : Union[str, Any] =val[:dim, :]
lowercase : Optional[Any] =val[
dim : dim * 2, :
]
lowercase : List[Any] =val[-dim:, :]
else:
lowercase : Dict =val[:dim]
lowercase : List[Any] =val[
dim : dim * 2
]
lowercase : List[Any] =val[-dim:]
else:
lowercase : Optional[int] =rename_key(__A )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
lowercase : List[str] =val.T
lowercase : Optional[int] =val
return orig_state_dict
def lowercase_ ( __A : Optional[Any] ) -> List[Any]:
"""simple docstring"""
if num_frames == 8:
lowercase : Union[str, Any] ='''eating_spaghetti_8_frames.npy'''
elif num_frames == 1_6:
lowercase : Union[str, Any] ='''eating_spaghetti.npy'''
elif num_frames == 3_2:
lowercase : Any ='''eating_spaghetti_32_frames.npy'''
lowercase : List[Any] =hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''' , filename=__A , repo_type='''dataset''' , )
lowercase : int =np.load(__A )
return list(__A )
def lowercase_ ( __A : Optional[int] , __A : int=None , __A : Any=False ) -> int:
"""simple docstring"""
lowercase : Dict ={
# fully supervised kinetics-400 checkpoints
'''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''',
'''xclip-base-patch32-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'''
),
'''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''',
'''xclip-base-patch16-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'''
),
'''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb''',
'''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f''',
# fully supervised kinetics-600 checkpoints
'''xclip-base-patch16-kinetics-600''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'''
),
'''xclip-base-patch16-kinetics-600-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'''
),
'''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be''',
# few shot
'''xclip-base-patch16-hmdb-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'''
),
'''xclip-base-patch16-hmdb-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'''
),
'''xclip-base-patch16-hmdb-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'''
),
'''xclip-base-patch16-hmdb-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'''
),
'''xclip-base-patch16-ucf-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'''
),
'''xclip-base-patch16-ucf-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'''
),
'''xclip-base-patch16-ucf-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'''
),
'''xclip-base-patch16-ucf-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'''
),
# zero shot
'''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''',
}
lowercase : int =model_to_url[model_name]
lowercase : int =8
if "16-frames" in model_name:
lowercase : Optional[Any] =1_6
elif "shot" in model_name:
lowercase : int =3_2
lowercase : List[str] =get_xclip_config(__A , __A )
lowercase : Union[str, Any] =XCLIPModel(__A )
model.eval()
if "drive" in checkpoint_url:
lowercase : Optional[int] ='''pytorch_model.bin'''
gdown.cached_download(__A , __A , quiet=__A )
lowercase : Optional[int] =torch.load(__A , map_location='''cpu''' )['''model''']
else:
lowercase : Any =torch.hub.load_state_dict_from_url(__A )['''model''']
lowercase : str =convert_state_dict(__A , __A )
lowercase : Optional[int] =XCLIPModel(__A )
lowercase , lowercase : List[Any] =model.load_state_dict(__A , strict=__A )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
lowercase : Any =3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4
lowercase : str =VideoMAEImageProcessor(size=__A )
lowercase : Dict =CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' )
lowercase : int =CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' )
lowercase : str =XCLIPProcessor(image_processor=__A , tokenizer=__A )
lowercase : str =prepare_video(__A )
lowercase : Optional[Any] =processor(
text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=__A , return_tensors='''pt''' , padding=__A )
print('''Shape of pixel values:''' , inputs.pixel_values.shape )
with torch.no_grad():
lowercase : Tuple =model(**__A )
# Verify outputs
lowercase : str =outputs.logits_per_video
lowercase : Optional[Any] =logits_per_video.softmax(dim=1 )
print('''Probs:''' , __A )
# kinetics-400
if model_name == "xclip-base-patch32":
lowercase : Any =torch.tensor([[0.0019, 0.9951, 0.0030]] )
elif model_name == "xclip-base-patch32-16-frames":
lowercase : Union[str, Any] =torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] )
elif model_name == "xclip-base-patch16":
lowercase : Optional[Any] =torch.tensor([[0.0083, 0.9681, 0.0236]] )
elif model_name == "xclip-base-patch16-16-frames":
lowercase : Optional[int] =torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] )
elif model_name == "xclip-large-patch14":
lowercase : Tuple =torch.tensor([[0.0062, 0.9864, 0.0075]] )
elif model_name == "xclip-large-patch14-16-frames":
lowercase : List[str] =torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
lowercase : int =torch.tensor([[0.0555, 0.8914, 0.0531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
lowercase : Tuple =torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
lowercase : Tuple =torch.tensor([[0.0036, 0.9920, 0.0045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
lowercase : int =torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
lowercase : Union[str, Any] =torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
lowercase : str =torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
lowercase : Optional[int] =torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
lowercase : Optional[Any] =torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
lowercase : str =torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
lowercase : List[Any] =torch.tensor([[0.0027, 0.9904, 0.0070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
lowercase : str =torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
lowercase : Dict =torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] )
else:
raise ValueError(F'Model name {model_name} not supported' )
assert torch.allclose(__A , __A , atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__A )
if push_to_hub:
print('''Pushing model, processor and slow tokenizer files to the hub...''' )
model.push_to_hub(__A , organization='''nielsr''' )
processor.push_to_hub(__A , organization='''nielsr''' )
slow_tokenizer.push_to_hub(__A , organization='''nielsr''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='xclip-base-patch32',
type=str,
help='Name of the model.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
SCREAMING_SNAKE_CASE = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 8 |
'''simple docstring'''
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Any ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[int] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Any ='''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Tuple ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : Tuple =self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Optional[Any] ='''1'''
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
lowercase : str ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Optional[int] ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : str =self.get_env()
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''
from transformers import BertConfig, BertModel, BertTokenizer
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
lowercase : int ='''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Any ='''1'''
lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] ='''
from transformers import pipeline
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
lowercase : Tuple ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
lowercase : Tuple =self.get_env()
lowercase : Optional[int] ='''1'''
lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def A__ ( self : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[str] ='''
from transformers import AutoModel
'''
lowercase : Dict ='''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : List[str] ='''1'''
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 8 | 1 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : str=32 , UpperCAmelCase : Any=2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : str=16 , UpperCAmelCase : Union[str, Any]=[1, 2, 1] , UpperCAmelCase : List[str]=[2, 2, 4] , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Tuple=2.0 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Dict=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[str]=1e-5 , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=10 , UpperCAmelCase : Dict=8 , UpperCAmelCase : str=["stage1", "stage2", "stage3"] , UpperCAmelCase : List[str]=[1, 2, 3] , ) -> Any:
'''simple docstring'''
lowercase : int =parent
lowercase : List[str] =batch_size
lowercase : List[str] =image_size
lowercase : Optional[int] =patch_size
lowercase : int =num_channels
lowercase : Union[str, Any] =embed_dim
lowercase : Tuple =depths
lowercase : List[Any] =num_heads
lowercase : int =window_size
lowercase : int =mlp_ratio
lowercase : Optional[Any] =qkv_bias
lowercase : List[Any] =hidden_dropout_prob
lowercase : Optional[int] =attention_probs_dropout_prob
lowercase : Any =drop_path_rate
lowercase : Optional[int] =hidden_act
lowercase : Tuple =use_absolute_embeddings
lowercase : Union[str, Any] =patch_norm
lowercase : str =layer_norm_eps
lowercase : List[str] =initializer_range
lowercase : Optional[int] =is_training
lowercase : str =scope
lowercase : Tuple =use_labels
lowercase : List[str] =type_sequence_label_size
lowercase : Optional[int] =encoder_stride
lowercase : str =out_features
lowercase : Optional[Any] =out_indices
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase : str =None
if self.use_labels:
lowercase : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : List[str] =self.get_config()
return config, pixel_values, labels
def A__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def A__ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Any =MaskFormerSwinModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : Dict =model(UpperCAmelCase )
lowercase : Optional[Any] =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowercase : List[str] =int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def A__ ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowercase : Any =MaskFormerSwinBackbone(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : str =model(UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(UpperCAmelCase ):
lowercase : Dict =['''stem''']
lowercase : str =MaskFormerSwinBackbone(config=UpperCAmelCase )
def A__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
lowercase : Tuple =self.prepare_config_and_inputs()
lowercase , lowercase , lowercase : List[Any] =config_and_inputs
lowercase : Any ={'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
UpperCamelCase_ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {}
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Any ) -> str:
'''simple docstring'''
lowercase : Optional[Any] =MaskFormerSwinModelTester(self )
lowercase : List[str] =ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'''
''' `nn.DataParallel`'''
) )
def A__ ( self : Any ) -> str:
'''simple docstring'''
pass
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
return
def A__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCAmelCase )
@unittest.skip('''Swin does not use inputs_embeds''' )
def A__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
pass
@unittest.skip('''Swin does not support feedforward chunking''' )
def A__ ( self : Tuple ) -> Dict:
'''simple docstring'''
pass
def A__ ( self : str ) -> str:
'''simple docstring'''
lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Optional[Any] =model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowercase : int =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A__ ( self : Any ) -> str:
'''simple docstring'''
lowercase , lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Optional[Any] =model_class(UpperCAmelCase )
lowercase : List[Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase : List[Any] =[*signature.parameters.keys()]
lowercase : Optional[Any] =['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
@unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' )
def A__ ( self : str ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' )
def A__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
pass
def A__ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Dict ) -> Any:
'''simple docstring'''
lowercase : Tuple =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : Union[str, Any] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowercase : Tuple =outputs.hidden_states
lowercase : Union[str, Any] =getattr(
self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# Swin has a different seq_length
lowercase : int =(
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase : Dict =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def A__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase , lowercase : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
lowercase : Dict =(
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowercase : List[Any] =True
self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase : Union[str, Any] =True
self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common()
lowercase : List[str] =3
lowercase : List[Any] =(
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowercase : List[str] =(
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase : Optional[Any] =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowercase : Optional[int] =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowercase : Union[str, Any] =True
self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase : Any =True
self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) )
@unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' )
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' )
def A__ ( self : int ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' )
def A__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
pass
def A__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(UpperCAmelCase : List[str] ):
lowercase : Optional[int] =0
return t
def check_equivalence(UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]={} ):
with torch.no_grad():
lowercase : int =model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase )
lowercase : Tuple =model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple()
def recursive_check(UpperCAmelCase : int , UpperCAmelCase : Tuple ):
if isinstance(UpperCAmelCase , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ):
recursive_check(UpperCAmelCase , UpperCAmelCase )
elif isinstance(UpperCAmelCase , UpperCAmelCase ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(UpperCAmelCase , UpperCAmelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1e-5 ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has'
f' `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.'
) , )
recursive_check(UpperCAmelCase , UpperCAmelCase )
for model_class in self.all_model_classes:
lowercase : Any =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : List[Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowercase : Union[str, Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : Optional[int] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
lowercase : List[str] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : Union[str, Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowercase : List[str] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True} )
lowercase : int =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
lowercase : List[Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True} )
@require_torch
class UpperCAmelCase_ ( unittest.TestCase , __A ):
"""simple docstring"""
UpperCamelCase_ = (MaskFormerSwinBackbone,) if is_torch_available() else ()
UpperCamelCase_ = MaskFormerSwinConfig
def A__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
lowercase : Optional[Any] =MaskFormerSwinModelTester(self )
def A__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
lowercase , lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common()
lowercase : Tuple =inputs_dict['''pixel_values'''].shape[0]
for backbone_class in self.all_model_classes:
lowercase : str =backbone_class(UpperCAmelCase )
backbone.to(UpperCAmelCase )
backbone.eval()
lowercase : Optional[int] =backbone(**UpperCAmelCase )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , UpperCAmelCase )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
lowercase : List[Any] =backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
lowercase , lowercase , lowercase : str =hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
lowercase : str =backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase )
self.assertIsNotNone(outputs.attentions )
| 8 |
'''simple docstring'''
SCREAMING_SNAKE_CASE = 'Alexander Joslin'
import operator as op
from .stack import Stack
def lowercase_ ( __A : str ) -> int:
"""simple docstring"""
lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
lowercase : Stack[int] =Stack()
lowercase : Stack[str] =Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__A ) )
elif i in operators:
# RULE 2
operator_stack.push(__A )
elif i == ")":
# RULE 4
lowercase : Optional[Any] =operator_stack.peek()
operator_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : List[str] =operators[opr](__A , __A )
operand_stack.push(__A )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))'
# answer = 45
print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 8 | 1 |
'''simple docstring'''
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
def lowercase_ ( __A : List[str] , __A : Tuple ) -> List[Any]:
"""simple docstring"""
lowercase : Optional[int] =np.argmax(__A , axis=1 )
return np.sum(outputs == labels )
def lowercase_ ( __A : int ) -> Optional[int]:
"""simple docstring"""
with open(__A , encoding='''utf_8''' ) as f:
lowercase : Union[str, Any] =csv.reader(__A )
lowercase : int =[]
next(__A ) # skip the first line
for line in tqdm(__A ):
output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def lowercase_ ( __A : List[str] , __A : Dict , __A : List[str] , __A : int , __A : Dict , __A : Any ) -> Any:
"""simple docstring"""
lowercase : Dict =[]
for dataset in encoded_datasets:
lowercase : Any =len(__A )
lowercase : Tuple =np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
lowercase : Optional[Any] =np.zeros((n_batch, 2) , dtype=np.intaa )
lowercase : Tuple =np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa )
lowercase : List[Any] =np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(__A ):
lowercase : int =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
lowercase : Optional[Any] =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
lowercase : Union[str, Any] =with_conta
lowercase : Union[str, Any] =with_conta
lowercase : Optional[int] =len(__A ) - 1
lowercase : Optional[int] =len(__A ) - 1
lowercase : List[Any] =with_conta
lowercase : Any =with_conta
lowercase : Any =mc_label
lowercase : Any =(input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(__A ) for t in all_inputs ) )
return tensor_datasets
def lowercase_ ( ) -> Dict:
"""simple docstring"""
lowercase : Optional[Any] =argparse.ArgumentParser()
parser.add_argument('''--model_name''' , type=__A , default='''openai-gpt''' , help='''pretrained model name''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' )
parser.add_argument(
'''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument('''--train_dataset''' , type=__A , default='''''' )
parser.add_argument('''--eval_dataset''' , type=__A , default='''''' )
parser.add_argument('''--seed''' , type=__A , default=4_2 )
parser.add_argument('''--num_train_epochs''' , type=__A , default=3 )
parser.add_argument('''--train_batch_size''' , type=__A , default=8 )
parser.add_argument('''--eval_batch_size''' , type=__A , default=1_6 )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=__A , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , type=__A , default=1 )
parser.add_argument(
'''--max_steps''' , default=-1 , type=__A , help=(
'''If > 0: set total number of training steps to perform. Override num_train_epochs.'''
) , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=__A , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--learning_rate''' , type=__A , default=6.25E-5 )
parser.add_argument('''--warmup_steps''' , default=0 , type=__A , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--lr_schedule''' , type=__A , default='''warmup_linear''' )
parser.add_argument('''--weight_decay''' , type=__A , default=0.01 )
parser.add_argument('''--lm_coef''' , type=__A , default=0.9 )
parser.add_argument('''--n_valid''' , type=__A , default=3_7_4 )
parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' )
parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' )
lowercase : List[Any] =parser.parse_args()
print(__A )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('''Waiting for debugger attach''' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
lowercase : int =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
lowercase : Optional[Any] =torch.cuda.device_count()
logger.info('''device: {}, n_gpu {}'''.format(__A , __A ) )
if not args.do_train and not args.do_eval:
raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
lowercase : int =['''_start_''', '''_delimiter_''', '''_classify_''']
lowercase : Optional[int] =OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(__A )
lowercase : Dict =tokenizer.convert_tokens_to_ids(__A )
lowercase : str =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(__A ) )
model.to(__A )
# Load and encode the datasets
def tokenize_and_encode(__A : Tuple ):
if isinstance(__A , __A ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__A ) )
elif isinstance(__A , __A ):
return obj
return [tokenize_and_encode(__A ) for o in obj]
logger.info('''Encoding dataset...''' )
lowercase : List[str] =load_rocstories_dataset(args.train_dataset )
lowercase : Union[str, Any] =load_rocstories_dataset(args.eval_dataset )
lowercase : Optional[int] =(train_dataset, eval_dataset)
lowercase : List[Any] =tokenize_and_encode(__A )
# Compute the max input length for the Transformer
lowercase : List[str] =model.config.n_positions // 2 - 2
lowercase : str =max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
lowercase : Dict =min(__A , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
lowercase : Optional[int] =pre_process_datasets(__A , __A , __A , *__A )
lowercase , lowercase : Dict =tensor_datasets[0], tensor_datasets[1]
lowercase : Optional[Any] =TensorDataset(*__A )
lowercase : Any =RandomSampler(__A )
lowercase : Dict =DataLoader(__A , sampler=__A , batch_size=args.train_batch_size )
lowercase : int =TensorDataset(*__A )
lowercase : Optional[Any] =SequentialSampler(__A )
lowercase : Dict =DataLoader(__A , sampler=__A , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
lowercase : str =args.max_steps
lowercase : Optional[int] =args.max_steps // (len(__A ) // args.gradient_accumulation_steps) + 1
else:
lowercase : Any =len(__A ) // args.gradient_accumulation_steps * args.num_train_epochs
lowercase : Optional[int] =list(model.named_parameters() )
lowercase : Union[str, Any] =['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight''']
lowercase : Union[str, Any] =[
{
'''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
'''weight_decay''': args.weight_decay,
},
{'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0},
]
lowercase : Optional[int] =AdamW(__A , lr=args.learning_rate , eps=args.adam_epsilon )
lowercase : Optional[Any] =get_linear_schedule_with_warmup(
__A , num_warmup_steps=args.warmup_steps , num_training_steps=__A )
if args.do_train:
lowercase , lowercase , lowercase : Union[str, Any] =0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ):
lowercase : List[Any] =0
lowercase : Tuple =0
lowercase : Tuple =tqdm(__A , desc='''Training''' )
for step, batch in enumerate(__A ):
lowercase : List[str] =tuple(t.to(__A ) for t in batch )
lowercase , lowercase , lowercase , lowercase : str =batch
lowercase : Any =model(__A , mc_token_ids=__A , lm_labels=__A , mc_labels=__A )
lowercase : List[str] =args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
lowercase : int =(
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
lowercase : Union[str, Any] ='''Training loss: {:.2e} lr: {:.2e}'''.format(__A , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
lowercase : Tuple =model.module if hasattr(__A , '''module''' ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
lowercase : Dict =os.path.join(args.output_dir , __A )
lowercase : List[Any] =os.path.join(args.output_dir , __A )
torch.save(model_to_save.state_dict() , __A )
model_to_save.config.to_json_file(__A )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
lowercase : Union[str, Any] =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
lowercase : Any =OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(__A )
if args.do_eval:
model.eval()
lowercase , lowercase : List[str] =0, 0
lowercase , lowercase : Union[str, Any] =0, 0
for batch in tqdm(__A , desc='''Evaluating''' ):
lowercase : Dict =tuple(t.to(__A ) for t in batch )
lowercase , lowercase , lowercase , lowercase : List[str] =batch
with torch.no_grad():
lowercase , lowercase , lowercase , lowercase : Optional[int] =model(
__A , mc_token_ids=__A , lm_labels=__A , mc_labels=__A )
lowercase : Optional[Any] =mc_logits.detach().cpu().numpy()
lowercase : Tuple =mc_labels.to('''cpu''' ).numpy()
lowercase : Dict =accuracy(__A , __A )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
lowercase : Any =eval_loss / nb_eval_steps
lowercase : int =eval_accuracy / nb_eval_examples
lowercase : List[Any] =tr_loss / nb_tr_steps if args.do_train else None
lowercase : List[Any] ={'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss}
lowercase : List[Any] =os.path.join(args.output_dir , '''eval_results.txt''' )
with open(__A , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key in sorted(result.keys() ):
logger.info(''' %s = %s''' , __A , str(result[key] ) )
writer.write('''%s = %s\n''' % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 8 |
'''simple docstring'''
import re
def lowercase_ ( __A : str ) -> bool:
"""simple docstring"""
lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' )
if match := re.search(__A , __A ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator('+918827897895'))
| 8 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
SCREAMING_SNAKE_CASE = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = '''tapas'''
def __init__( self : Optional[int] , UpperCAmelCase : Any=3_0522 , UpperCAmelCase : List[Any]=768 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Optional[Any]=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : int=1024 , UpperCAmelCase : int=[3, 256, 256, 2, 256, 256, 10] , UpperCAmelCase : List[str]=0.0_2 , UpperCAmelCase : List[str]=1e-12 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : int=1_0.0 , UpperCAmelCase : int=0 , UpperCAmelCase : str=1.0 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1.0 , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=1.0 , UpperCAmelCase : str=1.0 , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Dict="ratio" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Optional[int]=64 , UpperCAmelCase : List[str]=32 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : Union[str, Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
lowercase : List[Any] =vocab_size
lowercase : Union[str, Any] =hidden_size
lowercase : str =num_hidden_layers
lowercase : Tuple =num_attention_heads
lowercase : Any =hidden_act
lowercase : Optional[int] =intermediate_size
lowercase : List[str] =hidden_dropout_prob
lowercase : str =attention_probs_dropout_prob
lowercase : Union[str, Any] =max_position_embeddings
lowercase : int =type_vocab_sizes
lowercase : Optional[Any] =initializer_range
lowercase : Optional[int] =layer_norm_eps
# Fine-tuning task hyperparameters
lowercase : Union[str, Any] =positive_label_weight
lowercase : Tuple =num_aggregation_labels
lowercase : Dict =aggregation_loss_weight
lowercase : int =use_answer_as_supervision
lowercase : Tuple =answer_loss_importance
lowercase : Tuple =use_normalized_answer_loss
lowercase : Tuple =huber_loss_delta
lowercase : Union[str, Any] =temperature
lowercase : Dict =aggregation_temperature
lowercase : str =use_gumbel_for_cells
lowercase : Any =use_gumbel_for_aggregation
lowercase : Tuple =average_approximation_function
lowercase : Union[str, Any] =cell_selection_preference
lowercase : Tuple =answer_loss_cutoff
lowercase : Tuple =max_num_rows
lowercase : List[Any] =max_num_columns
lowercase : Optional[Any] =average_logits_per_cell
lowercase : Optional[Any] =select_one_column
lowercase : Optional[Any] =allow_empty_column_selection
lowercase : Union[str, Any] =init_cell_selection_weights_to_zero
lowercase : Optional[int] =reset_position_index_per_cell
lowercase : Tuple =disable_per_token_loss
# Aggregation hyperparameters
lowercase : Tuple =aggregation_labels
lowercase : List[str] =no_aggregation_label_index
if isinstance(self.aggregation_labels , UpperCAmelCase ):
lowercase : List[str] ={int(UpperCAmelCase ): v for k, v in aggregation_labels.items()}
| 8 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] =parent
lowercase : Tuple =13
lowercase : Any =7
lowercase : Union[str, Any] =True
lowercase : Any =True
lowercase : Optional[int] =True
lowercase : List[str] =True
lowercase : Tuple =99
lowercase : str =32
lowercase : Union[str, Any] =2
lowercase : Dict =4
lowercase : Union[str, Any] =37
lowercase : Union[str, Any] ='''gelu'''
lowercase : Any =0.1
lowercase : Dict =0.1
lowercase : Dict =512
lowercase : List[str] =16
lowercase : Dict =2
lowercase : int =0.0_2
lowercase : List[Any] =3
lowercase : List[str] =4
lowercase : Optional[Any] =None
def A__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : str =None
if self.use_input_mask:
lowercase : int =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Any =None
if self.use_token_type_ids:
lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase : List[Any] =None
lowercase : List[str] =None
lowercase : List[str] =None
if self.use_labels:
lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : Any =ids_tensor([self.batch_size] , self.num_choices )
lowercase : List[Any] =RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase )
lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowercase : Tuple =[input_ids, input_mask]
lowercase : str =model(UpperCAmelCase )
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any:
'''simple docstring'''
lowercase : Dict =True
lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase )
lowercase : Union[str, Any] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Optional[Any] =model(UpperCAmelCase )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase )
lowercase : List[str] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] =self.num_labels
lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase )
lowercase : Optional[int] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Optional[Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =self.num_choices
lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase )
lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =self.num_labels
lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase )
lowercase : Tuple ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any:
'''simple docstring'''
lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase )
lowercase : List[str] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
lowercase : Optional[Any] =self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) : Optional[int] =config_and_inputs
lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase_ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple:
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerModelTester(self )
lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def A__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase )
def A__ ( self : int ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
lowercase : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
lowercase : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def A__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def A__ ( self : str ) -> str:
'''simple docstring'''
lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase : List[str] =model(UpperCAmelCase )[0]
# TODO Replace vocab size
lowercase : Tuple =5_0000
lowercase : List[str] =[1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
lowercase : Dict =tf.constant(
[
[
[-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6],
[-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7],
[-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = 1e-4
def A__ ( self : int ) -> List[Any]:
'''simple docstring'''
lowercase : Union[str, Any] =tf.constant([[4, 10]] )
lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
lowercase : Any =emba(input_ids.shape )
lowercase : List[str] =tf.constant(
[[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] )
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
def A__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
lowercase : Optional[Any] =tf.constant(
[
[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0],
[0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7],
[0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0],
] )
lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
lowercase : str =emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = 1e-4
def A__ ( self : Dict ) -> Dict:
'''simple docstring'''
lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :]
lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : Any =tf.constant(
[
[0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0],
[-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3],
[-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5],
[-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1],
[0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0],
[3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3],
] )
lowercase : int =tf.constant(
[
[0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0],
[0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3],
[1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5],
[2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1],
[-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0],
[-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
| 8 | 1 |
'''simple docstring'''
from __future__ import annotations
SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2
def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]:
"""simple docstring"""
lowercase : Dict =abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''image_processor''', '''tokenizer''']
UpperCamelCase_ = '''LayoutLMv2ImageProcessor'''
UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''')
def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , UpperCAmelCase , )
lowercase : Any =kwargs.pop('''feature_extractor''' )
lowercase : Dict =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowercase : List[str] =features['''words''']
lowercase : Optional[Any] =self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
# add pixel values
lowercase : List[str] =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] )
lowercase : Dict =images
return encoded_inputs
def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str:
'''simple docstring'''
lowercase : str =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' )
return images_with_overflow
def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , )
return self.image_processor_class
@property
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , )
return self.image_processor
| 8 | 1 |
'''simple docstring'''
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
'''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __A , )
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = RobertaConfig
UpperCamelCase_ = '''roberta'''
def __init__( self : Union[str, Any] , UpperCAmelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
lowercase : List[str] =RobertaEmbeddings(UpperCAmelCase )
self.init_weights()
@add_start_docstrings(
'''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. ''' , __A , )
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = RobertaConfig
UpperCamelCase_ = '''roberta'''
def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
lowercase : Optional[int] =config.num_labels
lowercase : List[Any] =config.num_hidden_layers
lowercase : Any =DeeRobertaModel(UpperCAmelCase )
lowercase : str =nn.Dropout(config.hidden_dropout_prob )
lowercase : int =nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(UpperCAmelCase )
def A__ ( self : List[Any] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : int=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str=None , UpperCAmelCase : Any=-1 , UpperCAmelCase : Union[str, Any]=False , ) -> Dict:
'''simple docstring'''
lowercase : List[str] =self.num_layers
try:
lowercase : Tuple =self.roberta(
UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , )
lowercase : Optional[Any] =outputs[1]
lowercase : Any =self.dropout(UpperCAmelCase )
lowercase : int =self.classifier(UpperCAmelCase )
lowercase : int =(logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
lowercase : List[str] =e.message
lowercase : Optional[Any] =e.exit_layer
lowercase : Any =outputs[0]
if not self.training:
lowercase : List[str] =entropy(UpperCAmelCase )
lowercase : int =[]
lowercase : Optional[Any] =[]
if labels is not None:
if self.num_labels == 1:
# We are doing regression
lowercase : Dict =MSELoss()
lowercase : Any =loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
lowercase : str =CrossEntropyLoss()
lowercase : Any =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
lowercase : List[Any] =[]
for highway_exit in outputs[-1]:
lowercase : Any =highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCAmelCase )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
lowercase : Union[str, Any] =MSELoss()
lowercase : Optional[Any] =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
lowercase : Tuple =CrossEntropyLoss()
lowercase : List[Any] =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(UpperCAmelCase )
if train_highway:
lowercase : int =(sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
lowercase : Any =(loss,) + outputs
if not self.training:
lowercase : Union[str, Any] =outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
lowercase : Tuple =(
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 8 |
'''simple docstring'''
def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
"""simple docstring"""
try:
lowercase : Any =int(__A )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
lowercase : Optional[Any] =1
lowercase : Dict =2
while i * i <= n:
while n % i == 0:
lowercase : Optional[int] =i
n //= i
i += 1
if n > 1:
lowercase : Dict =n
return int(__A )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 8 | 1 |
'''simple docstring'''
from __future__ import annotations
import pandas as pd
def lowercase_ ( __A : list[int] , __A : list[int] , __A : int ) -> list[int]:
"""simple docstring"""
lowercase : Tuple =[0] * no_of_processes
lowercase : Any =[0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(__A ):
lowercase : List[str] =burst_time[i]
lowercase : Any =0
lowercase : Optional[Any] =0
lowercase : str =9_9_9_9_9_9_9_9_9
lowercase : List[str] =0
lowercase : Tuple =False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(__A ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
lowercase : Optional[Any] =remaining_time[j]
lowercase : Optional[int] =j
lowercase : Union[str, Any] =True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
lowercase : Optional[int] =remaining_time[short]
if minm == 0:
lowercase : Optional[Any] =9_9_9_9_9_9_9_9_9
if remaining_time[short] == 0:
complete += 1
lowercase : Optional[int] =False
# Find finish time of current process
lowercase : Dict =increment_time + 1
# Calculate waiting time
lowercase : Tuple =finish_time - arrival_time[short]
lowercase : int =finar - burst_time[short]
if waiting_time[short] < 0:
lowercase : List[Any] =0
# Increment time
increment_time += 1
return waiting_time
def lowercase_ ( __A : list[int] , __A : int , __A : list[int] ) -> list[int]:
"""simple docstring"""
lowercase : List[Any] =[0] * no_of_processes
for i in range(__A ):
lowercase : Union[str, Any] =burst_time[i] + waiting_time[i]
return turn_around_time
def lowercase_ ( __A : list[int] , __A : list[int] , __A : int ) -> None:
"""simple docstring"""
lowercase : Tuple =0
lowercase : Tuple =0
for i in range(__A ):
lowercase : Any =total_waiting_time + waiting_time[i]
lowercase : Tuple =total_turn_around_time + turn_around_time[i]
print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' )
print('''Average turn around time =''' , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print('Enter how many process you want to analyze')
SCREAMING_SNAKE_CASE = int(input())
SCREAMING_SNAKE_CASE = [0] * no_of_processes
SCREAMING_SNAKE_CASE = [0] * no_of_processes
SCREAMING_SNAKE_CASE = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print('Enter the arrival time and burst time for process:--' + str(i + 1))
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = map(int, input().split())
SCREAMING_SNAKE_CASE = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
SCREAMING_SNAKE_CASE = burst_time
SCREAMING_SNAKE_CASE = no_of_processes
SCREAMING_SNAKE_CASE = waiting_time
SCREAMING_SNAKE_CASE = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
SCREAMING_SNAKE_CASE = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
'Process',
'BurstTime',
'ArrivalTime',
'WaitingTime',
'TurnAroundTime',
],
)
# Printing the dataFrame
pd.set_option('display.max_rows', fcfs.shape[0] + 1)
print(fcfs)
| 8 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
lowercase : str =u
for i in range(1 , __A ):
lowercase : Any =temp * (u - i)
return temp
def lowercase_ ( ) -> None:
"""simple docstring"""
lowercase : List[str] =int(input('''enter the numbers of values: ''' ) )
lowercase : list[list[float]] =[]
for _ in range(__A ):
y.append([] )
for i in range(__A ):
for j in range(__A ):
y[i].append(__A )
lowercase : List[Any] =0
print('''enter the values of parameters in a list: ''' )
lowercase : Optional[int] =list(map(__A , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(__A ):
lowercase : str =float(input() )
lowercase : int =int(input('''enter the value to interpolate: ''' ) )
lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , __A ):
for j in range(n - i ):
lowercase : str =y[j + 1][i - 1] - y[j][i - 1]
lowercase : Any =y[0][0]
for i in range(1 , __A ):
summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A )
print(F'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 8 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =0
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : str =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : int =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : str =CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict()
config_dict.pop('''image_processor_type''' )
lowercase : str =CLIPImageProcessor(**UpperCAmelCase )
# save in new folder
model_config.save_pretrained(UpperCAmelCase )
config.save_pretrained(UpperCAmelCase )
lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
# make sure private variable is not incorrectly saved
lowercase : int =json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ):
lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' )
def A__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' )
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def A__ ( self : List[str] ) -> str:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase ):
lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCAmelCase ):
lowercase : List[str] =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCAmelCase )
lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , UpperCAmelCase )
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCAmelCase ):
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : str =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCAmelCase )
lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def A__ ( self : Any ) -> Any:
'''simple docstring'''
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = True
try:
AutoConfig.register('''custom''' , UpperCAmelCase )
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
# If remote code is not set, the default is to use local
lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowercase : Tuple =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowercase : Dict =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 8 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json',
'allenai/longformer-large-4096': (
'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'
),
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'
),
},
'merges_file': {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt',
'allenai/longformer-large-4096': (
'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'
),
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'
),
},
}
SCREAMING_SNAKE_CASE = {
'allenai/longformer-base-4096': 4_096,
'allenai/longformer-large-4096': 4_096,
'allenai/longformer-large-4096-finetuned-triviaqa': 4_096,
'allenai/longformer-base-4096-extra.pos.embd.only': 4_096,
'allenai/longformer-large-4096-extra.pos.embd.only': 4_096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def lowercase_ ( ) -> int:
"""simple docstring"""
lowercase : Optional[Any] =(
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
lowercase : Optional[Any] =bs[:]
lowercase : Any =0
for b in range(2**8 ):
if b not in bs:
bs.append(__A )
cs.append(2**8 + n )
n += 1
lowercase : List[str] =[chr(__A ) for n in cs]
return dict(zip(__A , __A ) )
def lowercase_ ( __A : Dict ) -> Union[str, Any]:
"""simple docstring"""
lowercase : int =set()
lowercase : Optional[int] =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase : Any =char
return pairs
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int]="replace" , UpperCAmelCase : Optional[int]="<s>" , UpperCAmelCase : Any="</s>" , UpperCAmelCase : List[str]="</s>" , UpperCAmelCase : List[str]="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : List[Any]="<mask>" , UpperCAmelCase : List[Any]=False , **UpperCAmelCase : int , ) -> int:
'''simple docstring'''
lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token
lowercase : Tuple =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token
lowercase : Tuple =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token
lowercase : Tuple =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token
lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token
lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase : Optional[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , )
with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
lowercase : Dict =json.load(UpperCAmelCase )
lowercase : str ={v: k for k, v in self.encoder.items()}
lowercase : Dict =errors # how to handle errors in decoding
lowercase : Any =bytes_to_unicode()
lowercase : Union[str, Any] ={v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1]
lowercase : List[str] =[tuple(merge.split() ) for merge in bpe_merges]
lowercase : List[Any] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : List[Any] ={}
lowercase : Tuple =add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowercase : Any =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def A__ ( self : Optional[int] ) -> int:
'''simple docstring'''
return len(self.encoder )
def A__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self : Any , UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowercase : Optional[int] =tuple(UpperCAmelCase )
lowercase : Any =get_pairs(UpperCAmelCase )
if not pairs:
return token
while True:
lowercase : List[str] =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowercase , lowercase : List[str] =bigram
lowercase : List[str] =[]
lowercase : Union[str, Any] =0
while i < len(UpperCAmelCase ):
try:
lowercase : List[Any] =word.index(UpperCAmelCase , UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase : List[str] =j
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase : Optional[int] =tuple(UpperCAmelCase )
lowercase : Any =new_word
if len(UpperCAmelCase ) == 1:
break
else:
lowercase : Optional[int] =get_pairs(UpperCAmelCase )
lowercase : Dict =''' '''.join(UpperCAmelCase )
lowercase : int =word
return word
def A__ ( self : Union[str, Any] , UpperCAmelCase : int ) -> Tuple:
'''simple docstring'''
lowercase : str =[]
for token in re.findall(self.pat , UpperCAmelCase ):
lowercase : Union[str, Any] =''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) )
return bpe_tokens
def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def A__ ( self : Tuple , UpperCAmelCase : int ) -> List[str]:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowercase : Union[str, Any] =''''''.join(UpperCAmelCase )
lowercase : Optional[int] =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowercase : Any =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : int =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' )
lowercase : Optional[int] =0
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
''' Please check that the tokenizer is not corrupted!''' )
lowercase : Tuple =token_index
writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def A__ ( self : Dict , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase : Dict =[self.cls_token_id]
lowercase : int =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Union[str, Any] =[self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any]=False , **UpperCAmelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
lowercase : List[str] =kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()):
lowercase : Union[str, Any] =''' ''' + text
return (text, kwargs)
| 8 |
'''simple docstring'''
from __future__ import annotations
SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2
def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]:
"""simple docstring"""
lowercase : Dict =abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''image_processor''', '''tokenizer''']
UpperCamelCase_ = '''LayoutLMv2ImageProcessor'''
UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''')
def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , UpperCAmelCase , )
lowercase : Any =kwargs.pop('''feature_extractor''' )
lowercase : Dict =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowercase : List[str] =features['''words''']
lowercase : Optional[Any] =self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
# add pixel values
lowercase : List[str] =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] )
lowercase : Dict =images
return encoded_inputs
def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str:
'''simple docstring'''
lowercase : str =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' )
return images_with_overflow
def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , )
return self.image_processor_class
@property
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , )
return self.image_processor
| 8 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
SCREAMING_SNAKE_CASE = {
'allenai/led-base-16384': 16_384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ) -> Any:
"""simple docstring"""
lowercase : int =(
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
lowercase : Union[str, Any] =bs[:]
lowercase : Tuple =0
for b in range(2**8 ):
if b not in bs:
bs.append(__A )
cs.append(2**8 + n )
n += 1
lowercase : Optional[Any] =[chr(__A ) for n in cs]
return dict(zip(__A , __A ) )
def lowercase_ ( __A : str ) -> List[Any]:
"""simple docstring"""
lowercase : Optional[Any] =set()
lowercase : Tuple =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase : List[str] =char
return pairs
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict:
'''simple docstring'''
lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token
lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token
lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token
lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , )
with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
lowercase : str =json.load(UpperCAmelCase )
lowercase : Optional[int] ={v: k for k, v in self.encoder.items()}
lowercase : Optional[int] =errors # how to handle errors in decoding
lowercase : Tuple =bytes_to_unicode()
lowercase : int ={v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1]
lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges]
lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : Optional[int] ={}
lowercase : Any =add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def A__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return len(self.encoder )
def A__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : List[str] =get_pairs(UpperCAmelCase )
if not pairs:
return token
while True:
lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowercase , lowercase : Optional[int] =bigram
lowercase : Union[str, Any] =[]
lowercase : Optional[Any] =0
while i < len(UpperCAmelCase ):
try:
lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase : Optional[int] =j
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : str =new_word
if len(UpperCAmelCase ) == 1:
break
else:
lowercase : Optional[Any] =get_pairs(UpperCAmelCase )
lowercase : Optional[Any] =''' '''.join(UpperCAmelCase )
lowercase : Union[str, Any] =word
return word
def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Dict =[]
for token in re.findall(self.pat , UpperCAmelCase ):
lowercase : Optional[int] =''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) )
return bpe_tokens
def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase )
def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =''''''.join(UpperCAmelCase )
lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowercase : Optional[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : List[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' )
lowercase : List[str] =0
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
''' Please check that the tokenizer is not corrupted!''' )
lowercase : Any =token_index
writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
lowercase : List[Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Dict =[self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()):
lowercase : Union[str, Any] =''' ''' + text
return (text, kwargs)
def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict:
'''simple docstring'''
lowercase : Optional[int] =super()._pad(
encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , )
# Load from model defaults
if return_attention_mask is None:
lowercase : Tuple ='''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase )
if needs_to_be_padded:
lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase : List[str] =(
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
lowercase : Any =[-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 8 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : int ) -> None:
'''simple docstring'''
lowercase : int =size
# approximate the overall size of segment tree with given value
lowercase : int =[0 for i in range(0 , 4 * size )]
# create array to store lazy update
lowercase : Dict =[0 for i in range(0 , 4 * size )]
lowercase : Optional[Any] =[0 for i in range(0 , 4 * size )] # flag for lazy update
def A__ ( self : Any , UpperCAmelCase : int ) -> int:
'''simple docstring'''
return idx * 2
def A__ ( self : int , UpperCAmelCase : int ) -> int:
'''simple docstring'''
return idx * 2 + 1
def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[int] ) -> None:
'''simple docstring'''
if left_element == right_element:
lowercase : int =a[left_element - 1]
else:
lowercase : Union[str, Any] =(left_element + right_element) // 2
self.build(self.left(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
self.build(self.right(UpperCAmelCase ) , mid + 1 , UpperCAmelCase , UpperCAmelCase )
lowercase : Any =max(
self.segment_tree[self.left(UpperCAmelCase )] , self.segment_tree[self.right(UpperCAmelCase )] )
def A__ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> bool:
'''simple docstring'''
if self.flag[idx] is True:
lowercase : Any =self.lazy[idx]
lowercase : Any =False
if left_element != right_element:
lowercase : Tuple =self.lazy[idx]
lowercase : Dict =self.lazy[idx]
lowercase : Tuple =True
lowercase : int =True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
lowercase : str =val
if left_element != right_element:
lowercase : Optional[int] =val
lowercase : Any =val
lowercase : int =True
lowercase : int =True
return True
lowercase : Optional[int] =(left_element + right_element) // 2
self.update(self.left(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
self.update(self.right(UpperCAmelCase ) , mid + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : List[Any] =max(
self.segment_tree[self.left(UpperCAmelCase )] , self.segment_tree[self.right(UpperCAmelCase )] )
return True
def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> int | float:
'''simple docstring'''
if self.flag[idx] is True:
lowercase : Union[str, Any] =self.lazy[idx]
lowercase : int =False
if left_element != right_element:
lowercase : List[str] =self.lazy[idx]
lowercase : Tuple =self.lazy[idx]
lowercase : Dict =True
lowercase : Tuple =True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
lowercase : Any =(left_element + right_element) // 2
lowercase : int =self.query(self.left(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : str =self.query(self.right(UpperCAmelCase ) , mid + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return max(UpperCAmelCase , UpperCAmelCase )
def __str__( self : Tuple ) -> str:
'''simple docstring'''
return str([self.query(1 , 1 , self.size , UpperCAmelCase , UpperCAmelCase ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
SCREAMING_SNAKE_CASE = 15
SCREAMING_SNAKE_CASE = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 8 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]:
'''simple docstring'''
lowercase : Any =list(poly_a or [0] )[:]
lowercase : Dict =list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
lowercase : int =len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
lowercase : List[str] =len(self.polyB )
# Add 0 to make lengths equal a power of 2
lowercase : Tuple =int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
lowercase : str =self.__multiply()
def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple:
'''simple docstring'''
lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB]
# Corner case
if len(UpperCAmelCase ) <= 1:
return dft[0]
#
lowercase : List[Any] =self.c_max_length // 2
while next_ncol > 0:
lowercase : str =[[] for i in range(UpperCAmelCase )]
lowercase : List[str] =self.root**next_ncol
# First half of next step
lowercase : Union[str, Any] =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
lowercase : Any =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
lowercase : Tuple =new_dft
lowercase : List[Any] =next_ncol // 2
return dft[0]
def A__ ( self : int ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.__dft('''A''' )
lowercase : Union[str, Any] =self.__dft('''B''' )
lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
lowercase : Tuple =2
while next_ncol <= self.c_max_length:
lowercase : Tuple =[[] for i in range(UpperCAmelCase )]
lowercase : Tuple =self.root ** (next_ncol // 2)
lowercase : Optional[int] =1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
lowercase : List[Any] =new_inverse_c
next_ncol *= 2
# Unpack
lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Dict ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''A = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) )
lowercase : List[str] ='''B = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) )
lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.product ) )
return f'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : int = 2_0_0 ) -> int:
"""simple docstring"""
lowercase : Dict =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0]
lowercase : Any =[0] * (pence + 1)
lowercase : Optional[int] =1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(__A , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 73_682
| 8 |
'''simple docstring'''
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : List[Any] =str(bin(__A ) )
binary_number += "0" * shift_amount
return binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : Union[str, Any] =str(bin(__A ) )[2:]
if shift_amount >= len(__A ):
return "0b0"
lowercase : Any =binary_number[: len(__A ) - shift_amount]
return "0b" + shifted_binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number
lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:]
lowercase : int =(
'''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number
)
if shift_amount >= len(__A ):
return "0b" + binary_number[0] * len(__A )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__A ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : int = 1_0 ) -> str:
"""simple docstring"""
if not isinstance(__A , __A ) or n < 0:
raise ValueError('''Invalid input''' )
lowercase : str =1_0**n
lowercase : Optional[int] =2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , __A )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 8 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class UpperCAmelCase_ :
"""simple docstring"""
@staticmethod
def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
pass
def lowercase_ ( __A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
SCREAMING_SNAKE_CASE = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : Dict =pipeline(
'''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Optional[Any] =INVOICE_URL
lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
lowercase : Dict ='''What is the placebo?'''
lowercase : Optional[Any] =[
{
'''image''': load_image(UpperCAmelCase ),
'''question''': question,
},
{
'''image''': image,
'''question''': question,
},
{
'''image''': image,
'''question''': question,
'''word_boxes''': word_boxes,
},
]
return dqa_pipeline, examples
def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 )
self.assertEqual(
UpperCAmelCase , [
[
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' )
lowercase : Union[str, Any] =INVOICE_URL
lowercase : Tuple ='''How many cats are there?'''
lowercase : Optional[int] =[
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39},
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40},
]
lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
# We can optionnally pass directly the words and bounding boxes
lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Dict =[]
lowercase : str =[]
lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , )
lowercase : Dict =INVOICE_URL
lowercase : str ='''What is the invoice number?'''
lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , )
lowercase : Dict =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Any =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : str ) -> Dict:
'''simple docstring'''
lowercase : Any =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : Tuple =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , )
lowercase : Tuple =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : str =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
]
]
* 2 , )
lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
lowercase : Dict =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : List[Any] =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , )
lowercase : str =INVOICE_URL
lowercase : int ='''What is the invoice number?'''
lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Union[str, Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
@slow
@require_torch
def A__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , )
lowercase : Any =INVOICE_URL
lowercase : Union[str, Any] ='''What is the invoice number?'''
lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] )
@require_tf
@unittest.skip('''Document question answering not implemented in TF''' )
def A__ ( self : Any ) -> Any:
'''simple docstring'''
pass
| 8 | 1 |
'''simple docstring'''
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'}
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt',
},
'emoji_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json',
},
}
SCREAMING_SNAKE_CASE = {
'abeja/gpt-neox-japanese-2.7b': 2_048,
}
def lowercase_ ( __A : List[Any] , __A : List[str] ) -> List[Any]:
"""simple docstring"""
with open(__A , '''r''' , encoding='''utf-8''' ) as f:
lowercase : List[Any] =json.loads(f.read() )
lowercase : Any =collections.OrderedDict()
lowercase : Dict =collections.OrderedDict()
lowercase : List[str] =collections.OrderedDict()
with open(__A , '''r''' , encoding='''utf-8''' ) as f:
lowercase : List[Any] =f.readlines()
lowercase : List[Any] =[[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token]
for idx, b in enumerate(__A ):
lowercase : Optional[int] =b
lowercase : Any =idx
for wd in b:
lowercase : Any =idx
return vocab, raw_vocab, ids_to_tokens, emoji
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['''input_ids''', '''attention_mask''']
def __init__( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any]="<|endoftext|>" , UpperCAmelCase : str="<|endoftext|>" , UpperCAmelCase : List[Any]="<|startoftext|>" , UpperCAmelCase : Any="<|endoftext|>" , UpperCAmelCase : List[Any]=False , **UpperCAmelCase : Tuple , ) -> List[Any]:
'''simple docstring'''
super().__init__(
unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , do_clean_text=UpperCAmelCase , **UpperCAmelCase , )
if not os.path.isfile(UpperCAmelCase ):
raise ValueError(
f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'
''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' )
if not os.path.isfile(UpperCAmelCase ):
raise ValueError(
f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'
''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' )
lowercase : str =do_clean_text
lowercase , lowercase , lowercase , lowercase : int =load_vocab_and_emoji(UpperCAmelCase , UpperCAmelCase )
lowercase : Optional[int] =SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def A__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return len(self.raw_vocab )
def A__ ( self : Tuple ) -> Any:
'''simple docstring'''
return dict(self.raw_vocab , **self.added_tokens_encoder )
def A__ ( self : str , UpperCAmelCase : List[str] ) -> int:
'''simple docstring'''
return self.subword_tokenizer.tokenize(UpperCAmelCase , clean=self.do_clean_text )
def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Dict:
'''simple docstring'''
return self.vocab.get(UpperCAmelCase , self.vocab.get(self.unk_token ) )
def A__ ( self : int , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
return self.subword_tokenizer.convert_id_to_token(UpperCAmelCase )
def A__ ( self : str , UpperCAmelCase : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase : str =''''''.join(UpperCAmelCase ).strip()
return out_string
def A__ ( self : Any , UpperCAmelCase : "Conversation" ) -> List[int]:
'''simple docstring'''
lowercase : List[str] =[]
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] )
if len(UpperCAmelCase ) > self.model_max_length:
lowercase : Dict =input_ids[-self.model_max_length :]
return input_ids
def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
lowercase : Optional[Any] =0
if os.path.isdir(UpperCAmelCase ):
lowercase : Dict =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : Union[str, Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] )
else:
lowercase : int =(
(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file''']
)
lowercase : Union[str, Any] =(
(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file''']
)
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
''' Please check that the vocabulary is not corrupted!''' )
lowercase : str =token_index
writer.write(''','''.join(UpperCAmelCase ) + '''\n''' )
index += 1
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
json.dump(self.emoji , UpperCAmelCase )
return vocab_file, emoji_file
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Optional[int] =vocab # same as swe
lowercase : Dict =ids_to_tokens # same as bpe
lowercase : Dict =emoji
lowercase : List[Any] =np.max([len(UpperCAmelCase ) for w in self.vocab.keys()] )
lowercase : Tuple =re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' )
lowercase : Union[str, Any] =re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' )
lowercase : Optional[Any] =re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' )
lowercase : int =re.compile(
R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' )
lowercase : str =re.compile(
R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' )
lowercase : Union[str, Any] =re.compile(
R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' )
lowercase : List[Any] ='''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'''
lowercase : Optional[int] ='''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'''
lowercase : Any =str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} )
def __len__( self : Union[str, Any] ) -> int:
'''simple docstring'''
return len(self.ids_to_tokens )
def A__ ( self : Optional[Any] , UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
lowercase : str =self.content_repattera.sub('''<URL>''' , UpperCAmelCase )
lowercase : int =self.content_repattera.sub('''<EMAIL>''' , UpperCAmelCase )
lowercase : List[Any] =self.content_repattera.sub('''<TEL>''' , UpperCAmelCase )
lowercase : List[Any] =self.content_repattera.sub('''<DATE>''' , UpperCAmelCase )
lowercase : Dict =self.content_repattera.sub('''<DATE>''' , UpperCAmelCase )
lowercase : Any =self.content_repattera.sub('''<PRICE>''' , UpperCAmelCase )
lowercase : Union[str, Any] =content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
lowercase : Dict =content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' )
return content
def A__ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple=False ) -> Dict:
'''simple docstring'''
lowercase : Dict =text.replace(''' ''' , '''<SP>''' )
lowercase : Optional[int] =text.replace(''' ''' , '''<SP>''' )
lowercase : List[Any] =text.replace('''\r\n''' , '''<BR>''' )
lowercase : Optional[int] =text.replace('''\n''' , '''<BR>''' )
lowercase : Tuple =text.replace('''\r''' , '''<BR>''' )
lowercase : Any =text.replace('''\t''' , '''<TAB>''' )
lowercase : Dict =text.replace('''—''' , '''ー''' )
lowercase : Dict =text.replace('''−''' , '''ー''' )
for k, v in self.emoji["emoji"].items():
if k in text:
lowercase : int =text.replace(UpperCAmelCase , UpperCAmelCase )
if clean:
lowercase : Any =self.clean_text(UpperCAmelCase )
def check_simbol(UpperCAmelCase : Optional[Any] ):
lowercase : List[str] =x.encode()
if len(UpperCAmelCase ) == 1 and len(UpperCAmelCase ) == 2:
lowercase : Any =(int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0XC_2A1 and c <= 0XC_2BF)
or (c >= 0XC_780 and c <= 0XC_783)
or (c >= 0XC_AB9 and c <= 0XC_BBF)
or (c >= 0XC_C80 and c <= 0XC_DA2)
):
return True
return False
def checkuae(UpperCAmelCase : str ):
lowercase : Tuple =x.encode()
if len(UpperCAmelCase ) == 1 and len(UpperCAmelCase ) == 3:
lowercase : Dict =(int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0XE28_080 and c <= 0XE2B_07F:
return True
return False
lowercase : Dict =0
lowercase : Tuple =[]
while pos < len(UpperCAmelCase ):
lowercase : str =min(len(UpperCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3
lowercase : List[Any] =[] # (token_id, token, pos)
for e in range(UpperCAmelCase , UpperCAmelCase , -1 ):
lowercase : Any =text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(UpperCAmelCase ) > 2:
lowercase : Tuple =[(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(UpperCAmelCase ) > 0:
# the smallest token_id is adopted
lowercase , lowercase , lowercase : Union[str, Any] =sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[0] )[0]
result.append(UpperCAmelCase )
lowercase : int =e
else:
lowercase : Optional[Any] =pos + 1
lowercase : str =text[pos:end]
if check_simbol(UpperCAmelCase ):
result.append('''<KIGOU>''' )
elif checkuae(UpperCAmelCase ):
result.append('''<U2000U2BFF>''' )
else:
for i in wd.encode('''utf-8''' ):
result.append('''<|byte%d|>''' % i )
lowercase : Union[str, Any] =end
return result
def A__ ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]="\n" ) -> Union[str, Any]:
'''simple docstring'''
lowercase : List[str] =[]
lowercase : Any =[]
lowercase : Any =self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(UpperCAmelCase ) > 0:
words.append(bytearray(UpperCAmelCase ).decode('''utf-8''' , errors='''replace''' ) )
lowercase : Tuple =[]
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji['''emoji_inv'''][word] )
elif word == "<SP>":
words.append(''' ''' )
elif word == "<BR>":
words.append(UpperCAmelCase )
elif word == "<TAB>":
words.append('''\t''' )
elif word == "<BLOCK>":
words.append('''▀''' )
elif word == "<KIGOU>":
words.append('''ǀ''' )
elif word == "<U2000U2BFF>":
words.append('''‖''' )
else:
words.append(UpperCAmelCase )
if len(UpperCAmelCase ) > 0:
words.append(bytearray(UpperCAmelCase ).decode('''utf-8''' , errors='''replace''' ) )
lowercase : Union[str, Any] =''''''.join(UpperCAmelCase )
return text
| 8 |
'''simple docstring'''
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
if digit_amount > 0:
return round(number - int(__A ) , __A )
return number - int(__A )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 8 | 1 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def lowercase_ ( ) -> Optional[Any]:
"""simple docstring"""
lowercase : List[str] =ArgumentParser(
description=(
'''PyTorch TPU distributed training launch '''
'''helper utility that will spawn up '''
'''multiple distributed processes'''
) )
# Optional arguments for the launch helper
parser.add_argument('''--num_cores''' , type=__A , default=1 , help='''Number of TPU cores to use (1 or 8).''' )
# positional
parser.add_argument(
'''training_script''' , type=__A , help=(
'''The full path to the single TPU training '''
'''program/script to be launched in parallel, '''
'''followed by all the arguments for the '''
'''training script'''
) , )
# rest from the training program
parser.add_argument('''training_script_args''' , nargs=__A )
return parser.parse_args()
def lowercase_ ( ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Optional[Any] =parse_args()
# Import training_script as a module.
lowercase : Optional[int] =Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
lowercase : List[Any] =script_fpath.stem
lowercase : Union[str, Any] =importlib.import_module(__A )
# Patch sys.argv
lowercase : Tuple =[args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 8 |
'''simple docstring'''
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]:
"""simple docstring"""
return [
int(1_0_0_0 * (box[0] / width) ),
int(1_0_0_0 * (box[1] / height) ),
int(1_0_0_0 * (box[2] / width) ),
int(1_0_0_0 * (box[3] / height) ),
]
def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase : int =to_pil_image(__A )
lowercase , lowercase : Tuple =pil_image.size
lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A )
lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()]
lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowercase : Tuple =[]
for x, y, w, h in zip(__A , __A , __A , __A ):
lowercase : str =[x, y, x + w, y + h]
actual_boxes.append(__A )
# finally, normalize the bounding boxes
lowercase : List[str] =[]
for box in actual_boxes:
normalized_boxes.append(normalize_box(__A , __A , __A ) )
assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''pixel_values''']
def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224}
lowercase : Optional[Any] =get_size_dict(UpperCAmelCase )
lowercase : Optional[Any] =do_resize
lowercase : List[Any] =size
lowercase : List[str] =resample
lowercase : Dict =do_rescale
lowercase : str =rescale_value
lowercase : Optional[int] =do_normalize
lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD
lowercase : List[Any] =apply_ocr
lowercase : Union[str, Any] =ocr_lang
lowercase : str =tesseract_config
def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
lowercase : Tuple =get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
lowercase : Optional[Any] =(size['''height'''], size['''width'''])
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image:
'''simple docstring'''
lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize
lowercase : Tuple =size if size is not None else self.size
lowercase : Optional[int] =get_size_dict(UpperCAmelCase )
lowercase : List[str] =resample if resample is not None else self.resample
lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale
lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize
lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean
lowercase : Optional[int] =image_std if image_std is not None else self.image_std
lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr
lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang
lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config
lowercase : str =make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' )
# All transformations expect numpy arrays.
lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , '''pytesseract''' )
lowercase : int =[]
lowercase : Tuple =[]
for image in images:
lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
words_batch.append(UpperCAmelCase )
boxes_batch.append(UpperCAmelCase )
if do_resize:
lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_rescale:
lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase )
if apply_ocr:
lowercase : int =words_batch
lowercase : List[str] =boxes_batch
return data
| 8 | 1 |
'''simple docstring'''
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
SCREAMING_SNAKE_CASE = Mapping[str, np.ndarray]
SCREAMING_SNAKE_CASE = Mapping[str, Any] # Is a nested dict.
SCREAMING_SNAKE_CASE = 0.01
@dataclasses.dataclass(frozen=__A )
class UpperCAmelCase_ :
"""simple docstring"""
UpperCamelCase_ = 42 # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
UpperCamelCase_ = 42 # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
UpperCamelCase_ = 42 # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
UpperCamelCase_ = 42 # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
UpperCamelCase_ = 42 # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
UpperCamelCase_ = None
# Optional remark about the protein. Included as a comment in output PDB
# files
UpperCamelCase_ = None
# Templates used to generate this protein (prediction-only)
UpperCamelCase_ = None
# Chain corresponding to each parent
UpperCamelCase_ = None
def lowercase_ ( __A : str ) -> Protein:
"""simple docstring"""
lowercase : int =R'''(\[[A-Z]+\]\n)'''
lowercase : List[str] =[tag.strip() for tag in re.split(__A , __A ) if len(__A ) > 0]
lowercase : Iterator[Tuple[str, List[str]]] =zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
lowercase : List[str] =["N", "CA", "C"]
lowercase : int =None
lowercase : List[Any] =None
lowercase : Dict =None
for g in groups:
if "[PRIMARY]" == g[0]:
lowercase : List[Any] =g[1][0].strip()
for i in range(len(__A ) ):
if seq[i] not in residue_constants.restypes:
lowercase : List[Any] ='''X''' # FIXME: strings are immutable
lowercase : str =np.array(
[residue_constants.restype_order.get(__A , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
lowercase : List[List[float]] =[]
for axis in range(3 ):
tertiary.append(list(map(__A , g[1][axis].split() ) ) )
lowercase : int =np.array(__A )
lowercase : List[str] =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(__A ):
lowercase : Optional[int] =np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
lowercase : Any =np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
lowercase : str =np.zeros(
(
len(__A ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(__A ):
lowercase : List[str] =1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=__A , atom_mask=__A , aatype=__A , residue_index=np.arange(len(__A ) ) , b_factors=__A , )
def lowercase_ ( __A : Protein , __A : int = 0 ) -> List[str]:
"""simple docstring"""
lowercase : List[str] =[]
lowercase : List[str] =prot.remark
if remark is not None:
pdb_headers.append(F'REMARK {remark}' )
lowercase : Union[str, Any] =prot.parents
lowercase : Optional[int] =prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
lowercase : List[str] =[p for i, p in zip(__A , __A ) if i == chain_id]
if parents is None or len(__A ) == 0:
lowercase : Optional[Any] =['''N/A''']
pdb_headers.append(F'PARENT {" ".join(__A )}' )
return pdb_headers
def lowercase_ ( __A : Protein , __A : str ) -> str:
"""simple docstring"""
lowercase : List[str] =[]
lowercase : Any =pdb_str.split('''\n''' )
lowercase : Tuple =prot.remark
if remark is not None:
out_pdb_lines.append(F'REMARK {remark}' )
lowercase : List[List[str]]
if prot.parents is not None and len(prot.parents ) > 0:
lowercase : List[str] =[]
if prot.parents_chain_index is not None:
lowercase : Dict[str, List[str]] ={}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(__A ) , [] )
parent_dict[str(__A )].append(__A )
lowercase : int =max([int(__A ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
lowercase : Union[str, Any] =parent_dict.get(str(__A ) , ['''N/A'''] )
parents_per_chain.append(__A )
else:
parents_per_chain.append(list(prot.parents ) )
else:
lowercase : Optional[int] =[['''N/A''']]
def make_parent_line(__A : Sequence[str] ) -> str:
return F'PARENT {" ".join(__A )}'
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
lowercase : Dict =0
for i, l in enumerate(__A ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(__A )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(__A ):
lowercase : Optional[Any] =parents_per_chain[chain_counter]
else:
lowercase : str =['''N/A''']
out_pdb_lines.append(make_parent_line(__A ) )
return "\n".join(__A )
def lowercase_ ( __A : Protein ) -> str:
"""simple docstring"""
lowercase : List[str] =residue_constants.restypes + ['''X''']
def res_atoa(__A : int ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
lowercase : Union[str, Any] =residue_constants.atom_types
lowercase : List[str] =[]
lowercase : Dict =prot.atom_mask
lowercase : Tuple =prot.aatype
lowercase : List[Any] =prot.atom_positions
lowercase : List[str] =prot.residue_index.astype(np.intaa )
lowercase : Dict =prot.b_factors
lowercase : Optional[Any] =prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
lowercase : List[str] =get_pdb_headers(__A )
if len(__A ) > 0:
pdb_lines.extend(__A )
lowercase : Any =aatype.shape[0]
lowercase : Any =1
lowercase : Any =0
lowercase : int =string.ascii_uppercase
lowercase : List[str] =None
# Add all atom sites.
for i in range(__A ):
lowercase : Any =res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(__A , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
lowercase : str ='''ATOM'''
lowercase : Optional[int] =atom_name if len(__A ) == 4 else F' {atom_name}'
lowercase : List[str] =''''''
lowercase : int =''''''
lowercase : Optional[Any] =1.00
lowercase : Tuple =atom_name[0] # Protein supports only C, N, O, S, this works.
lowercase : Union[str, Any] =''''''
lowercase : List[str] ='''A'''
if chain_index is not None:
lowercase : List[Any] =chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
lowercase : str =(
F'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}'
F'{res_name_a:>3} {chain_tag:>1}'
F'{residue_index[i]:>4}{insertion_code:>1} '
F'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}'
F'{occupancy:>6.2f}{b_factor:>6.2f} '
F'{element:>2}{charge:>2}'
)
pdb_lines.append(__A )
atom_index += 1
lowercase : Union[str, Any] =i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
lowercase : Optional[Any] =True
lowercase : Dict =chain_index[i + 1]
if should_terminate:
# Close the chain.
lowercase : Union[str, Any] ='''TER'''
lowercase : Any =(
F'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}'
)
pdb_lines.append(__A )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(__A , __A ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(__A )
def lowercase_ ( __A : Protein ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def lowercase_ ( __A : FeatureDict , __A : ModelOutput , __A : Optional[np.ndarray] = None , __A : Optional[np.ndarray] = None , __A : Optional[str] = None , __A : Optional[Sequence[str]] = None , __A : Optional[Sequence[int]] = None , ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__A , remark=__A , parents=__A , parents_chain_index=__A , )
| 8 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =parent
lowercase : Any =13
lowercase : Any =7
lowercase : Optional[int] =True
lowercase : Optional[int] =True
lowercase : Tuple =False
lowercase : Optional[Any] =True
lowercase : Dict =99
lowercase : Union[str, Any] =32
lowercase : Union[str, Any] =2
lowercase : Union[str, Any] =4
lowercase : List[str] =37
lowercase : str ='''gelu'''
lowercase : Dict =0.1
lowercase : List[Any] =0.1
lowercase : List[str] =512
lowercase : Optional[int] =16
lowercase : Optional[Any] =2
lowercase : List[str] =0.0_2
lowercase : Any =3
lowercase : Optional[Any] =4
lowercase : int =None
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Any =None
if self.use_input_mask:
lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Union[str, Any] =None
lowercase : Any =None
lowercase : str =None
if self.use_labels:
lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices )
lowercase : Dict =DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =TFDistilBertModel(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : List[str] =model(UpperCAmelCase )
lowercase : str =[input_ids, input_mask]
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase )
lowercase : int ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase )
lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]:
'''simple docstring'''
lowercase : List[Any] =self.num_choices
lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase )
lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : Tuple ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase )
lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : str =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : int =self.prepare_config_and_inputs()
((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs
lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
UpperCamelCase_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Dict ) -> str:
'''simple docstring'''
lowercase : str =TFDistilBertModelTester(self )
lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase )
def A__ ( self : Tuple ) -> Any:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase )
def A__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
lowercase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase )
def A__ ( self : Any ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase )
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase )
@slow
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase : List[Any] =model(UpperCAmelCase )[0]
lowercase : str =[1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
lowercase : Optional[int] =tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
| 8 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
SCREAMING_SNAKE_CASE = '2020.9.26'
SCREAMING_SNAKE_CASE = 'xcodz-dot, cclaus, dhruvmanila'
def lowercase_ ( __A : float , __A : float , __A : float , __A : float , __A : float ) -> tuple[float, float]:
"""simple docstring"""
if not all(isinstance(__A , (float, int) ) for val in locals().values() ):
lowercase : Dict =F'Input values must either be float or int: {list(locals().values() )}'
raise TypeError(__A )
lowercase : int =((x * distance) / (z + distance)) * scale
lowercase : List[Any] =((y * distance) / (z + distance)) * scale
return projected_x, projected_y
def lowercase_ ( __A : float , __A : float , __A : float , __A : str , __A : float ) -> tuple[float, float, float]:
"""simple docstring"""
if not isinstance(__A , __A ):
raise TypeError('''Axis must be a str''' )
lowercase : Dict =locals()
del input_variables["axis"]
if not all(isinstance(__A , (float, int) ) for val in input_variables.values() ):
lowercase : Tuple =(
'''Input values except axis must either be float or int: '''
F'{list(input_variables.values() )}'
)
raise TypeError(__A )
lowercase : Optional[Any] =(angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi
if axis == "z":
lowercase : List[Any] =x * math.cos(__A ) - y * math.sin(__A )
lowercase : List[str] =y * math.cos(__A ) + x * math.sin(__A )
lowercase : Union[str, Any] =z
elif axis == "x":
lowercase : int =y * math.cos(__A ) - z * math.sin(__A )
lowercase : Optional[Any] =z * math.cos(__A ) + y * math.sin(__A )
lowercase : Any =x
elif axis == "y":
lowercase : Any =x * math.cos(__A ) - z * math.sin(__A )
lowercase : Any =z * math.cos(__A ) + x * math.sin(__A )
lowercase : Optional[int] =y
else:
raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' )
return new_x, new_y, new_z
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""")
print(f"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RemBertForCausalLM',
'RemBertForMaskedLM',
'RemBertForMultipleChoice',
'RemBertForQuestionAnswering',
'RemBertForSequenceClassification',
'RemBertForTokenClassification',
'RemBertLayer',
'RemBertModel',
'RemBertPreTrainedModel',
'load_tf_weights_in_rembert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRemBertForCausalLM',
'TFRemBertForMaskedLM',
'TFRemBertForMultipleChoice',
'TFRemBertForQuestionAnswering',
'TFRemBertForSequenceClassification',
'TFRemBertForTokenClassification',
'TFRemBertLayer',
'TFRemBertModel',
'TFRemBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] =pipeline(
task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' )
lowercase : Optional[int] =load_dataset('''ashraq/esc50''' )
lowercase : int =dataset['''train''']['''audio'''][-1]['''array''']
lowercase : Union[str, Any] =audio_classifier(UpperCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , )
@unittest.skip('''No models are available in TF''' )
def A__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
@slow
@require_torch
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : str =pipeline(
task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , )
# This is an audio of a dog
lowercase : Tuple =load_dataset('''ashraq/esc50''' )
lowercase : int =dataset['''train''']['''audio'''][-1]['''array''']
lowercase : Optional[Any] =audio_classifier(UpperCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
] , )
lowercase : Union[str, Any] =audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
lowercase : Union[str, Any] =audio_classifier(
[audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
@unittest.skip('''No models are available in TF''' )
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
pass
| 8 |
'''simple docstring'''
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch'))
def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]:
"""simple docstring"""
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' )
lowercase : Any =STR_OPERATION_TO_FUNC[operation]
if isinstance(__A , __A ):
lowercase : List[Any] =parse(importlib.metadata.version(__A ) )
return operation(__A , parse(__A ) )
def lowercase_ ( __A : str , __A : str ) -> Tuple:
"""simple docstring"""
return compare_versions(__A , __A , __A )
| 8 | 1 |
'''simple docstring'''
SCREAMING_SNAKE_CASE = 0 # The first color of the flag.
SCREAMING_SNAKE_CASE = 1 # The second color of the flag.
SCREAMING_SNAKE_CASE = 2 # The third color of the flag.
SCREAMING_SNAKE_CASE = (red, white, blue)
def lowercase_ ( __A : list ) -> list:
"""simple docstring"""
if not sequence:
return []
if len(__A ) == 1:
return list(__A )
lowercase : Optional[Any] =0
lowercase : int =len(__A ) - 1
lowercase : List[str] =0
while mid <= high:
if sequence[mid] == colors[0]:
lowercase , lowercase : List[str] =sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
lowercase , lowercase : Union[str, Any] =sequence[high], sequence[mid]
high -= 1
else:
lowercase : str =F'The elements inside the sequence must contains only {colors} values'
raise ValueError(__A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE = input('Enter numbers separated by commas:\n').strip()
SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(',')]
print(f"""{dutch_national_flag_sort(unsorted)}""")
| 8 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 8 | 1 |
'''simple docstring'''
import os
SCREAMING_SNAKE_CASE = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000}
def lowercase_ ( __A : str ) -> int:
"""simple docstring"""
lowercase : str =0
lowercase : List[Any] =0
while index < len(__A ) - 1:
lowercase : List[Any] =SYMBOLS[numerals[index]]
lowercase : Tuple =SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def lowercase_ ( __A : int ) -> str:
"""simple docstring"""
lowercase : Optional[Any] =''''''
lowercase : List[Any] =num // 1_0_0_0
numerals += m_count * "M"
num %= 1_0_0_0
lowercase : List[Any] =num // 1_0_0
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 1_0_0
lowercase : int =num // 1_0
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 1_0
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def lowercase_ ( __A : str = "/p089_roman.txt" ) -> int:
"""simple docstring"""
lowercase : List[str] =0
with open(os.path.dirname(__A ) + roman_numerals_filename ) as filea:
lowercase : List[Any] =filea.readlines()
for line in lines:
lowercase : List[Any] =line.strip()
lowercase : Optional[int] =parse_roman_numerals(__A )
lowercase : int =generate_roman_numerals(__A )
savings += len(__A ) - len(__A )
return savings
if __name__ == "__main__":
print(f"""{solution() = }""")
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> str:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> int:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[Any] , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Tuple ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : List[Any] ) -> Any:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : str ) -> int:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : str , **UpperCAmelCase : Tuple ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ) -> str:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : Any ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Any ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> Any:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[str] , *UpperCAmelCase : Any , **UpperCAmelCase : str ) -> Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> Dict:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[int] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : str , *UpperCAmelCase : List[str] , **UpperCAmelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[str] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Any ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ) -> Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> List[str]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : List[Any] ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> Any:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
def lowercase_ ( *__A : List[Any] , **__A : Tuple ) -> Dict:
"""simple docstring"""
requires_backends(__A , ['''torch'''] )
def lowercase_ ( *__A : Union[str, Any] , **__A : Dict ) -> str:
"""simple docstring"""
requires_backends(__A , ['''torch'''] )
def lowercase_ ( *__A : Any , **__A : Dict ) -> Any:
"""simple docstring"""
requires_backends(__A , ['''torch'''] )
def lowercase_ ( *__A : Dict , **__A : Dict ) -> Tuple:
"""simple docstring"""
requires_backends(__A , ['''torch'''] )
def lowercase_ ( *__A : Tuple , **__A : str ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(__A , ['''torch'''] )
def lowercase_ ( *__A : Tuple , **__A : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(__A , ['''torch'''] )
def lowercase_ ( *__A : Any , **__A : str ) -> Dict:
"""simple docstring"""
requires_backends(__A , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Tuple ) -> str:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Dict , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : str , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Union[str, Any] , *UpperCAmelCase : int , **UpperCAmelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : str , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Dict , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Union[str, Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ) -> Any:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : List[str] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Union[str, Any] ) -> int:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Any , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : int , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> List[Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> Dict:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ) -> Dict:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : str , *UpperCAmelCase : str , **UpperCAmelCase : Tuple ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : str ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : List[str] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[str] ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : str , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Any , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : str ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[str] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Any ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Any ) -> Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : int , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> List[str]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : int ) -> Any:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> str:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[str] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[Any] ) -> Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : int ) -> Dict:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> int:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> int:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[str] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any] ) -> int:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : int ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Any , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ) -> str:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ) -> Any:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ) -> int:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Any:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Dict:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Tuple ) -> int:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Dict , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ) -> int:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> List[str]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : List[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Dict ) -> Any:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Dict , *UpperCAmelCase : List[str] , **UpperCAmelCase : Dict ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ) -> Any:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[int] ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : str , *UpperCAmelCase : List[str] , **UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[str] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ) -> str:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Tuple , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> int:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[Any] , *UpperCAmelCase : str , **UpperCAmelCase : str ) -> int:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : int ) -> Dict:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : List[str] , *UpperCAmelCase : Dict , **UpperCAmelCase : Tuple ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Tuple , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Any:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : Optional[int] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Any , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Dict:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : List[str] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Tuple ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : List[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Any ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Dict , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
class UpperCAmelCase_ ( metaclass=__A ):
"""simple docstring"""
UpperCamelCase_ = ['''torch''']
def __init__( self : Optional[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['''torch'''] )
@classmethod
def A__ ( cls : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> str:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
@classmethod
def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch'''] )
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegaForCausalLM',
'MegaForMaskedLM',
'MegaForMultipleChoice',
'MegaForQuestionAnswering',
'MegaForSequenceClassification',
'MegaForTokenClassification',
'MegaModel',
'MegaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {
'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json',
'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json',
'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json',
'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json',
'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json',
'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json',
'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json',
'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json',
'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json',
}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = '''xmod'''
def __init__( self : int , UpperCAmelCase : Tuple=3_0522 , UpperCAmelCase : Union[str, Any]=768 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Union[str, Any]=3072 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : int=2 , UpperCAmelCase : List[Any]=0.0_2 , UpperCAmelCase : List[Any]=1e-12 , UpperCAmelCase : Any=1 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int="absolute" , UpperCAmelCase : int=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : str=False , UpperCAmelCase : List[str]=2 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=("en_XX",) , UpperCAmelCase : int=None , **UpperCAmelCase : int , ) -> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowercase : Optional[int] =vocab_size
lowercase : str =hidden_size
lowercase : Optional[int] =num_hidden_layers
lowercase : List[Any] =num_attention_heads
lowercase : Optional[int] =hidden_act
lowercase : Dict =intermediate_size
lowercase : Dict =hidden_dropout_prob
lowercase : Tuple =attention_probs_dropout_prob
lowercase : str =max_position_embeddings
lowercase : Union[str, Any] =type_vocab_size
lowercase : List[Any] =initializer_range
lowercase : Dict =layer_norm_eps
lowercase : Any =position_embedding_type
lowercase : List[Any] =use_cache
lowercase : List[str] =classifier_dropout
lowercase : Dict =pre_norm
lowercase : List[Any] =adapter_reduction_factor
lowercase : List[str] =adapter_layer_norm
lowercase : Tuple =adapter_reuse_layer_norm
lowercase : Dict =ln_before_adapter
lowercase : Optional[Any] =list(UpperCAmelCase )
lowercase : Union[str, Any] =default_language
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
@property
def A__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
lowercase : Any ={0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowercase : Optional[Any] ={0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 8 |
'''simple docstring'''
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514}
SCREAMING_SNAKE_CASE = {}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = HerbertTokenizer
def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(
UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , )
def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : List[Any] =[self.cls_token_id]
lowercase : Any =[self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Optional[Any] =[self.sep_token_id]
lowercase : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 8 | 1 |
'''simple docstring'''
from typing import Callable, Optional
from .. import Features
from ..packaged_modules.generator.generator import Generator
from .abc import AbstractDatasetInputStream
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : Dict , UpperCAmelCase : Callable , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[dict] = None , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : str , ) -> str:
'''simple docstring'''
super().__init__(
features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
lowercase : Tuple =Generator(
cache_dir=UpperCAmelCase , features=UpperCAmelCase , generator=UpperCAmelCase , gen_kwargs=UpperCAmelCase , **UpperCAmelCase , )
def A__ ( self : Dict ) -> Dict:
'''simple docstring'''
if self.streaming:
lowercase : Optional[Any] =self.builder.as_streaming_dataset(split='''train''' )
# Build regular (map-style) dataset
else:
lowercase : Union[str, Any] =None
lowercase : Dict =None
lowercase : Union[str, Any] =None
lowercase : Tuple =None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
lowercase : Optional[Any] =self.builder.as_dataset(
split='''train''' , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
| 8 |
'''simple docstring'''
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Any ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[int] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Any ='''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Tuple ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : Tuple =self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Optional[Any] ='''1'''
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
lowercase : str ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Optional[int] ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : str =self.get_env()
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''
from transformers import BertConfig, BertModel, BertTokenizer
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
lowercase : int ='''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Any ='''1'''
lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] ='''
from transformers import pipeline
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
lowercase : Tuple ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
lowercase : Tuple =self.get_env()
lowercase : Optional[int] ='''1'''
lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def A__ ( self : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[str] ='''
from transformers import AutoModel
'''
lowercase : Dict ='''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : List[str] ='''1'''
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 8 | 1 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def lowercase_ ( __A : List[str]=None , __A : Any=None ) -> List[Any]:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=__A )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
UpperCamelCase_ = list_field(
default=[] , metadata={
'''help''': (
'''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version'''
''' of all available models'''
)
} , )
UpperCamelCase_ = list_field(
default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} )
UpperCamelCase_ = list_field(
default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} )
UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Use FP16 to accelerate inference.'''} )
UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Benchmark training of model'''} )
UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Verbose memory tracing'''} )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , )
UpperCamelCase_ = field(
default=__A , metadata={
'''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory'''
} , )
UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Trace memory line by line'''} )
UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Save result to a CSV file'''} )
UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Save all print statements in a log file'''} )
UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Whether to print environment information'''} )
UpperCamelCase_ = field(
default=__A , metadata={
'''help''': (
'''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use'''
''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled'''
''' for debugging / testing and on TPU.'''
)
} , )
UpperCamelCase_ = field(
default=F"""inference_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , )
UpperCamelCase_ = field(
default=F"""inference_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , )
UpperCamelCase_ = field(
default=F"""train_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , )
UpperCamelCase_ = field(
default=F"""train_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , )
UpperCamelCase_ = field(
default=F"""env_info_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , )
UpperCamelCase_ = field(
default=F"""log_{round(time() )}.csv""" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , )
UpperCamelCase_ = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} )
UpperCamelCase_ = field(
default=__A , metadata={
'''help''': (
'''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain'''
''' model weights.'''
)
} , )
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
warnings.warn(
f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'
''' are deprecated in general and it is advised to use external Benchmarking libraries '''
''' to benchmark Transformer models.''' , UpperCAmelCase , )
def A__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def A__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
'''Please make sure you provide at least one model name / model identifier, *e.g.* `--models'''
''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' )
return self.models
@property
def A__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('''Multiprocessing is currently not possible on TPU.''' )
return False
else:
return True
| 8 |
'''simple docstring'''
SCREAMING_SNAKE_CASE = 'Alexander Joslin'
import operator as op
from .stack import Stack
def lowercase_ ( __A : str ) -> int:
"""simple docstring"""
lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
lowercase : Stack[int] =Stack()
lowercase : Stack[str] =Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__A ) )
elif i in operators:
# RULE 2
operator_stack.push(__A )
elif i == ")":
# RULE 4
lowercase : Optional[Any] =operator_stack.peek()
operator_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : List[str] =operators[opr](__A , __A )
operand_stack.push(__A )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))'
# answer = 45
print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 8 | 1 |
'''simple docstring'''
from PIL import Image
def lowercase_ ( __A : Image , __A : float ) -> Image:
"""simple docstring"""
def brightness(__A : int ) -> float:
return 1_2_8 + level + (c - 1_2_8)
if not -255.0 <= level <= 255.0:
raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' )
return img.point(__A )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
SCREAMING_SNAKE_CASE = change_brightness(img, 100)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 8 |
'''simple docstring'''
import re
def lowercase_ ( __A : str ) -> bool:
"""simple docstring"""
lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' )
if match := re.search(__A , __A ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator('+918827897895'))
| 8 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = None
UpperCamelCase_ = None
UpperCamelCase_ = None
UpperCamelCase_ = None
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : str=1 , UpperCAmelCase : str=0 , UpperCAmelCase : Any=2 , UpperCAmelCase : Optional[Any]=512 , UpperCAmelCase : int="cls" , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : List[str]=True , **UpperCAmelCase : int , ) -> int:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowercase : List[str] =project_dim
lowercase : int =pooler_fn
lowercase : int =learn_encoder
lowercase : List[Any] =use_attention_mask
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = [r'''pooler''', r'''logit_scale''']
UpperCamelCase_ = [r'''position_ids''', r'''predictions.decoder.bias''']
UpperCamelCase_ = '''roberta'''
UpperCamelCase_ = RobertaSeriesConfig
def __init__( self : List[Any] , UpperCAmelCase : int ) -> Any:
'''simple docstring'''
super().__init__(UpperCAmelCase )
lowercase : Tuple =XLMRobertaModel(UpperCAmelCase )
lowercase : Optional[Any] =nn.Linear(config.hidden_size , config.project_dim )
lowercase : Tuple =getattr(UpperCAmelCase , '''has_pre_transformation''' , UpperCAmelCase )
if self.has_pre_transformation:
lowercase : Optional[int] =nn.Linear(config.hidden_size , config.project_dim )
lowercase : List[Any] =nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps )
self.post_init()
def A__ ( self : Optional[int] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =return_dict if return_dict is not None else self.config.use_return_dict
lowercase : Optional[Any] =self.base_model(
input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_attentions=UpperCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCAmelCase , )
if self.has_pre_transformation:
lowercase : Any =outputs['''hidden_states'''][-2]
lowercase : Dict =self.pre_LN(UpperCAmelCase )
lowercase : str =self.transformation_pre(UpperCAmelCase )
return TransformationModelOutput(
projection_state=UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
else:
lowercase : Dict =self.transformation(outputs.last_hidden_state )
return TransformationModelOutput(
projection_state=UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 8 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] =parent
lowercase : Tuple =13
lowercase : Any =7
lowercase : Union[str, Any] =True
lowercase : Any =True
lowercase : Optional[int] =True
lowercase : List[str] =True
lowercase : Tuple =99
lowercase : str =32
lowercase : Union[str, Any] =2
lowercase : Dict =4
lowercase : Union[str, Any] =37
lowercase : Union[str, Any] ='''gelu'''
lowercase : Any =0.1
lowercase : Dict =0.1
lowercase : Dict =512
lowercase : List[str] =16
lowercase : Dict =2
lowercase : int =0.0_2
lowercase : List[Any] =3
lowercase : List[str] =4
lowercase : Optional[Any] =None
def A__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : str =None
if self.use_input_mask:
lowercase : int =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Any =None
if self.use_token_type_ids:
lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase : List[Any] =None
lowercase : List[str] =None
lowercase : List[str] =None
if self.use_labels:
lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : Any =ids_tensor([self.batch_size] , self.num_choices )
lowercase : List[Any] =RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase )
lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowercase : Tuple =[input_ids, input_mask]
lowercase : str =model(UpperCAmelCase )
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any:
'''simple docstring'''
lowercase : Dict =True
lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase )
lowercase : Union[str, Any] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Optional[Any] =model(UpperCAmelCase )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase )
lowercase : List[str] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] =self.num_labels
lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase )
lowercase : Optional[int] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Optional[Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =self.num_choices
lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase )
lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =self.num_labels
lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase )
lowercase : Tuple ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any:
'''simple docstring'''
lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase )
lowercase : List[str] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
lowercase : Optional[Any] =self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) : Optional[int] =config_and_inputs
lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase_ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple:
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerModelTester(self )
lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def A__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase )
def A__ ( self : int ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
lowercase : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
lowercase : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def A__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def A__ ( self : str ) -> str:
'''simple docstring'''
lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase : List[str] =model(UpperCAmelCase )[0]
# TODO Replace vocab size
lowercase : Tuple =5_0000
lowercase : List[str] =[1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
lowercase : Dict =tf.constant(
[
[
[-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6],
[-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7],
[-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = 1e-4
def A__ ( self : int ) -> List[Any]:
'''simple docstring'''
lowercase : Union[str, Any] =tf.constant([[4, 10]] )
lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
lowercase : Any =emba(input_ids.shape )
lowercase : List[str] =tf.constant(
[[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] )
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
def A__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
lowercase : Optional[Any] =tf.constant(
[
[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0],
[0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7],
[0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0],
] )
lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
lowercase : str =emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = 1e-4
def A__ ( self : Dict ) -> Dict:
'''simple docstring'''
lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :]
lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : Any =tf.constant(
[
[0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0],
[-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3],
[-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5],
[-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1],
[0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0],
[3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3],
] )
lowercase : int =tf.constant(
[
[0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0],
[0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3],
[1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5],
[2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1],
[-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0],
[-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
| 8 | 1 |
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {
'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json',
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = '''umt5'''
UpperCamelCase_ = ['''past_key_values''']
def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int]=25_0112 , UpperCAmelCase : str=512 , UpperCAmelCase : Optional[int]=64 , UpperCAmelCase : List[Any]=1024 , UpperCAmelCase : Tuple=8 , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=6 , UpperCAmelCase : Dict=32 , UpperCAmelCase : List[str]=128 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Optional[int]=1e-6 , UpperCAmelCase : Optional[int]=1.0 , UpperCAmelCase : Optional[Any]="gated-gelu" , UpperCAmelCase : str=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]="T5Tokenizer" , UpperCAmelCase : int=True , UpperCAmelCase : Tuple=0 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : int=0 , **UpperCAmelCase : Union[str, Any] , ) -> List[Any]:
'''simple docstring'''
super().__init__(
is_encoder_decoder=UpperCAmelCase , tokenizer_class=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , **UpperCAmelCase , )
lowercase : Optional[Any] =vocab_size
lowercase : List[Any] =d_model
lowercase : Optional[Any] =d_kv
lowercase : Any =d_ff
lowercase : Union[str, Any] =num_layers
lowercase : Optional[int] =(
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowercase : int =num_heads
lowercase : Tuple =relative_attention_num_buckets
lowercase : int =relative_attention_max_distance
lowercase : Tuple =dropout_rate
lowercase : List[str] =layer_norm_epsilon
lowercase : Union[str, Any] =initializer_factor
lowercase : int =feed_forward_proj
lowercase : List[Any] =use_cache
lowercase : List[Any] =self.feed_forward_proj.split('''-''' )
lowercase : Dict =act_info[-1]
lowercase : Tuple =act_info[0] == '''gated'''
if len(UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase ) > 2:
raise ValueError(
f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
if feed_forward_proj == "gated-gelu":
lowercase : List[Any] ='''gelu_new'''
@property
def A__ ( self : Any ) -> List[Any]:
'''simple docstring'''
return self.d_model
@property
def A__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
return self.num_heads
@property
def A__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
return self.num_layers
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def A__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
lowercase : List[str] ={
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
lowercase : Union[str, Any] ='''past_encoder_sequence + sequence'''
lowercase : Tuple ={0: '''batch'''}
lowercase : Any ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
lowercase : Dict ={0: '''batch''', 1: '''decoder_sequence'''}
lowercase : List[str] ={0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def A__ ( self : List[Any] ) -> int:
'''simple docstring'''
return 13
@property
def A__ ( self : Union[str, Any] ) -> float:
'''simple docstring'''
return 5e-4
| 8 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''image_processor''', '''tokenizer''']
UpperCamelCase_ = '''LayoutLMv2ImageProcessor'''
UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''')
def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , UpperCAmelCase , )
lowercase : Any =kwargs.pop('''feature_extractor''' )
lowercase : Dict =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowercase : List[str] =features['''words''']
lowercase : Optional[Any] =self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
# add pixel values
lowercase : List[str] =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] )
lowercase : Dict =images
return encoded_inputs
def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str:
'''simple docstring'''
lowercase : str =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' )
return images_with_overflow
def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , )
return self.image_processor_class
@property
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , )
return self.image_processor
| 8 | 1 |
'''simple docstring'''
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowercase_ ( __A : int ) -> Optional[int]: # picklable for multiprocessing
"""simple docstring"""
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowercase_ ( ) -> Any:
"""simple docstring"""
with parallel_backend('''spark''' ):
assert ParallelBackendConfig.backend_name == "spark"
lowercase : List[str] =[1, 2, 3]
with pytest.raises(__A ):
with parallel_backend('''unsupported backend''' ):
map_nested(__A , __A , num_proc=2 )
with pytest.raises(__A ):
with parallel_backend('''unsupported backend''' ):
map_nested(__A , __A , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize('''num_proc''' , [2, -1] )
def lowercase_ ( __A : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase : Any =[1, 2]
lowercase : Dict ={'''a''': 1, '''b''': 2}
lowercase : str ={'''a''': [1, 2], '''b''': [3, 4]}
lowercase : List[str] ={'''a''': {'''1''': 1}, '''b''': 2}
lowercase : Union[str, Any] ={'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4}
lowercase : str =[2, 3]
lowercase : Dict ={'''a''': 2, '''b''': 3}
lowercase : int ={'''a''': [2, 3], '''b''': [4, 5]}
lowercase : Tuple ={'''a''': {'''1''': 2}, '''b''': 3}
lowercase : Tuple ={'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5}
with parallel_backend('''spark''' ):
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
| 8 |
'''simple docstring'''
def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
"""simple docstring"""
try:
lowercase : Any =int(__A )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
lowercase : Optional[Any] =1
lowercase : Dict =2
while i * i <= n:
while n % i == 0:
lowercase : Optional[int] =i
n //= i
i += 1
if n > 1:
lowercase : Dict =n
return int(__A )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 8 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : Dict , UpperCAmelCase : int=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=512 , UpperCAmelCase : Optional[Any]=16 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[Any]=4 , ) -> Any:
'''simple docstring'''
lowercase : Optional[int] =parent
lowercase : Optional[Any] =batch_size
lowercase : Tuple =seq_length
lowercase : Any =is_training
lowercase : Optional[int] =use_attention_mask
lowercase : Optional[int] =use_token_type_ids
lowercase : Tuple =use_labels
lowercase : Any =vocab_size
lowercase : int =hidden_size
lowercase : str =num_hidden_layers
lowercase : Any =num_attention_heads
lowercase : str =intermediate_size
lowercase : Optional[Any] =hidden_act
lowercase : str =hidden_dropout_prob
lowercase : List[Any] =attention_probs_dropout_prob
lowercase : Union[str, Any] =max_position_embeddings
lowercase : Tuple =type_vocab_size
lowercase : Optional[int] =type_sequence_label_size
lowercase : List[Any] =initializer_range
lowercase : Dict =num_choices
def A__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
lowercase : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : List[Any] =None
if self.use_attention_mask:
lowercase : str =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Optional[int] =None
if self.use_token_type_ids:
lowercase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase : Dict =RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def A__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : List[str] =self.prepare_config_and_inputs()
lowercase , lowercase , lowercase , lowercase : str =config_and_inputs
lowercase : Union[str, Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def A__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
lowercase : Union[str, Any] =self.prepare_config_and_inputs()
lowercase , lowercase , lowercase , lowercase : Tuple =config_and_inputs
lowercase : Dict =True
lowercase : Union[str, Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class UpperCAmelCase_ ( __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = True
UpperCamelCase_ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def A__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
lowercase : str =FlaxRobertaModelTester(self )
@slow
def A__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase : Optional[Any] =model_class_name.from_pretrained('''roberta-base''' , from_pt=UpperCAmelCase )
lowercase : Optional[int] =model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
| 8 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
lowercase : str =u
for i in range(1 , __A ):
lowercase : Any =temp * (u - i)
return temp
def lowercase_ ( ) -> None:
"""simple docstring"""
lowercase : List[str] =int(input('''enter the numbers of values: ''' ) )
lowercase : list[list[float]] =[]
for _ in range(__A ):
y.append([] )
for i in range(__A ):
for j in range(__A ):
y[i].append(__A )
lowercase : List[Any] =0
print('''enter the values of parameters in a list: ''' )
lowercase : Optional[int] =list(map(__A , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(__A ):
lowercase : str =float(input() )
lowercase : int =int(input('''enter the value to interpolate: ''' ) )
lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , __A ):
for j in range(n - i ):
lowercase : str =y[j + 1][i - 1] - y[j][i - 1]
lowercase : Any =y[0][0]
for i in range(1 , __A ):
summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A )
print(F'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 8 | 1 |
'''simple docstring'''
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
SCREAMING_SNAKE_CASE = 'src/diffusers'
SCREAMING_SNAKE_CASE = '.'
# This is to make sure the diffusers module imported is the one in the repo.
SCREAMING_SNAKE_CASE = importlib.util.spec_from_file_location(
'diffusers',
os.path.join(DIFFUSERS_PATH, '__init__.py'),
submodule_search_locations=[DIFFUSERS_PATH],
)
SCREAMING_SNAKE_CASE = spec.loader.load_module()
def lowercase_ ( __A : int , __A : Dict ) -> Optional[int]:
"""simple docstring"""
return line.startswith(__A ) or len(__A ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , __A ) is not None
def lowercase_ ( __A : str ) -> str:
"""simple docstring"""
lowercase : List[Any] =object_name.split('''.''' )
lowercase : Union[str, Any] =0
# First let's find the module where our object lives.
lowercase : Dict =parts[i]
while i < len(__A ) and not os.path.isfile(os.path.join(__A , F'{module}.py' ) ):
i += 1
if i < len(__A ):
lowercase : Dict =os.path.join(__A , parts[i] )
if i >= len(__A ):
raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(__A , F'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowercase : Tuple =f.readlines()
# Now let's find the class / func in the code!
lowercase : Union[str, Any] =''''''
lowercase : Union[str, Any] =0
for name in parts[i + 1 :]:
while (
line_index < len(__A ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(__A ):
raise ValueError(F' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
lowercase : Any =line_index
while line_index < len(__A ) and _should_continue(lines[line_index] , __A ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
lowercase : Union[str, Any] =lines[start_index:line_index]
return "".join(__A )
SCREAMING_SNAKE_CASE = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)')
SCREAMING_SNAKE_CASE = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)')
SCREAMING_SNAKE_CASE = re.compile(r'<FILL\s+[^>]*>')
def lowercase_ ( __A : Optional[int] ) -> int:
"""simple docstring"""
lowercase : int =code.split('''\n''' )
lowercase : Optional[int] =0
while idx < len(__A ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(__A ):
return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0]
return ""
def lowercase_ ( __A : Dict ) -> List[str]:
"""simple docstring"""
lowercase : Union[str, Any] =len(get_indent(__A ) ) > 0
if has_indent:
lowercase : str =F'class Bla:\n{code}'
lowercase : List[str] =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=__A )
lowercase : int =black.format_str(__A , mode=__A )
lowercase , lowercase : Dict =style_docstrings_in_code(__A )
return result[len('''class Bla:\n''' ) :] if has_indent else result
def lowercase_ ( __A : Tuple , __A : Dict=False ) -> Union[str, Any]:
"""simple docstring"""
with open(__A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowercase : Optional[int] =f.readlines()
lowercase : int =[]
lowercase : Optional[Any] =0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(__A ):
lowercase : int =_re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
lowercase , lowercase , lowercase : Dict =search.groups()
lowercase : Dict =find_code_in_diffusers(__A )
lowercase : Dict =get_indent(__A )
lowercase : List[str] =line_index + 1 if indent == theoretical_indent else line_index + 2
lowercase : Any =theoretical_indent
lowercase : Dict =start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
lowercase : List[Any] =True
while line_index < len(__A ) and should_continue:
line_index += 1
if line_index >= len(__A ):
break
lowercase : Tuple =lines[line_index]
lowercase : Optional[Any] =_should_continue(__A , __A ) and re.search(F'^{indent}# End copy' , __A ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
lowercase : Any =lines[start_index:line_index]
lowercase : List[str] =''''''.join(__A )
# Remove any nested `Copied from` comments to avoid circular copies
lowercase : List[Any] =[line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__A ) is None]
lowercase : Tuple ='''\n'''.join(__A )
# Before comparing, use the `replace_pattern` on the original code.
if len(__A ) > 0:
lowercase : List[str] =replace_pattern.replace('''with''' , '''''' ).split(''',''' )
lowercase : List[Any] =[_re_replace_pattern.search(__A ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
lowercase , lowercase , lowercase : List[str] =pattern.groups()
lowercase : Union[str, Any] =re.sub(__A , __A , __A )
if option.strip() == "all-casing":
lowercase : str =re.sub(obja.lower() , obja.lower() , __A )
lowercase : Dict =re.sub(obja.upper() , obja.upper() , __A )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
lowercase : str =blackify(lines[start_index - 1] + theoretical_code )
lowercase : Union[str, Any] =theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
lowercase : Any =lines[:start_index] + [theoretical_code] + lines[line_index:]
lowercase : int =start_index + 1
if overwrite and len(__A ) > 0:
# Warn the user a file has been modified.
print(F'Detected changes, rewriting {filename}.' )
with open(__A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(__A )
return diffs
def lowercase_ ( __A : bool = False ) -> Optional[Any]:
"""simple docstring"""
lowercase : int =glob.glob(os.path.join(__A , '''**/*.py''' ) , recursive=__A )
lowercase : List[Any] =[]
for filename in all_files:
lowercase : Any =is_copy_consistent(__A , __A )
diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(__A ) > 0:
lowercase : Optional[int] ='''\n'''.join(__A )
raise Exception(
'''Found the following copy inconsistencies:\n'''
+ diff
+ '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
SCREAMING_SNAKE_CASE = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 8 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =0
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : str =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : int =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : str =CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict()
config_dict.pop('''image_processor_type''' )
lowercase : str =CLIPImageProcessor(**UpperCAmelCase )
# save in new folder
model_config.save_pretrained(UpperCAmelCase )
config.save_pretrained(UpperCAmelCase )
lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
# make sure private variable is not incorrectly saved
lowercase : int =json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ):
lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' )
def A__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' )
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def A__ ( self : List[str] ) -> str:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase ):
lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCAmelCase ):
lowercase : List[str] =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCAmelCase )
lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , UpperCAmelCase )
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCAmelCase ):
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : str =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCAmelCase )
lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def A__ ( self : Any ) -> Any:
'''simple docstring'''
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = True
try:
AutoConfig.register('''custom''' , UpperCAmelCase )
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
# If remote code is not set, the default is to use local
lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowercase : Tuple =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowercase : Dict =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 8 | 1 |
'''simple docstring'''
import enum
import shutil
import sys
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shutil.get_terminal_size()
SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'}
class UpperCAmelCase_ ( enum.Enum ):
"""simple docstring"""
UpperCamelCase_ = 0
UpperCamelCase_ = 1
def lowercase_ ( __A : Optional[Any] , __A : Optional[int]="" ) -> List[str]:
"""simple docstring"""
sys.stdout.write(str(__A ) + end )
sys.stdout.flush()
def lowercase_ ( __A : Union[str, Any] , __A : Tuple , __A : Optional[Any]="" ) -> List[Any]:
"""simple docstring"""
forceWrite(F'\u001b[{color}m{content}\u001b[0m' , __A )
def lowercase_ ( ) -> int:
"""simple docstring"""
forceWrite('''\r''' )
def lowercase_ ( __A : int , __A : str ) -> Optional[int]:
"""simple docstring"""
forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def lowercase_ ( ) -> int:
"""simple docstring"""
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def lowercase_ ( ) -> Any:
"""simple docstring"""
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 8 |
'''simple docstring'''
from __future__ import annotations
SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2
def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]:
"""simple docstring"""
lowercase : Dict =abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase_ ( __A : List[str] , __A : int , __A : Optional[int] ) -> List[Any]:
"""simple docstring"""
lowercase : Union[str, Any] =LxmertConfig.from_json_file(__A )
print(F'Building PyTorch model from configuration: {config}' )
lowercase : int =LxmertForPreTraining(__A )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(__A , __A , __A )
# Save pytorch-model
print(F'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , __A )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 8 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
SCREAMING_SNAKE_CASE = {
'allenai/led-base-16384': 16_384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ) -> Any:
"""simple docstring"""
lowercase : int =(
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
lowercase : Union[str, Any] =bs[:]
lowercase : Tuple =0
for b in range(2**8 ):
if b not in bs:
bs.append(__A )
cs.append(2**8 + n )
n += 1
lowercase : Optional[Any] =[chr(__A ) for n in cs]
return dict(zip(__A , __A ) )
def lowercase_ ( __A : str ) -> List[Any]:
"""simple docstring"""
lowercase : Optional[Any] =set()
lowercase : Tuple =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase : List[str] =char
return pairs
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict:
'''simple docstring'''
lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token
lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token
lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token
lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , )
with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
lowercase : str =json.load(UpperCAmelCase )
lowercase : Optional[int] ={v: k for k, v in self.encoder.items()}
lowercase : Optional[int] =errors # how to handle errors in decoding
lowercase : Tuple =bytes_to_unicode()
lowercase : int ={v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1]
lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges]
lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : Optional[int] ={}
lowercase : Any =add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def A__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return len(self.encoder )
def A__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : List[str] =get_pairs(UpperCAmelCase )
if not pairs:
return token
while True:
lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowercase , lowercase : Optional[int] =bigram
lowercase : Union[str, Any] =[]
lowercase : Optional[Any] =0
while i < len(UpperCAmelCase ):
try:
lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase : Optional[int] =j
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : str =new_word
if len(UpperCAmelCase ) == 1:
break
else:
lowercase : Optional[Any] =get_pairs(UpperCAmelCase )
lowercase : Optional[Any] =''' '''.join(UpperCAmelCase )
lowercase : Union[str, Any] =word
return word
def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Dict =[]
for token in re.findall(self.pat , UpperCAmelCase ):
lowercase : Optional[int] =''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) )
return bpe_tokens
def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase )
def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =''''''.join(UpperCAmelCase )
lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowercase : Optional[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : List[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' )
lowercase : List[str] =0
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
''' Please check that the tokenizer is not corrupted!''' )
lowercase : Any =token_index
writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
lowercase : List[Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Dict =[self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()):
lowercase : Union[str, Any] =''' ''' + text
return (text, kwargs)
def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict:
'''simple docstring'''
lowercase : Optional[int] =super()._pad(
encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , )
# Load from model defaults
if return_attention_mask is None:
lowercase : Tuple ='''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase )
if needs_to_be_padded:
lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase : List[str] =(
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
lowercase : Any =[-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
"""simple docstring"""
try:
lowercase : Any =int(__A )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
lowercase : Optional[Any] =1
lowercase : Dict =2
while i * i <= n:
while n % i == 0:
lowercase : Optional[int] =i
n //= i
i += 1
if n > 1:
lowercase : Dict =n
return int(__A )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 8 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]:
'''simple docstring'''
lowercase : Any =list(poly_a or [0] )[:]
lowercase : Dict =list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
lowercase : int =len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
lowercase : List[str] =len(self.polyB )
# Add 0 to make lengths equal a power of 2
lowercase : Tuple =int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
lowercase : str =self.__multiply()
def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple:
'''simple docstring'''
lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB]
# Corner case
if len(UpperCAmelCase ) <= 1:
return dft[0]
#
lowercase : List[Any] =self.c_max_length // 2
while next_ncol > 0:
lowercase : str =[[] for i in range(UpperCAmelCase )]
lowercase : List[str] =self.root**next_ncol
# First half of next step
lowercase : Union[str, Any] =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
lowercase : Any =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
lowercase : Tuple =new_dft
lowercase : List[Any] =next_ncol // 2
return dft[0]
def A__ ( self : int ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.__dft('''A''' )
lowercase : Union[str, Any] =self.__dft('''B''' )
lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
lowercase : Tuple =2
while next_ncol <= self.c_max_length:
lowercase : Tuple =[[] for i in range(UpperCAmelCase )]
lowercase : Tuple =self.root ** (next_ncol // 2)
lowercase : Optional[int] =1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
lowercase : List[Any] =new_inverse_c
next_ncol *= 2
# Unpack
lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Dict ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''A = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) )
lowercase : List[str] ='''B = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) )
lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.product ) )
return f'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : List[str]=30 , UpperCAmelCase : Tuple=400 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase : List[str]=True , UpperCAmelCase : int=1 / 255 , UpperCAmelCase : List[Any]=True , ) -> Optional[int]:
'''simple docstring'''
lowercase : Any =size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
lowercase : Dict =parent
lowercase : Union[str, Any] =batch_size
lowercase : List[str] =num_channels
lowercase : int =min_resolution
lowercase : Union[str, Any] =max_resolution
lowercase : str =do_resize
lowercase : Dict =size
lowercase : List[Any] =do_normalize
lowercase : int =image_mean
lowercase : Optional[int] =image_std
lowercase : Union[str, Any] =do_rescale
lowercase : Dict =rescale_factor
lowercase : Union[str, Any] =do_pad
def A__ ( self : List[str] ) -> int:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def A__ ( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=False ) -> str:
'''simple docstring'''
if not batched:
lowercase : Tuple =image_inputs[0]
if isinstance(UpperCAmelCase , Image.Image ):
lowercase , lowercase : List[str] =image.size
else:
lowercase , lowercase : Union[str, Any] =image.shape[1], image.shape[2]
if w < h:
lowercase : Dict =int(self.size['''shortest_edge'''] * h / w )
lowercase : Optional[Any] =self.size['''shortest_edge''']
elif w > h:
lowercase : int =self.size['''shortest_edge''']
lowercase : int =int(self.size['''shortest_edge'''] * w / h )
else:
lowercase : Optional[Any] =self.size['''shortest_edge''']
lowercase : List[str] =self.size['''shortest_edge''']
else:
lowercase : str =[]
for image in image_inputs:
lowercase , lowercase : List[str] =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowercase : List[Any] =max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0]
lowercase : List[str] =max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCAmelCase_ ( __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = DeformableDetrImageProcessor if is_vision_available() else None
def A__ ( self : str ) -> Dict:
'''simple docstring'''
lowercase : Tuple =DeformableDetrImageProcessingTester(self )
@property
def A__ ( self : str ) -> Tuple:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def A__ ( self : List[str] ) -> str:
'''simple docstring'''
lowercase : str =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_rescale''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_pad''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''size''' ) )
def A__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : List[str] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , UpperCAmelCase )
lowercase : int =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , UpperCAmelCase )
def A__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
pass
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
lowercase : int =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
lowercase : List[str] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowercase , lowercase : int =self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowercase , lowercase : str =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
lowercase : List[str] =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
lowercase : str =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowercase , lowercase : Optional[int] =self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowercase : Tuple =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values
lowercase , lowercase : Union[str, Any] =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
lowercase : List[str] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
lowercase : Optional[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowercase , lowercase : List[str] =self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowercase : int =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values
lowercase , lowercase : List[str] =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def A__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
lowercase : Any =json.loads(f.read() )
lowercase : Optional[int] ={'''image_id''': 3_9769, '''annotations''': target}
# encode them
lowercase : Union[str, Any] =DeformableDetrImageProcessor()
lowercase : List[Any] =image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors='''pt''' )
# verify pixel values
lowercase : Tuple =torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase )
lowercase : Optional[int] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) )
# verify area
lowercase : Any =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase ) )
# verify boxes
lowercase : Optional[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase )
lowercase : List[str] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase , atol=1e-3 ) )
# verify image_id
lowercase : Optional[int] =torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase ) )
# verify is_crowd
lowercase : Dict =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase ) )
# verify class_labels
lowercase : List[str] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase ) )
# verify orig_size
lowercase : Tuple =torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase ) )
# verify size
lowercase : int =torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase ) )
@slow
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
lowercase : List[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
lowercase : Optional[Any] =json.loads(f.read() )
lowercase : Optional[Any] ={'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target}
lowercase : Any =pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
lowercase : int =DeformableDetrImageProcessor(format='''coco_panoptic''' )
lowercase : List[Any] =image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors='''pt''' )
# verify pixel values
lowercase : Optional[Any] =torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase )
lowercase : Optional[int] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) )
# verify area
lowercase : Tuple =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase ) )
# verify boxes
lowercase : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase )
lowercase : str =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase , atol=1e-3 ) )
# verify image_id
lowercase : Dict =torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase ) )
# verify is_crowd
lowercase : str =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase ) )
# verify class_labels
lowercase : Optional[int] =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase ) )
# verify masks
lowercase : Union[str, Any] =82_2873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase )
# verify orig_size
lowercase : Union[str, Any] =torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase ) )
# verify size
lowercase : Dict =torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase ) )
| 8 |
'''simple docstring'''
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : List[Any] =str(bin(__A ) )
binary_number += "0" * shift_amount
return binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : Union[str, Any] =str(bin(__A ) )[2:]
if shift_amount >= len(__A ):
return "0b0"
lowercase : Any =binary_number[: len(__A ) - shift_amount]
return "0b" + shifted_binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number
lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:]
lowercase : int =(
'''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number
)
if shift_amount >= len(__A ):
return "0b" + binary_number[0] * len(__A )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__A ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : Optional[NestedDataStructureLike[PathLike]] = None , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Dict , ) -> Any:
'''simple docstring'''
lowercase : Optional[int] =path_or_paths
lowercase : int =split if split or isinstance(UpperCAmelCase , UpperCAmelCase ) else '''train'''
lowercase : Union[str, Any] =features
lowercase : List[Any] =cache_dir
lowercase : Optional[int] =keep_in_memory
lowercase : Tuple =streaming
lowercase : Dict =num_proc
lowercase : Optional[Any] =kwargs
@abstractmethod
def A__ ( self : List[str] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]:
'''simple docstring'''
pass
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : Dict , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] =features
lowercase : Any =cache_dir
lowercase : Union[str, Any] =keep_in_memory
lowercase : int =streaming
lowercase : Dict =num_proc
lowercase : Optional[int] =kwargs
@abstractmethod
def A__ ( self : List[Any] ) -> Union[Dataset, IterableDataset]:
'''simple docstring'''
pass
| 8 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class UpperCAmelCase_ :
"""simple docstring"""
@staticmethod
def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
pass
def lowercase_ ( __A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
SCREAMING_SNAKE_CASE = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : Dict =pipeline(
'''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Optional[Any] =INVOICE_URL
lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
lowercase : Dict ='''What is the placebo?'''
lowercase : Optional[Any] =[
{
'''image''': load_image(UpperCAmelCase ),
'''question''': question,
},
{
'''image''': image,
'''question''': question,
},
{
'''image''': image,
'''question''': question,
'''word_boxes''': word_boxes,
},
]
return dqa_pipeline, examples
def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 )
self.assertEqual(
UpperCAmelCase , [
[
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' )
lowercase : Union[str, Any] =INVOICE_URL
lowercase : Tuple ='''How many cats are there?'''
lowercase : Optional[int] =[
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39},
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40},
]
lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
# We can optionnally pass directly the words and bounding boxes
lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Dict =[]
lowercase : str =[]
lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , )
lowercase : Dict =INVOICE_URL
lowercase : str ='''What is the invoice number?'''
lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , )
lowercase : Dict =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Any =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : str ) -> Dict:
'''simple docstring'''
lowercase : Any =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : Tuple =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , )
lowercase : Tuple =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : str =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
]
]
* 2 , )
lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
lowercase : Dict =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : List[Any] =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , )
lowercase : str =INVOICE_URL
lowercase : int ='''What is the invoice number?'''
lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Union[str, Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
@slow
@require_torch
def A__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , )
lowercase : Any =INVOICE_URL
lowercase : Union[str, Any] ='''What is the invoice number?'''
lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] )
@require_tf
@unittest.skip('''Document question answering not implemented in TF''' )
def A__ ( self : Any ) -> Any:
'''simple docstring'''
pass
| 8 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST',
'ViTMSNModel',
'ViTMSNForImageClassification',
'ViTMSNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 |
'''simple docstring'''
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
if digit_amount > 0:
return round(number - int(__A ) , __A )
return number - int(__A )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 8 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json'}
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
SCREAMING_SNAKE_CASE = {'mgp-str': 27}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int="[GO]" , UpperCAmelCase : Union[str, Any]="[GO]" , UpperCAmelCase : Optional[Any]="[s]" , UpperCAmelCase : Any="[GO]" , **UpperCAmelCase : Dict ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(
unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , pad_token=UpperCAmelCase , **UpperCAmelCase , )
with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
lowercase : List[str] =json.load(UpperCAmelCase )
lowercase : Optional[Any] ={v: k for k, v in self.vocab.items()}
@property
def A__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
return len(self.vocab )
def A__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
return dict(self.vocab , **self.added_tokens_encoder )
def A__ ( self : Optional[int] , UpperCAmelCase : str ) -> Dict:
'''simple docstring'''
lowercase : List[str] =[]
for s in text:
char_tokens.extend(UpperCAmelCase )
return char_tokens
def A__ ( self : List[str] , UpperCAmelCase : Dict ) -> Tuple:
'''simple docstring'''
return self.vocab.get(UpperCAmelCase , self.vocab.get(self.unk_token ) )
def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase )
def A__ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(UpperCAmelCase ) )
return
lowercase : Optional[int] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' )
return (vocab_file,)
| 8 |
'''simple docstring'''
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]:
"""simple docstring"""
return [
int(1_0_0_0 * (box[0] / width) ),
int(1_0_0_0 * (box[1] / height) ),
int(1_0_0_0 * (box[2] / width) ),
int(1_0_0_0 * (box[3] / height) ),
]
def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase : int =to_pil_image(__A )
lowercase , lowercase : Tuple =pil_image.size
lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A )
lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()]
lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowercase : Tuple =[]
for x, y, w, h in zip(__A , __A , __A , __A ):
lowercase : str =[x, y, x + w, y + h]
actual_boxes.append(__A )
# finally, normalize the bounding boxes
lowercase : List[str] =[]
for box in actual_boxes:
normalized_boxes.append(normalize_box(__A , __A , __A ) )
assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''pixel_values''']
def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224}
lowercase : Optional[Any] =get_size_dict(UpperCAmelCase )
lowercase : Optional[Any] =do_resize
lowercase : List[Any] =size
lowercase : List[str] =resample
lowercase : Dict =do_rescale
lowercase : str =rescale_value
lowercase : Optional[int] =do_normalize
lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD
lowercase : List[Any] =apply_ocr
lowercase : Union[str, Any] =ocr_lang
lowercase : str =tesseract_config
def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
lowercase : Tuple =get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
lowercase : Optional[Any] =(size['''height'''], size['''width'''])
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image:
'''simple docstring'''
lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize
lowercase : Tuple =size if size is not None else self.size
lowercase : Optional[int] =get_size_dict(UpperCAmelCase )
lowercase : List[str] =resample if resample is not None else self.resample
lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale
lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize
lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean
lowercase : Optional[int] =image_std if image_std is not None else self.image_std
lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr
lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang
lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config
lowercase : str =make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' )
# All transformations expect numpy arrays.
lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , '''pytesseract''' )
lowercase : int =[]
lowercase : Tuple =[]
for image in images:
lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
words_batch.append(UpperCAmelCase )
boxes_batch.append(UpperCAmelCase )
if do_resize:
lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_rescale:
lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase )
if apply_ocr:
lowercase : int =words_batch
lowercase : List[str] =boxes_batch
return data
| 8 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def lowercase_ ( __A : Dict ) -> Tuple:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
lowercase : Optional[int] =k.replace(__A , __A )
if k.startswith('''encoder''' ):
lowercase : Any =k.replace('''.attn''' , '''.self_attn''' )
lowercase : List[Any] =k.replace('''norm1''' , '''self_attn_layer_norm''' )
lowercase : List[Any] =k.replace('''norm2''' , '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
lowercase : str =k.replace('''norm1''' , '''self_attn_layer_norm''' )
lowercase : int =k.replace('''norm2''' , '''encoder_attn_layer_norm''' )
lowercase : Optional[int] =k.replace('''norm3''' , '''final_layer_norm''' )
return k
def lowercase_ ( __A : Dict ) -> Optional[int]:
"""simple docstring"""
lowercase : Tuple =[
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
lowercase : Optional[int] =sd.pop(__A )
lowercase : List[str] =k.replace('''layernorm_embedding''' , '''layer_norm''' )
assert new_k not in sd
lowercase : List[str] =v
SCREAMING_SNAKE_CASE = ['START']
@torch.no_grad()
def lowercase_ ( __A : List[str] , __A : Optional[Any] , __A : str ) -> Any:
"""simple docstring"""
lowercase : Optional[Any] =torch.load(__A , map_location='''cpu''' )
lowercase : Optional[int] =model['''model''']
lowercase : List[str] =BlenderbotConfig.from_json_file(__A )
lowercase : Union[str, Any] =BlenderbotForConditionalGeneration(__A )
lowercase : Tuple =m.model.state_dict().keys()
lowercase : Optional[Any] =[]
lowercase : Union[str, Any] ={}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
lowercase : int =rename_state_dict_key(__A )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
lowercase : List[Any] =v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__A )
m.model.load_state_dict(__A , strict=__A )
m.half()
m.save_pretrained(__A )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
SCREAMING_SNAKE_CASE = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 8 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =parent
lowercase : Any =13
lowercase : Any =7
lowercase : Optional[int] =True
lowercase : Optional[int] =True
lowercase : Tuple =False
lowercase : Optional[Any] =True
lowercase : Dict =99
lowercase : Union[str, Any] =32
lowercase : Union[str, Any] =2
lowercase : Union[str, Any] =4
lowercase : List[str] =37
lowercase : str ='''gelu'''
lowercase : Dict =0.1
lowercase : List[Any] =0.1
lowercase : List[str] =512
lowercase : Optional[int] =16
lowercase : Optional[Any] =2
lowercase : List[str] =0.0_2
lowercase : Any =3
lowercase : Optional[Any] =4
lowercase : int =None
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Any =None
if self.use_input_mask:
lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Union[str, Any] =None
lowercase : Any =None
lowercase : str =None
if self.use_labels:
lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices )
lowercase : Dict =DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =TFDistilBertModel(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : List[str] =model(UpperCAmelCase )
lowercase : str =[input_ids, input_mask]
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase )
lowercase : int ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase )
lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]:
'''simple docstring'''
lowercase : List[Any] =self.num_choices
lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase )
lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : Tuple ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase )
lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : str =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : int =self.prepare_config_and_inputs()
((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs
lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
UpperCamelCase_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Dict ) -> str:
'''simple docstring'''
lowercase : str =TFDistilBertModelTester(self )
lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase )
def A__ ( self : Tuple ) -> Any:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase )
def A__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
lowercase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase )
def A__ ( self : Any ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase )
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase )
@slow
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase : List[Any] =model(UpperCAmelCase )[0]
lowercase : str =[1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
lowercase : Optional[int] =tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : int ) -> int:
"""simple docstring"""
lowercase : str =[1]
lowercase , lowercase , lowercase : Dict =0, 0, 0
lowercase : List[Any] =ugly_nums[ia] * 2
lowercase : str =ugly_nums[ia] * 3
lowercase : List[str] =ugly_nums[ia] * 5
for _ in range(1 , __A ):
lowercase : str =min(__A , __A , __A )
ugly_nums.append(__A )
if next_num == next_a:
ia += 1
lowercase : Union[str, Any] =ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
lowercase : Any =ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
lowercase : Optional[int] =ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(f"""{ugly_numbers(200) = }""")
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RemBertForCausalLM',
'RemBertForMaskedLM',
'RemBertForMultipleChoice',
'RemBertForQuestionAnswering',
'RemBertForSequenceClassification',
'RemBertForTokenClassification',
'RemBertLayer',
'RemBertModel',
'RemBertPreTrainedModel',
'load_tf_weights_in_rembert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRemBertForCausalLM',
'TFRemBertForMaskedLM',
'TFRemBertForMultipleChoice',
'TFRemBertForQuestionAnswering',
'TFRemBertForSequenceClassification',
'TFRemBertForTokenClassification',
'TFRemBertLayer',
'TFRemBertModel',
'TFRemBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str]=7 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=30 , UpperCAmelCase : Union[str, Any]=400 , UpperCAmelCase : Any=True , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=0.9 , UpperCAmelCase : str=None , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =size if size is not None else {'''shortest_edge''': 30}
lowercase : Any =crop_size if crop_size is not None else {'''height''': 30, '''width''': 30}
lowercase : List[str] =parent
lowercase : Any =batch_size
lowercase : Tuple =num_channels
lowercase : List[Any] =min_resolution
lowercase : Union[str, Any] =max_resolution
lowercase : int =do_resize_and_center_crop
lowercase : Any =size
lowercase : Union[str, Any] =crop_pct
lowercase : List[str] =crop_size
lowercase : Any =do_normalize
lowercase : Any =image_mean
lowercase : Union[str, Any] =image_std
def A__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class UpperCAmelCase_ ( __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = PoolFormerImageProcessor if is_vision_available() else None
def A__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
lowercase : Tuple =PoolFormerImageProcessingTester(self )
@property
def A__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def A__ ( self : List[str] ) -> Any:
'''simple docstring'''
lowercase : Optional[int] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , '''do_resize_and_center_crop''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''size''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''crop_pct''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''image_std''' ) )
def A__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
lowercase : List[str] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 30} )
self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} )
lowercase : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def A__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
pass
def A__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
lowercase : Dict =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
lowercase : List[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowercase : str =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
lowercase : List[str] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
lowercase : Optional[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowercase : Optional[Any] =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A__ ( self : Dict ) -> int:
'''simple docstring'''
lowercase : Tuple =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
lowercase : List[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowercase : Optional[Any] =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 8 |
'''simple docstring'''
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch'))
def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]:
"""simple docstring"""
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' )
lowercase : Any =STR_OPERATION_TO_FUNC[operation]
if isinstance(__A , __A ):
lowercase : List[Any] =parse(importlib.metadata.version(__A ) )
return operation(__A , parse(__A ) )
def lowercase_ ( __A : str , __A : str ) -> Tuple:
"""simple docstring"""
return compare_versions(__A , __A , __A )
| 8 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : Dict=[30, 30] , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int=32 , UpperCAmelCase : Any=5 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : str=37 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[int]=0.0_2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : Union[str, Any]=10 , ) -> Optional[int]:
'''simple docstring'''
lowercase : int =parent
lowercase : str =batch_size
lowercase : List[Any] =image_size
lowercase : Tuple =patch_size
lowercase : str =num_channels
lowercase : int =is_training
lowercase : Dict =use_labels
lowercase : Dict =hidden_size
lowercase : Any =num_hidden_layers
lowercase : Optional[Any] =num_attention_heads
lowercase : Optional[int] =intermediate_size
lowercase : int =hidden_act
lowercase : Dict =hidden_dropout_prob
lowercase : int =attention_probs_dropout_prob
lowercase : List[str] =type_sequence_label_size
lowercase : Any =initializer_range
lowercase : str =num_labels
lowercase : str =scope
lowercase : Dict =n_targets
lowercase : Any =num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
lowercase : int =(image_size[1] // patch_size) * (image_size[0] // patch_size)
lowercase : Tuple =num_patches + 1 + self.num_detection_tokens
def A__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
lowercase : List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
lowercase : Dict =None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
lowercase : Union[str, Any] =[]
for i in range(self.batch_size ):
lowercase : Tuple ={}
lowercase : str =torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=UpperCAmelCase )
lowercase : List[Any] =torch.rand(self.n_targets , 4 , device=UpperCAmelCase )
labels.append(UpperCAmelCase )
lowercase : Any =self.get_config()
return config, pixel_values, labels
def A__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def A__ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : Optional[Any] =YolosModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def A__ ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ) -> Any:
'''simple docstring'''
lowercase : Tuple =YolosForObjectDetection(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : Tuple =model(pixel_values=UpperCAmelCase )
lowercase : str =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
lowercase : str =model(pixel_values=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def A__ ( self : str ) -> List[Any]:
'''simple docstring'''
lowercase : Dict =self.prepare_config_and_inputs()
lowercase , lowercase , lowercase : Union[str, Any] =config_and_inputs
lowercase : Union[str, Any] ={'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
UpperCamelCase_ = (
{'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : int=False ) -> Any:
'''simple docstring'''
lowercase : Dict =super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
lowercase : Any =[]
for i in range(self.model_tester.batch_size ):
lowercase : Optional[Any] ={}
lowercase : int =torch.ones(
size=(self.model_tester.n_targets,) , device=UpperCAmelCase , dtype=torch.long )
lowercase : Tuple =torch.ones(
self.model_tester.n_targets , 4 , device=UpperCAmelCase , dtype=torch.float )
labels.append(UpperCAmelCase )
lowercase : int =labels
return inputs_dict
def A__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
lowercase : List[str] =YolosModelTester(self )
lowercase : Optional[Any] =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
pass
def A__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Optional[int] =model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowercase : List[Any] =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A__ ( self : List[Any] ) -> Any:
'''simple docstring'''
lowercase , lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Any =model_class(UpperCAmelCase )
lowercase : List[Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase : str =[*signature.parameters.keys()]
lowercase : Optional[int] =['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common()
lowercase : Any =True
# in YOLOS, the seq_len is different
lowercase : Union[str, Any] =self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
lowercase : Optional[int] =True
lowercase : int =False
lowercase : Any =True
lowercase : Optional[Any] =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : Optional[int] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowercase : List[Any] =outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowercase : Dict =True
lowercase : List[Any] =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : List[str] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowercase : int =outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
lowercase : Dict =len(UpperCAmelCase )
# Check attention is always last and order is fine
lowercase : Optional[int] =True
lowercase : Tuple =True
lowercase : Dict =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : Tuple =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowercase : Optional[int] =1
self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase ) )
lowercase : Optional[int] =outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def A__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] ):
lowercase : List[Any] =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : Dict =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowercase : Optional[Any] =outputs.hidden_states
lowercase : Any =getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# YOLOS has a different seq_length
lowercase : int =self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Optional[Any] =True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase : Dict =True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A__ ( self : int ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*UpperCAmelCase )
@slow
def A__ ( self : Any ) -> int:
'''simple docstring'''
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase : str =YolosModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowercase_ ( ) -> List[str]:
"""simple docstring"""
lowercase : Optional[int] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None
@slow
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[Any] =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCAmelCase )
lowercase : Optional[int] =self.default_image_processor
lowercase : Optional[Any] =prepare_img()
lowercase : Tuple =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowercase : Optional[Any] =model(inputs.pixel_values )
# verify outputs
lowercase : Dict =torch.Size((1, 100, 92) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowercase : Optional[int] =torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCAmelCase , )
lowercase : str =torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
# verify postprocessing
lowercase : int =image_processor.post_process_object_detection(
UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
lowercase : Union[str, Any] =torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCAmelCase )
lowercase : List[Any] =[75, 75, 17, 63, 17]
lowercase : Union[str, Any] =torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCAmelCase )
self.assertEqual(len(results['''scores'''] ) , 5 )
self.assertTrue(torch.allclose(results['''scores'''] , UpperCAmelCase , atol=1e-4 ) )
self.assertSequenceEqual(results['''labels'''].tolist() , UpperCAmelCase )
self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCAmelCase ) )
| 8 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 8 | 1 |
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
UpperCamelCase_ = field(
default=__A , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCamelCase_ = field(
default=__A , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
UpperCamelCase_ = field(
default=__A , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
UpperCamelCase_ = field(
default=__A , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Union[str, Any] =super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowercase : List[str] =v.to_dict()
return d
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def lowercase_ ( __A : Dict ) -> Tuple:
"""simple docstring"""
if not is_accelerate_available():
return method
lowercase : Union[str, Any] =version.parse(accelerate.__version__ ).base_version
if version.parse(__A ) < version.parse('''0.17.0''' ):
return method
def wrapper(self : str , *__A : Union[str, Any] , **__A : Tuple ):
if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ):
self._hf_hook.pre_forward(self )
return method(self , *__A , **__A )
return wrapper
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegaForCausalLM',
'MegaForMaskedLM',
'MegaForMultipleChoice',
'MegaForQuestionAnswering',
'MegaForSequenceClassification',
'MegaForTokenClassification',
'MegaModel',
'MegaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : int , __A : int , __A : int ) -> float:
"""simple docstring"""
lowercase : Union[str, Any] =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def lowercase_ ( ) -> Union[str, Any]:
"""simple docstring"""
print(sum_of_series(1 , 1 , 1_0 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 |
'''simple docstring'''
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514}
SCREAMING_SNAKE_CASE = {}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = HerbertTokenizer
def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(
UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , )
def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : List[Any] =[self.cls_token_id]
lowercase : Any =[self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Optional[Any] =[self.sep_token_id]
lowercase : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 8 | 1 |
'''simple docstring'''
from __future__ import annotations
import queue
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =data
lowercase : str =None
lowercase : Dict =None
def lowercase_ ( ) -> TreeNode:
"""simple docstring"""
print('''\n********Press N to stop entering at any point of time********\n''' )
lowercase : List[str] =input('''Enter the value of the root node: ''' ).strip().lower()
lowercase : queue.Queue =queue.Queue()
lowercase : Union[str, Any] =TreeNode(int(__A ) )
q.put(__A )
while not q.empty():
lowercase : Dict =q.get()
lowercase : Optional[Any] =F'Enter the left node of {node_found.data}: '
lowercase : Tuple =input(__A ).strip().lower() or '''n'''
if check == "n":
return tree_node
lowercase : Tuple =TreeNode(int(__A ) )
lowercase : Optional[int] =left_node
q.put(__A )
lowercase : Union[str, Any] =F'Enter the right node of {node_found.data}: '
lowercase : Tuple =input(__A ).strip().lower() or '''n'''
if check == "n":
return tree_node
lowercase : Optional[Any] =TreeNode(int(__A ) )
lowercase : List[str] =right_node
q.put(__A )
raise
def lowercase_ ( __A : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(__A , __A ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def lowercase_ ( __A : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(__A , __A ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def lowercase_ ( __A : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(__A , __A ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def lowercase_ ( __A : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(__A , __A ) or not node:
return
lowercase : queue.Queue =queue.Queue()
q.put(__A )
while not q.empty():
lowercase : List[Any] =q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase_ ( __A : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(__A , __A ) or not node:
return
lowercase : queue.Queue =queue.Queue()
q.put(__A )
while not q.empty():
lowercase : Optional[Any] =[]
while not q.empty():
lowercase : Tuple =q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__A )
def lowercase_ ( __A : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(__A , __A ) or not node:
return
lowercase : list[TreeNode] =[]
lowercase : Union[str, Any] =node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(__A )
lowercase : Dict =n.left
# end of while means current node doesn't have left child
lowercase : List[str] =stack.pop()
# start to traverse its right child
lowercase : List[str] =n.right
def lowercase_ ( __A : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(__A , __A ) or not node:
return
lowercase : list[TreeNode] =[]
lowercase : List[str] =node
while n or stack:
while n:
stack.append(__A )
lowercase : Optional[Any] =n.left
lowercase : Tuple =stack.pop()
print(n.data , end=''',''' )
lowercase : Union[str, Any] =n.right
def lowercase_ ( __A : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(__A , __A ) or not node:
return
lowercase , lowercase : Tuple =[], []
lowercase : Optional[int] =node
stacka.append(__A )
while stacka: # to find the reversed order of post order, store it in stack2
lowercase : Union[str, Any] =stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__A )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def lowercase_ ( __A : str = "" , __A : List[Any]=5_0 , __A : List[Any]="*" ) -> str:
"""simple docstring"""
if not s:
return "\n" + width * char
lowercase , lowercase : Optional[int] =divmod(width - len(__A ) - 2 , 2 )
return F'{left * char} {s} {(left + extra) * char}'
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('Binary Tree Traversals'))
SCREAMING_SNAKE_CASE = build_tree()
print(prompt('Pre Order Traversal'))
pre_order(node)
print(prompt() + '\n')
print(prompt('In Order Traversal'))
in_order(node)
print(prompt() + '\n')
print(prompt('Post Order Traversal'))
post_order(node)
print(prompt() + '\n')
print(prompt('Level Order Traversal'))
level_order(node)
print(prompt() + '\n')
print(prompt('Actual Level Order Traversal'))
level_order_actual(node)
print('*' * 50 + '\n')
print(prompt('Pre Order Traversal - Iteration Version'))
pre_order_iter(node)
print(prompt() + '\n')
print(prompt('In Order Traversal - Iteration Version'))
in_order_iter(node)
print(prompt() + '\n')
print(prompt('Post Order Traversal - Iteration Version'))
post_order_iter(node)
print(prompt())
| 8 |
'''simple docstring'''
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Any ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[int] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Any ='''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Tuple ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : Tuple =self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Optional[Any] ='''1'''
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
lowercase : str ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Optional[int] ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : str =self.get_env()
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''
from transformers import BertConfig, BertModel, BertTokenizer
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
lowercase : int ='''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Any ='''1'''
lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] ='''
from transformers import pipeline
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
lowercase : Tuple ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
lowercase : Tuple =self.get_env()
lowercase : Optional[int] ='''1'''
lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def A__ ( self : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[str] ='''
from transformers import AutoModel
'''
lowercase : Dict ='''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : List[str] ='''1'''
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 8 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {
'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = '''sew-d'''
def __init__( self : Optional[Any] , UpperCAmelCase : Any=32 , UpperCAmelCase : str=768 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : List[Any]=3072 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : str=256 , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : str=("p2c", "c2p") , UpperCAmelCase : Optional[Any]="layer_norm" , UpperCAmelCase : Dict="gelu_python" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[str]=1e-7 , UpperCAmelCase : Dict=1e-5 , UpperCAmelCase : Optional[Any]="group" , UpperCAmelCase : str="gelu" , UpperCAmelCase : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Dict=128 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=0.0_5 , UpperCAmelCase : Tuple=10 , UpperCAmelCase : Any=2 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Tuple=10 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Optional[Any]="mean" , UpperCAmelCase : Any=False , UpperCAmelCase : int=False , UpperCAmelCase : List[str]=256 , UpperCAmelCase : str=0 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Tuple=2 , **UpperCAmelCase : int , ) -> str:
'''simple docstring'''
super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowercase : Union[str, Any] =hidden_size
lowercase : Optional[Any] =feat_extract_norm
lowercase : Dict =feat_extract_activation
lowercase : Optional[Any] =list(UpperCAmelCase )
lowercase : Optional[int] =list(UpperCAmelCase )
lowercase : List[Any] =list(UpperCAmelCase )
lowercase : Dict =conv_bias
lowercase : Any =num_conv_pos_embeddings
lowercase : Tuple =num_conv_pos_embedding_groups
lowercase : List[Any] =len(self.conv_dim )
lowercase : Any =num_hidden_layers
lowercase : List[Any] =intermediate_size
lowercase : Any =squeeze_factor
lowercase : Dict =max_position_embeddings
lowercase : Union[str, Any] =position_buckets
lowercase : List[Any] =share_att_key
lowercase : Optional[int] =relative_attention
lowercase : List[Any] =norm_rel_ebd
lowercase : List[str] =list(UpperCAmelCase )
lowercase : Optional[Any] =hidden_act
lowercase : Optional[int] =num_attention_heads
lowercase : int =hidden_dropout
lowercase : Optional[Any] =attention_dropout
lowercase : Optional[Any] =activation_dropout
lowercase : Union[str, Any] =feat_proj_dropout
lowercase : Union[str, Any] =final_dropout
lowercase : Dict =layer_norm_eps
lowercase : Tuple =feature_layer_norm_eps
lowercase : Optional[Any] =initializer_range
lowercase : Optional[int] =vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase : str =apply_spec_augment
lowercase : str =mask_time_prob
lowercase : int =mask_time_length
lowercase : Tuple =mask_time_min_masks
lowercase : Dict =mask_feature_prob
lowercase : Any =mask_feature_length
lowercase : Dict =mask_feature_min_masks
# ctc loss
lowercase : List[str] =ctc_loss_reduction
lowercase : Dict =ctc_zero_infinity
# sequence classification
lowercase : int =use_weighted_layer_sum
lowercase : Dict =classifier_proj_size
@property
def A__ ( self : int ) -> Any:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 8 |
'''simple docstring'''
SCREAMING_SNAKE_CASE = 'Alexander Joslin'
import operator as op
from .stack import Stack
def lowercase_ ( __A : str ) -> int:
"""simple docstring"""
lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
lowercase : Stack[int] =Stack()
lowercase : Stack[str] =Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__A ) )
elif i in operators:
# RULE 2
operator_stack.push(__A )
elif i == ")":
# RULE 4
lowercase : Optional[Any] =operator_stack.peek()
operator_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : List[str] =operators[opr](__A , __A )
operand_stack.push(__A )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))'
# answer = 45
print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 8 | 1 |
'''simple docstring'''
SCREAMING_SNAKE_CASE = {
'a': 'AAAAA',
'b': 'AAAAB',
'c': 'AAABA',
'd': 'AAABB',
'e': 'AABAA',
'f': 'AABAB',
'g': 'AABBA',
'h': 'AABBB',
'i': 'ABAAA',
'j': 'BBBAA',
'k': 'ABAAB',
'l': 'ABABA',
'm': 'ABABB',
'n': 'ABBAA',
'o': 'ABBAB',
'p': 'ABBBA',
'q': 'ABBBB',
'r': 'BAAAA',
's': 'BAAAB',
't': 'BAABA',
'u': 'BAABB',
'v': 'BBBAB',
'w': 'BABAA',
'x': 'BABAB',
'y': 'BABBA',
'z': 'BABBB',
' ': ' ',
}
SCREAMING_SNAKE_CASE = {value: key for key, value in encode_dict.items()}
def lowercase_ ( __A : str ) -> str:
"""simple docstring"""
lowercase : Tuple =''''''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('''encode() accepts only letters of the alphabet and spaces''' )
return encoded
def lowercase_ ( __A : str ) -> str:
"""simple docstring"""
if set(__A ) - {"A", "B", " "} != set():
raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' )
lowercase : Any =''''''
for word in coded.split():
while len(__A ) != 0:
decoded += decode_dict[word[:5]]
lowercase : List[str] =word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 8 |
'''simple docstring'''
import re
def lowercase_ ( __A : str ) -> bool:
"""simple docstring"""
lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' )
if match := re.search(__A , __A ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator('+918827897895'))
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : str ) -> Tuple: # noqa: E741
"""simple docstring"""
lowercase : Optional[int] =len(__A )
lowercase : Optional[Any] =0
lowercase : Any =[0] * n
lowercase : List[Any] =[False] * n
lowercase : List[Any] =[False] * n
def dfs(__A : Any , __A : int , __A : Tuple , __A : Any ):
if parent == root:
out_edge_count += 1
lowercase : List[str] =True
lowercase : Tuple =at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
lowercase : int =dfs(__A , __A , __A , __A )
lowercase : Optional[int] =min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
lowercase : List[str] =True
# AP found via cycle
if at == low[to]:
lowercase : Optional[int] =True
else:
lowercase : int =min(low[at] , __A )
return out_edge_count
for i in range(__A ):
if not visited[i]:
lowercase : Optional[Any] =0
lowercase : List[str] =dfs(__A , __A , -1 , __A )
lowercase : Dict =out_edge_count > 1
for x in range(len(__A ) ):
if is_art[x] is True:
print(__A )
# Adjacency list of graph
SCREAMING_SNAKE_CASE = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 8 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] =parent
lowercase : Tuple =13
lowercase : Any =7
lowercase : Union[str, Any] =True
lowercase : Any =True
lowercase : Optional[int] =True
lowercase : List[str] =True
lowercase : Tuple =99
lowercase : str =32
lowercase : Union[str, Any] =2
lowercase : Dict =4
lowercase : Union[str, Any] =37
lowercase : Union[str, Any] ='''gelu'''
lowercase : Any =0.1
lowercase : Dict =0.1
lowercase : Dict =512
lowercase : List[str] =16
lowercase : Dict =2
lowercase : int =0.0_2
lowercase : List[Any] =3
lowercase : List[str] =4
lowercase : Optional[Any] =None
def A__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : str =None
if self.use_input_mask:
lowercase : int =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Any =None
if self.use_token_type_ids:
lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase : List[Any] =None
lowercase : List[str] =None
lowercase : List[str] =None
if self.use_labels:
lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : Any =ids_tensor([self.batch_size] , self.num_choices )
lowercase : List[Any] =RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase )
lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowercase : Tuple =[input_ids, input_mask]
lowercase : str =model(UpperCAmelCase )
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any:
'''simple docstring'''
lowercase : Dict =True
lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase )
lowercase : Union[str, Any] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Optional[Any] =model(UpperCAmelCase )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase )
lowercase : List[str] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] =self.num_labels
lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase )
lowercase : Optional[int] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Optional[Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =self.num_choices
lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase )
lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =self.num_labels
lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase )
lowercase : Tuple ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any:
'''simple docstring'''
lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase )
lowercase : List[str] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
lowercase : Optional[Any] =self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) : Optional[int] =config_and_inputs
lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase_ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple:
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerModelTester(self )
lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def A__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase )
def A__ ( self : int ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
lowercase : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
lowercase : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def A__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def A__ ( self : str ) -> str:
'''simple docstring'''
lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase : List[str] =model(UpperCAmelCase )[0]
# TODO Replace vocab size
lowercase : Tuple =5_0000
lowercase : List[str] =[1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
lowercase : Dict =tf.constant(
[
[
[-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6],
[-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7],
[-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = 1e-4
def A__ ( self : int ) -> List[Any]:
'''simple docstring'''
lowercase : Union[str, Any] =tf.constant([[4, 10]] )
lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
lowercase : Any =emba(input_ids.shape )
lowercase : List[str] =tf.constant(
[[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] )
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
def A__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
lowercase : Optional[Any] =tf.constant(
[
[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0],
[0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7],
[0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0],
] )
lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
lowercase : str =emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = 1e-4
def A__ ( self : Dict ) -> Dict:
'''simple docstring'''
lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :]
lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : Any =tf.constant(
[
[0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0],
[-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3],
[-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5],
[-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1],
[0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0],
[3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3],
] )
lowercase : int =tf.constant(
[
[0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0],
[0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3],
[1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5],
[2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1],
[-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0],
[-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
| 8 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 8 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''image_processor''', '''tokenizer''']
UpperCamelCase_ = '''LayoutLMv2ImageProcessor'''
UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''')
def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , UpperCAmelCase , )
lowercase : Any =kwargs.pop('''feature_extractor''' )
lowercase : Dict =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowercase : List[str] =features['''words''']
lowercase : Optional[Any] =self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
# add pixel values
lowercase : List[str] =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] )
lowercase : Dict =images
return encoded_inputs
def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str:
'''simple docstring'''
lowercase : str =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' )
return images_with_overflow
def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , )
return self.image_processor_class
@property
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , )
return self.image_processor
| 8 | 1 |
'''simple docstring'''
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowercase_ ( __A : Union[str, Any] , __A : Dict , __A : List[str]=0 ) -> Union[str, Any]:
"""simple docstring"""
if name is None:
lowercase : Optional[Any] =None
else:
lowercase : int ='''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(5_0 - spaces ) + '''s}'''
lowercase : Optional[int] =fmt.format(__A )
# Print and recurse (if needed).
if isinstance(__A , __A ):
if msg is not None:
print(__A )
for k in val.keys():
recursive_print(__A , val[k] , spaces + 2 )
elif isinstance(__A , torch.Tensor ):
print(__A , ''':''' , val.size() )
else:
print(__A , ''':''' , __A )
def lowercase_ ( __A : Optional[Any] , __A : Optional[int] , __A : Optional[Any] , __A : Optional[int] , __A : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase : Optional[int] =param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
lowercase : int =(num_heads, hidden_size, num_splits) + input_shape[1:]
lowercase : int =param.view(*__A )
lowercase : Optional[Any] =param.transpose(0 , 2 )
lowercase : Union[str, Any] =param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
lowercase : List[Any] =(num_heads, num_splits, hidden_size) + input_shape[1:]
lowercase : Tuple =param.view(*__A )
lowercase : Any =param.transpose(0 , 1 ).contiguous()
lowercase : str =param.view(*__A )
return param
def lowercase_ ( __A : Dict , __A : Union[str, Any] , __A : List[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase : Union[str, Any] ={}
# old versions did not store training args
lowercase : int =input_state_dict.get('''args''' , __A )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
lowercase : Tuple =ds_args.padded_vocab_size
lowercase : Any =ds_args.max_position_embeddings
lowercase : Dict =ds_args.hidden_size
lowercase : Any =ds_args.num_layers
lowercase : Dict =ds_args.num_attention_heads
lowercase : int =ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
lowercase : Any =config.n_head
# The hidden_size per head.
lowercase : Optional[int] =config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
lowercase : str =input_state_dict['''checkpoint_version''']
else:
lowercase : Any =0.0
# The model.
lowercase : Tuple =input_state_dict['''model''']
# The language model.
lowercase : Any =model['''language_model''']
# The embeddings.
lowercase : Union[str, Any] =lm['''embedding''']
# The word embeddings.
lowercase : Optional[Any] =embeddings['''word_embeddings''']['''weight''']
# Truncate the embedding table to vocab_size rows.
lowercase : Dict =word_embeddings[: config.vocab_size, :]
lowercase : str =word_embeddings
# The position embeddings.
lowercase : int =embeddings['''position_embeddings''']['''weight''']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
lowercase : List[str] =pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' )
# Store the position embeddings.
lowercase : List[Any] =pos_embeddings
# The transformer.
lowercase : Dict =lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder''']
# The regex to extract layer names.
lowercase : Dict =re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' )
# The simple map of names for "automated" rules.
lowercase : List[str] ={
'''attention.dense''': '''.attn.c_proj.''',
'''self_attention.dense''': '''.attn.c_proj.''',
'''mlp.dense_h_to_4h''': '''.mlp.c_fc.''',
'''mlp.dense_4h_to_h''': '''.mlp.c_proj.''',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
lowercase : Optional[Any] =layer_re.match(__A )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
lowercase : List[Any] =int(m.group(1 ) )
# The name of the operation.
lowercase : Dict =m.group(2 )
# Is it a weight or a bias?
lowercase : Any =m.group(3 )
# The name of the layer.
lowercase : int =F'transformer.h.{layer_idx}'
# For layernorm(s), simply store the layer norm.
if op_name.endswith('''layernorm''' ):
lowercase : List[Any] ='''ln_1''' if op_name.startswith('''input''' ) else '''ln_2'''
lowercase : Any =val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
lowercase : List[str] =torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , __A , __A )
lowercase : Any =causal_mask
# Insert a "dummy" tensor for masked_bias.
lowercase : Tuple =torch.tensor(-1E4 , dtype=torch.floataa )
lowercase : int =masked_bias
lowercase : Optional[Any] =fix_query_key_value_ordering(__A , __A , 3 , __A , __A )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
lowercase : Tuple =out_val.transpose(0 , 1 ).contiguous()
# Store.
lowercase : Any =out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
lowercase : List[str] =fix_query_key_value_ordering(__A , __A , 3 , __A , __A )
# Store. No change of shape.
lowercase : Union[str, Any] =out_val
# Transpose the weights.
elif weight_or_bias == "weight":
lowercase : List[str] =megatron_to_transformers[op_name]
lowercase : Any =val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
lowercase : str =megatron_to_transformers[op_name]
lowercase : str =val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
lowercase : List[Any] =transformer['''final_layernorm.weight''']
lowercase : str =transformer['''final_layernorm.bias''']
# For LM head, transformers' wants the matrix to weight embeddings.
lowercase : List[str] =word_embeddings
# It should be done!
return output_state_dict
def lowercase_ ( ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Optional[Any] =argparse.ArgumentParser()
parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' )
parser.add_argument(
'''path_to_checkpoint''' , type=__A , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , )
parser.add_argument(
'''--config_file''' , default='''''' , type=__A , help='''An optional config json file describing the pre-trained model.''' , )
lowercase : Dict =parser.parse_args()
# Extract the basename.
lowercase : Dict =os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' )
if args.path_to_checkpoint.endswith('''.zip''' ):
with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint:
with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict:
lowercase : Optional[Any] =torch.load(__A , map_location='''cpu''' )
else:
lowercase : str =torch.load(args.path_to_checkpoint , map_location='''cpu''' )
lowercase : List[Any] =input_state_dict.get('''args''' , __A )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
lowercase : Optional[Any] ='''gelu_fast'''
elif ds_args.openai_gelu:
lowercase : Tuple ='''gelu_new'''
else:
lowercase : str ='''gelu'''
else:
# in the very early days this used to be "gelu_new"
lowercase : Dict ='''gelu_new'''
# Spell out all parameters in case the defaults change.
lowercase : List[str] =GPTaConfig(
vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=__A , summary_activation=__A , summary_proj_to_labels=__A , summary_first_dropout=0.1 , scale_attn_weights=__A , use_cache=__A , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , )
else:
lowercase : List[Any] =GPTaConfig.from_json_file(args.config_file )
lowercase : Any =['''GPT2LMHeadModel''']
# Convert.
print('''Converting''' )
lowercase : Dict =convert_megatron_checkpoint(__A , __A , __A )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(__A , __A )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
lowercase : Tuple =ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
lowercase : Optional[int] ='''gpt2'''
elif tokenizer_type == "PretrainedFromHF":
lowercase : Any =ds_args.tokenizer_name_or_path
else:
raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' )
else:
lowercase : List[Any] ='''gpt2'''
lowercase : Optional[int] =AutoTokenizer.from_pretrained(__A )
lowercase : Any =type(__A ).__name__
lowercase : Union[str, Any] =tokenizer_class
# Store the config to file.
print('''Saving config''' )
config.save_pretrained(__A )
# Save tokenizer based on args
print(F'Adding {tokenizer_class} tokenizer files' )
tokenizer.save_pretrained(__A )
# Store the state_dict to file.
lowercase : Any =os.path.join(__A , '''pytorch_model.bin''' )
print(F'Saving checkpoint to "{output_checkpoint_file}"' )
torch.save(__A , __A )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 8 |
'''simple docstring'''
def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
"""simple docstring"""
try:
lowercase : Any =int(__A )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
lowercase : Optional[Any] =1
lowercase : Dict =2
while i * i <= n:
while n % i == 0:
lowercase : Optional[int] =i
n //= i
i += 1
if n > 1:
lowercase : Dict =n
return int(__A )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 8 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
if is_vision_available():
import PIL
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''pixel_values''']
def __init__( self : str , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : bool = True , **UpperCAmelCase : Tuple , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
lowercase : Union[str, Any] =size if size is not None else {'''shortest_edge''': 224}
lowercase : List[str] =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
lowercase : Union[str, Any] =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowercase : int =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase , param_name='''crop_size''' )
lowercase : List[str] =do_resize
lowercase : Dict =size
lowercase : Any =resample
lowercase : str =do_center_crop
lowercase : Optional[int] =crop_size
lowercase : List[str] =do_rescale
lowercase : List[str] =rescale_factor
lowercase : Optional[Any] =do_normalize
lowercase : str =image_mean if image_mean is not None else OPENAI_CLIP_MEAN
lowercase : Union[str, Any] =image_std if image_std is not None else OPENAI_CLIP_STD
lowercase : str =do_convert_rgb
def A__ ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ) -> np.ndarray:
'''simple docstring'''
lowercase : str =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
lowercase : Optional[int] =get_resize_output_image_size(UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase )
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : List[str] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ) -> np.ndarray:
'''simple docstring'''
lowercase : Dict =get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : str , ) -> List[Any]:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : int , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : int = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase : Dict , ) -> PIL.Image.Image:
'''simple docstring'''
lowercase : int =do_resize if do_resize is not None else self.do_resize
lowercase : Any =size if size is not None else self.size
lowercase : List[str] =get_size_dict(UpperCAmelCase , param_name='''size''' , default_to_square=UpperCAmelCase )
lowercase : Tuple =resample if resample is not None else self.resample
lowercase : Any =do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase : str =crop_size if crop_size is not None else self.crop_size
lowercase : Tuple =get_size_dict(UpperCAmelCase , param_name='''crop_size''' , default_to_square=UpperCAmelCase )
lowercase : Optional[int] =do_rescale if do_rescale is not None else self.do_rescale
lowercase : Dict =rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase : List[str] =do_normalize if do_normalize is not None else self.do_normalize
lowercase : int =image_mean if image_mean is not None else self.image_mean
lowercase : Dict =image_std if image_std is not None else self.image_std
lowercase : Any =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowercase : Optional[int] =make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowercase : Dict =[convert_to_rgb(UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
lowercase : Union[str, Any] =[to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
lowercase : Optional[Any] =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
lowercase : Optional[int] =[self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
lowercase : Dict =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
lowercase : Tuple =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
lowercase : Optional[Any] ={'''pixel_values''': images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
| 8 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
lowercase : str =u
for i in range(1 , __A ):
lowercase : Any =temp * (u - i)
return temp
def lowercase_ ( ) -> None:
"""simple docstring"""
lowercase : List[str] =int(input('''enter the numbers of values: ''' ) )
lowercase : list[list[float]] =[]
for _ in range(__A ):
y.append([] )
for i in range(__A ):
for j in range(__A ):
y[i].append(__A )
lowercase : List[Any] =0
print('''enter the values of parameters in a list: ''' )
lowercase : Optional[int] =list(map(__A , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(__A ):
lowercase : str =float(input() )
lowercase : int =int(input('''enter the value to interpolate: ''' ) )
lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , __A ):
for j in range(n - i ):
lowercase : str =y[j + 1][i - 1] - y[j][i - 1]
lowercase : Any =y[0][0]
for i in range(1 , __A ):
summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A )
print(F'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 8 | 1 |
'''simple docstring'''
from math import sqrt
def lowercase_ ( __A : int ) -> bool:
"""simple docstring"""
assert isinstance(__A , __A ) and (
number >= 0
), "'number' must been an int and positive"
lowercase : int =True
# 0 and 1 are none primes.
if number <= 1:
lowercase : Optional[Any] =False
for divisor in range(2 , int(round(sqrt(__A ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowercase : Optional[int] =False
break
# precondition
assert isinstance(__A , __A ), "'status' must been from type bool"
return status
def lowercase_ ( __A : Tuple ) -> int:
"""simple docstring"""
assert isinstance(__A , __A ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowercase : Union[str, Any] =list(range(2 , n + 1 ) )
lowercase : str =[] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(__A ) ):
for j in range(i + 1 , len(__A ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowercase : str =0
# filters actual prime numbers.
lowercase : List[Any] =[x for x in begin_list if x != 0]
# precondition
assert isinstance(__A , __A ), "'ans' must been from type list"
return ans
def lowercase_ ( __A : str ) -> Dict:
"""simple docstring"""
assert isinstance(__A , __A ) and (n > 2), "'N' must been an int and > 2"
lowercase : Optional[int] =[]
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(__A ):
ans.append(__A )
# precondition
assert isinstance(__A , __A ), "'ans' must been from type list"
return ans
def lowercase_ ( __A : List[str] ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(__A , __A ) and number >= 0, "'number' must been an int and >= 0"
lowercase : Dict =[] # this list will be returns of the function.
# potential prime number factors.
lowercase : Dict =2
lowercase : Tuple =number
if number == 0 or number == 1:
ans.append(__A )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(__A ):
while quotient != 1:
if is_prime(__A ) and (quotient % factor == 0):
ans.append(__A )
quotient /= factor
else:
factor += 1
else:
ans.append(__A )
# precondition
assert isinstance(__A , __A ), "'ans' must been from type list"
return ans
def lowercase_ ( __A : Tuple ) -> Optional[int]:
"""simple docstring"""
assert isinstance(__A , __A ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase : Union[str, Any] =0
# prime factorization of 'number'
lowercase : Optional[Any] =prime_factorization(__A )
lowercase : str =max(__A )
# precondition
assert isinstance(__A , __A ), "'ans' must been from type int"
return ans
def lowercase_ ( __A : str ) -> str:
"""simple docstring"""
assert isinstance(__A , __A ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase : List[Any] =0
# prime factorization of 'number'
lowercase : Tuple =prime_factorization(__A )
lowercase : Tuple =min(__A )
# precondition
assert isinstance(__A , __A ), "'ans' must been from type int"
return ans
def lowercase_ ( __A : List[Any] ) -> Any:
"""simple docstring"""
assert isinstance(__A , __A ), "'number' must been an int"
assert isinstance(number % 2 == 0 , __A ), "compare bust been from type bool"
return number % 2 == 0
def lowercase_ ( __A : int ) -> str:
"""simple docstring"""
assert isinstance(__A , __A ), "'number' must been an int"
assert isinstance(number % 2 != 0 , __A ), "compare bust been from type bool"
return number % 2 != 0
def lowercase_ ( __A : str ) -> List[str]:
"""simple docstring"""
assert (
isinstance(__A , __A ) and (number > 2) and is_even(__A )
), "'number' must been an int, even and > 2"
lowercase : List[Any] =[] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowercase : Any =get_prime_numbers(__A )
lowercase : Tuple =len(__A )
# run variable for while-loops.
lowercase : str =0
lowercase : Dict =None
# exit variable. for break up the loops
lowercase : Any =True
while i < len_pn and loop:
lowercase : int =i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowercase : Any =False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(__A , __A )
and (len(__A ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def lowercase_ ( __A : int , __A : Dict ) -> str:
"""simple docstring"""
assert (
isinstance(__A , __A )
and isinstance(__A , __A )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowercase : List[str] =0
while numbera != 0:
lowercase : int =numbera % numbera
lowercase : int =numbera
lowercase : Union[str, Any] =rest
# precondition
assert isinstance(__A , __A ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def lowercase_ ( __A : Optional[Any] , __A : Any ) -> Union[str, Any]:
"""simple docstring"""
assert (
isinstance(__A , __A )
and isinstance(__A , __A )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowercase : Optional[int] =1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowercase : Optional[int] =prime_factorization(__A )
lowercase : Dict =prime_factorization(__A )
elif numbera == 1 or numbera == 1:
lowercase : List[Any] =[]
lowercase : str =[]
lowercase : int =max(__A , __A )
lowercase : int =0
lowercase : Optional[int] =0
lowercase : str =[] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowercase : Any =prime_fac_a.count(__A )
lowercase : int =prime_fac_a.count(__A )
for _ in range(max(__A , __A ) ):
ans *= n
else:
lowercase : Optional[Any] =prime_fac_a.count(__A )
for _ in range(__A ):
ans *= n
done.append(__A )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowercase : Union[str, Any] =prime_fac_a.count(__A )
for _ in range(__A ):
ans *= n
done.append(__A )
# precondition
assert isinstance(__A , __A ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def lowercase_ ( __A : Any ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(__A , __A ) and (n >= 0), "'number' must been a positive int"
lowercase : str =0
lowercase : str =2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(__A ):
ans += 1
# precondition
assert isinstance(__A , __A ) and is_prime(
__A ), "'ans' must been a prime number and from type int"
return ans
def lowercase_ ( __A : Tuple , __A : List[Any] ) -> Tuple:
"""simple docstring"""
assert (
is_prime(__A ) and is_prime(__A ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowercase : Any =p_number_a + 1 # jump to the next number
lowercase : str =[] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(__A ):
number += 1
while number < p_number_a:
ans.append(__A )
number += 1
# fetch the next prime number.
while not is_prime(__A ):
number += 1
# precondition
assert (
isinstance(__A , __A )
and ans[0] != p_number_a
and ans[len(__A ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def lowercase_ ( __A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
assert isinstance(__A , __A ) and (n >= 1), "'n' must been int and >= 1"
lowercase : Union[str, Any] =[] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(__A )
# precondition
assert ans[0] == 1 and ans[len(__A ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def lowercase_ ( __A : str ) -> Any:
"""simple docstring"""
assert isinstance(__A , __A ) and (
number > 1
), "'number' must been an int and >= 1"
lowercase : List[str] =get_divisors(__A )
# precondition
assert (
isinstance(__A , __A )
and (divisors[0] == 1)
and (divisors[len(__A ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def lowercase_ ( __A : Dict , __A : List[str] ) -> List[Any]:
"""simple docstring"""
assert (
isinstance(__A , __A )
and isinstance(__A , __A )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowercase : Any =gcd(abs(__A ) , abs(__A ) )
# precondition
assert (
isinstance(__A , __A )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def lowercase_ ( __A : List[str] ) -> Tuple:
"""simple docstring"""
assert isinstance(__A , __A ) and (n >= 0), "'n' must been a int and >= 0"
lowercase : List[str] =1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def lowercase_ ( __A : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
assert isinstance(__A , __A ) and (n >= 0), "'n' must been an int and >= 0"
lowercase : Union[str, Any] =0
lowercase : List[str] =1
lowercase : Any =1 # this will be return
for _ in range(n - 1 ):
lowercase : str =ans
ans += fiba
lowercase : Tuple =tmp
return ans
| 8 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =0
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : str =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : int =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : str =CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict()
config_dict.pop('''image_processor_type''' )
lowercase : str =CLIPImageProcessor(**UpperCAmelCase )
# save in new folder
model_config.save_pretrained(UpperCAmelCase )
config.save_pretrained(UpperCAmelCase )
lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
# make sure private variable is not incorrectly saved
lowercase : int =json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ):
lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' )
def A__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' )
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def A__ ( self : List[str] ) -> str:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase ):
lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCAmelCase ):
lowercase : List[str] =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCAmelCase )
lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , UpperCAmelCase )
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCAmelCase ):
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : str =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCAmelCase )
lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def A__ ( self : Any ) -> Any:
'''simple docstring'''
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = True
try:
AutoConfig.register('''custom''' , UpperCAmelCase )
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
# If remote code is not set, the default is to use local
lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowercase : Tuple =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowercase : Dict =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 8 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : List[Any] , UpperCAmelCase : Any ) -> Dict:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
lowercase : str =model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase )
def A__ ( self : List[Any] ) -> int:
'''simple docstring'''
lowercase : Any ='''sshleifer/tiny-gpt2'''
lowercase : int =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , )
lowercase : List[Any] =TensorFlowBenchmark(UpperCAmelCase )
lowercase : int =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A__ ( self : List[str] ) -> int:
'''simple docstring'''
lowercase : Dict ='''sgugger/tiny-distilbert-classification'''
lowercase : Tuple =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , )
lowercase : List[str] =TensorFlowBenchmark(UpperCAmelCase )
lowercase : Union[str, Any] =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] ='''sshleifer/tiny-gpt2'''
lowercase : Dict =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
lowercase : int =TensorFlowBenchmark(UpperCAmelCase )
lowercase : Dict =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A__ ( self : Dict ) -> str:
'''simple docstring'''
lowercase : List[Any] ='''sshleifer/tiny-gpt2'''
lowercase : Dict =AutoConfig.from_pretrained(UpperCAmelCase )
lowercase : str =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , )
lowercase : Union[str, Any] =TensorFlowBenchmark(UpperCAmelCase , [config] )
lowercase : Optional[Any] =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A__ ( self : Any ) -> Dict:
'''simple docstring'''
lowercase : List[str] ='''sshleifer/tiny-gpt2'''
lowercase : Any =AutoConfig.from_pretrained(UpperCAmelCase )
lowercase : Dict =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
lowercase : Optional[Any] =TensorFlowBenchmark(UpperCAmelCase , [config] )
lowercase : Dict =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A__ ( self : Any ) -> Tuple:
'''simple docstring'''
lowercase : Optional[int] ='''sshleifer/tiny-gpt2'''
lowercase : Union[str, Any] =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
lowercase : Tuple =TensorFlowBenchmark(UpperCAmelCase )
lowercase : Union[str, Any] =benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def A__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str ='''sshleifer/tiny-gpt2'''
lowercase : int =AutoConfig.from_pretrained(UpperCAmelCase )
lowercase : Dict =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
lowercase : Any =TensorFlowBenchmark(UpperCAmelCase , [config] )
lowercase : Dict =benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def A__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
lowercase : Union[str, Any] ='''patrickvonplaten/t5-tiny-random'''
lowercase : str =AutoConfig.from_pretrained(UpperCAmelCase )
lowercase : Optional[Any] =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
lowercase : int =TensorFlowBenchmark(UpperCAmelCase , configs=[config] )
lowercase : int =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def A__ ( self : int ) -> Dict:
'''simple docstring'''
lowercase : List[Any] ='''sshleifer/tiny-gpt2'''
lowercase : str =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCAmelCase , multi_process=UpperCAmelCase , )
lowercase : int =TensorFlowBenchmark(UpperCAmelCase )
lowercase : Union[str, Any] =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A__ ( self : Tuple ) -> Any:
'''simple docstring'''
lowercase : str ='''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase : List[str] =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(UpperCAmelCase , '''env.csv''' ) , multi_process=UpperCAmelCase , )
lowercase : Optional[Any] =TensorFlowBenchmark(UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , '''env.csv''' ) ).exists() )
def A__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : int ='''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(UpperCAmelCase : List[Any] ):
self.assertTrue(hasattr(UpperCAmelCase , '''sequential''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''cumulative''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''current''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase : Union[str, Any] =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , '''log.txt''' ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , )
lowercase : Any =TensorFlowBenchmark(UpperCAmelCase )
lowercase : Optional[int] =benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(UpperCAmelCase , '''log.txt''' ) ).exists() )
| 8 |
'''simple docstring'''
from __future__ import annotations
SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2
def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]:
"""simple docstring"""
lowercase : Dict =abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
SCREAMING_SNAKE_CASE = 3
def lowercase_ ( __A : int ) -> int:
"""simple docstring"""
print('''Generating primitive root of p''' )
while True:
lowercase : List[str] =random.randrange(3 , __A )
if pow(__A , 2 , __A ) == 1:
continue
if pow(__A , __A , __A ) == 1:
continue
return g
def lowercase_ ( __A : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
"""simple docstring"""
print('''Generating prime p...''' )
lowercase : Any =rabin_miller.generate_large_prime(__A ) # select large prime number.
lowercase : List[str] =primitive_root(__A ) # one primitive root on modulo p.
lowercase : List[str] =random.randrange(3 , __A ) # private_key -> have to be greater than 2 for safety.
lowercase : List[str] =cryptomath.find_mod_inverse(pow(__A , __A , __A ) , __A )
lowercase : Union[str, Any] =(key_size, e_a, e_a, p)
lowercase : Optional[Any] =(key_size, d)
return public_key, private_key
def lowercase_ ( __A : str , __A : int ) -> None:
"""simple docstring"""
if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ):
print('''\nWARNING:''' )
print(
F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
'''Use a different name or delete these files and re-run this program.''' )
sys.exit()
lowercase , lowercase : str =generate_key(__A )
print(F'\nWriting public key to file {name}_pubkey.txt...' )
with open(F'{name}_pubkey.txt' , '''w''' ) as fo:
fo.write(F'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' )
print(F'Writing private key to file {name}_privkey.txt...' )
with open(F'{name}_privkey.txt' , '''w''' ) as fo:
fo.write(F'{private_key[0]},{private_key[1]}' )
def lowercase_ ( ) -> None:
"""simple docstring"""
print('''Making key files...''' )
make_key_files('''elgamal''' , 2_0_4_8 )
print('''Key files generation successful''' )
if __name__ == "__main__":
main()
| 8 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
SCREAMING_SNAKE_CASE = {
'allenai/led-base-16384': 16_384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ) -> Any:
"""simple docstring"""
lowercase : int =(
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
lowercase : Union[str, Any] =bs[:]
lowercase : Tuple =0
for b in range(2**8 ):
if b not in bs:
bs.append(__A )
cs.append(2**8 + n )
n += 1
lowercase : Optional[Any] =[chr(__A ) for n in cs]
return dict(zip(__A , __A ) )
def lowercase_ ( __A : str ) -> List[Any]:
"""simple docstring"""
lowercase : Optional[Any] =set()
lowercase : Tuple =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase : List[str] =char
return pairs
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict:
'''simple docstring'''
lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token
lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token
lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token
lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , )
with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
lowercase : str =json.load(UpperCAmelCase )
lowercase : Optional[int] ={v: k for k, v in self.encoder.items()}
lowercase : Optional[int] =errors # how to handle errors in decoding
lowercase : Tuple =bytes_to_unicode()
lowercase : int ={v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1]
lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges]
lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : Optional[int] ={}
lowercase : Any =add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def A__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return len(self.encoder )
def A__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : List[str] =get_pairs(UpperCAmelCase )
if not pairs:
return token
while True:
lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowercase , lowercase : Optional[int] =bigram
lowercase : Union[str, Any] =[]
lowercase : Optional[Any] =0
while i < len(UpperCAmelCase ):
try:
lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase : Optional[int] =j
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : str =new_word
if len(UpperCAmelCase ) == 1:
break
else:
lowercase : Optional[Any] =get_pairs(UpperCAmelCase )
lowercase : Optional[Any] =''' '''.join(UpperCAmelCase )
lowercase : Union[str, Any] =word
return word
def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Dict =[]
for token in re.findall(self.pat , UpperCAmelCase ):
lowercase : Optional[int] =''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) )
return bpe_tokens
def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase )
def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =''''''.join(UpperCAmelCase )
lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowercase : Optional[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : List[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' )
lowercase : List[str] =0
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
''' Please check that the tokenizer is not corrupted!''' )
lowercase : Any =token_index
writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
lowercase : List[Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Dict =[self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()):
lowercase : Union[str, Any] =''' ''' + text
return (text, kwargs)
def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict:
'''simple docstring'''
lowercase : Optional[int] =super()._pad(
encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , )
# Load from model defaults
if return_attention_mask is None:
lowercase : Tuple ='''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase )
if needs_to_be_padded:
lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase : List[str] =(
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
lowercase : Any =[-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 8 | 1 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
SCREAMING_SNAKE_CASE = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n'
SCREAMING_SNAKE_CASE = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n'
SCREAMING_SNAKE_CASE = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
"""simple docstring"""
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , )
def A__ ( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : str ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
lowercase : int =[
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
lowercase : Union[str, Any] =evaluate(dataset=UpperCAmelCase , predictions=UpperCAmelCase )
return score
| 8 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]:
'''simple docstring'''
lowercase : Any =list(poly_a or [0] )[:]
lowercase : Dict =list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
lowercase : int =len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
lowercase : List[str] =len(self.polyB )
# Add 0 to make lengths equal a power of 2
lowercase : Tuple =int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
lowercase : str =self.__multiply()
def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple:
'''simple docstring'''
lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB]
# Corner case
if len(UpperCAmelCase ) <= 1:
return dft[0]
#
lowercase : List[Any] =self.c_max_length // 2
while next_ncol > 0:
lowercase : str =[[] for i in range(UpperCAmelCase )]
lowercase : List[str] =self.root**next_ncol
# First half of next step
lowercase : Union[str, Any] =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
lowercase : Any =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
lowercase : Tuple =new_dft
lowercase : List[Any] =next_ncol // 2
return dft[0]
def A__ ( self : int ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.__dft('''A''' )
lowercase : Union[str, Any] =self.__dft('''B''' )
lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
lowercase : Tuple =2
while next_ncol <= self.c_max_length:
lowercase : Tuple =[[] for i in range(UpperCAmelCase )]
lowercase : Tuple =self.root ** (next_ncol // 2)
lowercase : Optional[int] =1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
lowercase : List[Any] =new_inverse_c
next_ncol *= 2
# Unpack
lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Dict ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''A = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) )
lowercase : List[str] ='''B = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) )
lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.product ) )
return f'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
import os
from pathlib import Path
def lowercase_ ( ) -> str:
"""simple docstring"""
from torch.utils.cpp_extension import load
lowercase : Dict =Path(__A ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr'''
lowercase : int =[
root / filename
for filename in [
'''vision.cpp''',
os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ),
os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ),
]
]
load(
'''MultiScaleDeformableAttention''' , __A , with_cuda=__A , extra_include_paths=[str(__A )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[
'''-DCUDA_HAS_FP16=1''',
'''-D__CUDA_NO_HALF_OPERATORS__''',
'''-D__CUDA_NO_HALF_CONVERSIONS__''',
'''-D__CUDA_NO_HALF2_OPERATORS__''',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 8 |
'''simple docstring'''
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : List[Any] =str(bin(__A ) )
binary_number += "0" * shift_amount
return binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : Union[str, Any] =str(bin(__A ) )[2:]
if shift_amount >= len(__A ):
return "0b0"
lowercase : Any =binary_number[: len(__A ) - shift_amount]
return "0b" + shifted_binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number
lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:]
lowercase : int =(
'''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number
)
if shift_amount >= len(__A ):
return "0b" + binary_number[0] * len(__A )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__A ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Any =inspect.getfile(accelerate.test_utils )
lowercase : Any =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
lowercase : Union[str, Any] =os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
lowercase : Union[str, Any] =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
print(f'Found {torch.cuda.device_count()} devices.' )
lowercase : int =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def A__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
print(f'Found {torch.cuda.device_count()} devices.' )
lowercase : List[str] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path]
print(f'Command: {cmd}' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def A__ ( self : Dict ) -> str:
'''simple docstring'''
lowercase : Optional[int] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def A__ ( self : str ) -> List[Any]:
'''simple docstring'''
print(f'Found {torch.cuda.device_count()} devices, using 2 devices only' )
lowercase : List[str] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = Accelerator()
SCREAMING_SNAKE_CASE = (accelerator.state.process_index + 2, 10)
SCREAMING_SNAKE_CASE = torch.randint(0, 10, shape).to(accelerator.device)
SCREAMING_SNAKE_CASE = ''
SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
SCREAMING_SNAKE_CASE = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 8 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class UpperCAmelCase_ :
"""simple docstring"""
@staticmethod
def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
pass
def lowercase_ ( __A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
SCREAMING_SNAKE_CASE = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : Dict =pipeline(
'''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Optional[Any] =INVOICE_URL
lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
lowercase : Dict ='''What is the placebo?'''
lowercase : Optional[Any] =[
{
'''image''': load_image(UpperCAmelCase ),
'''question''': question,
},
{
'''image''': image,
'''question''': question,
},
{
'''image''': image,
'''question''': question,
'''word_boxes''': word_boxes,
},
]
return dqa_pipeline, examples
def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 )
self.assertEqual(
UpperCAmelCase , [
[
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' )
lowercase : Union[str, Any] =INVOICE_URL
lowercase : Tuple ='''How many cats are there?'''
lowercase : Optional[int] =[
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39},
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40},
]
lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
# We can optionnally pass directly the words and bounding boxes
lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Dict =[]
lowercase : str =[]
lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , )
lowercase : Dict =INVOICE_URL
lowercase : str ='''What is the invoice number?'''
lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , )
lowercase : Dict =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Any =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : str ) -> Dict:
'''simple docstring'''
lowercase : Any =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : Tuple =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , )
lowercase : Tuple =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : str =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
]
]
* 2 , )
lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
lowercase : Dict =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : List[Any] =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , )
lowercase : str =INVOICE_URL
lowercase : int ='''What is the invoice number?'''
lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Union[str, Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
@slow
@require_torch
def A__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , )
lowercase : Any =INVOICE_URL
lowercase : Union[str, Any] ='''What is the invoice number?'''
lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] )
@require_tf
@unittest.skip('''Document question answering not implemented in TF''' )
def A__ ( self : Any ) -> Any:
'''simple docstring'''
pass
| 8 | 1 |
'''simple docstring'''
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = '''sequence-classification'''
def __init__( self : Any , UpperCAmelCase : Optional[int] ) -> List[Any]:
'''simple docstring'''
if type(UpperCAmelCase ) == dict:
lowercase : Any =Namespace(**UpperCAmelCase )
lowercase : int =glue_output_modes[hparams.task]
lowercase : Any =glue_tasks_num_labels[hparams.task]
super().__init__(UpperCAmelCase , UpperCAmelCase , self.mode )
def A__ ( self : Dict , **UpperCAmelCase : Any ) -> str:
'''simple docstring'''
return self.model(**UpperCAmelCase )
def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
lowercase : Optional[int] ={'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
lowercase : str =batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None
lowercase : Union[str, Any] =self(**UpperCAmelCase )
lowercase : List[Any] =outputs[0]
lowercase : str =self.trainer.lr_schedulers[0]['''scheduler''']
lowercase : Union[str, Any] ={'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def A__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Union[str, Any] =self.hparams
lowercase : str =processors[args.task]()
lowercase : Optional[int] =processor.get_labels()
for mode in ["train", "dev"]:
lowercase : List[str] =self._feature_file(UpperCAmelCase )
if os.path.exists(UpperCAmelCase ) and not args.overwrite_cache:
logger.info('''Loading features from cached file %s''' , UpperCAmelCase )
else:
logger.info('''Creating features from dataset file at %s''' , args.data_dir )
lowercase : Optional[int] =(
processor.get_dev_examples(args.data_dir )
if mode == '''dev'''
else processor.get_train_examples(args.data_dir )
)
lowercase : Optional[int] =convert_examples_to_features(
UpperCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info('''Saving features into cached file %s''' , UpperCAmelCase )
torch.save(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : bool = False ) -> DataLoader:
'''simple docstring'''
lowercase : Tuple ='''dev''' if mode == '''test''' else mode
lowercase : Any =self._feature_file(UpperCAmelCase )
logger.info('''Loading features from cached file %s''' , UpperCAmelCase )
lowercase : Optional[Any] =torch.load(UpperCAmelCase )
lowercase : int =torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowercase : str =torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
lowercase : Tuple =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
lowercase : int =torch.tensor([f.label for f in features] , dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
lowercase : int =torch.tensor([f.label for f in features] , dtype=torch.float )
return DataLoader(
TensorDataset(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , batch_size=UpperCAmelCase , shuffle=UpperCAmelCase , )
def A__ ( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : Dict ) -> Tuple:
'''simple docstring'''
lowercase : Any ={'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
lowercase : Any =batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None
lowercase : Union[str, Any] =self(**UpperCAmelCase )
lowercase , lowercase : List[Any] =outputs[:2]
lowercase : Union[str, Any] =logits.detach().cpu().numpy()
lowercase : int =inputs['''labels'''].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def A__ ( self : List[str] , UpperCAmelCase : Dict ) -> tuple:
'''simple docstring'''
lowercase : Optional[Any] =torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item()
lowercase : List[str] =np.concatenate([x['''pred'''] for x in outputs] , axis=0 )
if self.hparams.glue_output_mode == "classification":
lowercase : Optional[Any] =np.argmax(UpperCAmelCase , axis=1 )
elif self.hparams.glue_output_mode == "regression":
lowercase : int =np.squeeze(UpperCAmelCase )
lowercase : Any =np.concatenate([x['''target'''] for x in outputs] , axis=0 )
lowercase : int =[[] for _ in range(out_label_ids.shape[0] )]
lowercase : Tuple =[[] for _ in range(out_label_ids.shape[0] )]
lowercase : Any ={**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , UpperCAmelCase , UpperCAmelCase )}
lowercase : Optional[Any] =dict(results.items() )
lowercase : str =results
return ret, preds_list, out_label_list
def A__ ( self : Optional[Any] , UpperCAmelCase : list ) -> dict:
'''simple docstring'''
lowercase , lowercase , lowercase : Dict =self._eval_end(UpperCAmelCase )
lowercase : Any =ret['''log''']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def A__ ( self : int , UpperCAmelCase : Tuple ) -> dict:
'''simple docstring'''
lowercase , lowercase , lowercase : Union[str, Any] =self._eval_end(UpperCAmelCase )
lowercase : Optional[Any] =ret['''log''']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def A__ ( UpperCAmelCase : str , UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
BaseTransformer.add_model_specific_args(UpperCAmelCase , UpperCAmelCase )
parser.add_argument(
'''--max_seq_length''' , default=128 , type=UpperCAmelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--task''' , default='''''' , type=UpperCAmelCase , required=UpperCAmelCase , help='''The GLUE task to run''' , )
parser.add_argument(
'''--gpus''' , default=0 , type=UpperCAmelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
return parser
def lowercase_ ( ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Tuple =argparse.ArgumentParser()
add_generic_args(__A , os.getcwd() )
lowercase : Any =GLUETransformer.add_model_specific_args(__A , os.getcwd() )
lowercase : Optional[Any] =parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
lowercase : Tuple =os.path.join(
'''./results''' , F'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , )
os.makedirs(args.output_dir )
lowercase : str =GLUETransformer(__A )
lowercase : Any =generic_train(__A , __A )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
lowercase : Tuple =sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__A ) )
lowercase : int =model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(__A )
if __name__ == "__main__":
main()
| 8 |
'''simple docstring'''
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
if digit_amount > 0:
return round(number - int(__A ) , __A )
return number - int(__A )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : float ) -> float:
"""simple docstring"""
if edge <= 0 or not isinstance(__A , __A ):
raise ValueError('''Length must be a positive.''' )
return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2)
def lowercase_ ( __A : float ) -> float:
"""simple docstring"""
if edge <= 0 or not isinstance(__A , __A ):
raise ValueError('''Length must be a positive.''' )
return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 |
'''simple docstring'''
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]:
"""simple docstring"""
return [
int(1_0_0_0 * (box[0] / width) ),
int(1_0_0_0 * (box[1] / height) ),
int(1_0_0_0 * (box[2] / width) ),
int(1_0_0_0 * (box[3] / height) ),
]
def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase : int =to_pil_image(__A )
lowercase , lowercase : Tuple =pil_image.size
lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A )
lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()]
lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowercase : Tuple =[]
for x, y, w, h in zip(__A , __A , __A , __A ):
lowercase : str =[x, y, x + w, y + h]
actual_boxes.append(__A )
# finally, normalize the bounding boxes
lowercase : List[str] =[]
for box in actual_boxes:
normalized_boxes.append(normalize_box(__A , __A , __A ) )
assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''pixel_values''']
def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224}
lowercase : Optional[Any] =get_size_dict(UpperCAmelCase )
lowercase : Optional[Any] =do_resize
lowercase : List[Any] =size
lowercase : List[str] =resample
lowercase : Dict =do_rescale
lowercase : str =rescale_value
lowercase : Optional[int] =do_normalize
lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD
lowercase : List[Any] =apply_ocr
lowercase : Union[str, Any] =ocr_lang
lowercase : str =tesseract_config
def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
lowercase : Tuple =get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
lowercase : Optional[Any] =(size['''height'''], size['''width'''])
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image:
'''simple docstring'''
lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize
lowercase : Tuple =size if size is not None else self.size
lowercase : Optional[int] =get_size_dict(UpperCAmelCase )
lowercase : List[str] =resample if resample is not None else self.resample
lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale
lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize
lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean
lowercase : Optional[int] =image_std if image_std is not None else self.image_std
lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr
lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang
lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config
lowercase : str =make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' )
# All transformations expect numpy arrays.
lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , '''pytesseract''' )
lowercase : int =[]
lowercase : Tuple =[]
for image in images:
lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
words_batch.append(UpperCAmelCase )
boxes_batch.append(UpperCAmelCase )
if do_resize:
lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_rescale:
lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase )
if apply_ocr:
lowercase : int =words_batch
lowercase : List[str] =boxes_batch
return data
| 8 | 1 |
'''simple docstring'''
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
SCREAMING_SNAKE_CASE = getLogger(__name__)
SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu'
def lowercase_ ( __A : List[str] , __A : str , __A : str , __A : int = 8 , __A : str = DEFAULT_DEVICE , __A : str=False , __A : Union[str, Any]="summarization" , __A : Tuple=None , **__A : Dict , ) -> Dict:
"""simple docstring"""
lowercase : List[str] =Path(__A ).open('''w''' , encoding='''utf-8''' )
lowercase : int =str(__A )
lowercase : Optional[Any] =AutoModelForSeqaSeqLM.from_pretrained(__A ).to(__A )
if fpaa:
lowercase : List[str] =model.half()
lowercase : str =AutoTokenizer.from_pretrained(__A )
logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type.
lowercase : Optional[int] =time.time()
# update config with task specific params
use_task_specific_params(__A , __A )
if prefix is None:
lowercase : str =prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(__A , __A ) ) ):
lowercase : Any =[prefix + text for text in examples_chunk]
lowercase : Optional[int] =tokenizer(__A , return_tensors='''pt''' , truncation=__A , padding='''longest''' ).to(__A )
lowercase : List[str] =model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__A , )
lowercase : Dict =tokenizer.batch_decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
lowercase : Optional[int] =int(time.time() - start_time ) # seconds
lowercase : List[Any] =len(__A )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def lowercase_ ( ) -> Optional[Any]:
"""simple docstring"""
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def lowercase_ ( __A : Tuple=True ) -> List[Any]:
"""simple docstring"""
lowercase : Optional[int] =argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=__A , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=__A , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=__A , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=__A , required=__A , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=__A , required=__A , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=__A , required=__A , default=__A , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=__A , required=__A , default=__A , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=__A , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=__A , default=8 , required=__A , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=__A , default=-1 , required=__A , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=__A , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
lowercase , lowercase : Dict =parser.parse_known_args()
lowercase : Any =parse_numeric_n_bool_cl_kwargs(__A )
if parsed_args and verbose:
print(F'parsed the following generate kwargs: {parsed_args}' )
lowercase : Tuple =[''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
lowercase : List[str] =examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=__A )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(F'score_path {args.score_path} will be overwritten unless you type ctrl-c.' )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
lowercase : Union[str, Any] =generate_summaries_or_translations(
__A , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__A , )
if args.reference_path is None:
return {}
# Compute scores
lowercase : int =calculate_bleu if '''translation''' in args.task else calculate_rouge
lowercase : List[str] =[x.rstrip() for x in open(args.save_path ).readlines()]
lowercase : List[Any] =[x.rstrip() for x in open(args.reference_path ).readlines()][: len(__A )]
lowercase : dict =score_fn(__A , __A )
scores.update(__A )
if args.dump_args:
scores.update(__A )
if args.info:
lowercase : Tuple =args.info
if verbose:
print(__A )
if args.score_path is not None:
json.dump(__A , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 8 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =parent
lowercase : Any =13
lowercase : Any =7
lowercase : Optional[int] =True
lowercase : Optional[int] =True
lowercase : Tuple =False
lowercase : Optional[Any] =True
lowercase : Dict =99
lowercase : Union[str, Any] =32
lowercase : Union[str, Any] =2
lowercase : Union[str, Any] =4
lowercase : List[str] =37
lowercase : str ='''gelu'''
lowercase : Dict =0.1
lowercase : List[Any] =0.1
lowercase : List[str] =512
lowercase : Optional[int] =16
lowercase : Optional[Any] =2
lowercase : List[str] =0.0_2
lowercase : Any =3
lowercase : Optional[Any] =4
lowercase : int =None
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Any =None
if self.use_input_mask:
lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Union[str, Any] =None
lowercase : Any =None
lowercase : str =None
if self.use_labels:
lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices )
lowercase : Dict =DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =TFDistilBertModel(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : List[str] =model(UpperCAmelCase )
lowercase : str =[input_ids, input_mask]
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase )
lowercase : int ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase )
lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]:
'''simple docstring'''
lowercase : List[Any] =self.num_choices
lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase )
lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : Tuple ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase )
lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : str =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : int =self.prepare_config_and_inputs()
((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs
lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
UpperCamelCase_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Dict ) -> str:
'''simple docstring'''
lowercase : str =TFDistilBertModelTester(self )
lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase )
def A__ ( self : Tuple ) -> Any:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase )
def A__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
lowercase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase )
def A__ ( self : Any ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase )
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase )
@slow
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase : List[Any] =model(UpperCAmelCase )[0]
lowercase : str =[1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
lowercase : Optional[int] =tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
| 8 | 1 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert'
SCREAMING_SNAKE_CASE = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert')
SCREAMING_SNAKE_CASE = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6'
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : List[Any] =cached_file(UpperCAmelCase , UpperCAmelCase )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(UpperCAmelCase ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) )
with open(os.path.join(UpperCAmelCase , '''refs''' , '''main''' ) ) as f:
lowercase : List[str] =f.read()
self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , '''snapshots''' , UpperCAmelCase , UpperCAmelCase ) )
self.assertTrue(os.path.isfile(UpperCAmelCase ) )
# File is cached at the same place the second time.
lowercase : Optional[int] =cached_file(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
# Using a specific revision to test the full commit hash.
lowercase : str =cached_file(UpperCAmelCase , UpperCAmelCase , revision='''9b8c223''' )
self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , '''snapshots''' , UpperCAmelCase , UpperCAmelCase ) )
def A__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
with self.assertRaisesRegex(UpperCAmelCase , '''is not a valid model identifier''' ):
lowercase : List[str] =cached_file('''tiny-random-bert''' , UpperCAmelCase )
with self.assertRaisesRegex(UpperCAmelCase , '''is not a valid git identifier''' ):
lowercase : Optional[Any] =cached_file(UpperCAmelCase , UpperCAmelCase , revision='''aaaa''' )
with self.assertRaisesRegex(UpperCAmelCase , '''does not appear to have a file named''' ):
lowercase : Optional[Any] =cached_file(UpperCAmelCase , '''conf''' )
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
with self.assertRaisesRegex(UpperCAmelCase , '''does not appear to have a file named''' ):
lowercase : Any =cached_file(UpperCAmelCase , '''conf''' )
with open(os.path.join(UpperCAmelCase , '''refs''' , '''main''' ) ) as f:
lowercase : Optional[int] =f.read()
self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase , '''.no_exist''' , UpperCAmelCase , '''conf''' ) ) )
lowercase : Dict =cached_file(UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=UpperCAmelCase )
self.assertIsNone(UpperCAmelCase )
lowercase : str =cached_file(UpperCAmelCase , '''conf''' , local_files_only=UpperCAmelCase , _raise_exceptions_for_missing_entries=UpperCAmelCase )
self.assertIsNone(UpperCAmelCase )
lowercase : Tuple =mock.Mock()
lowercase : Dict =500
lowercase : Union[str, Any] ={}
lowercase : Dict =HTTPError
lowercase : List[str] ={}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase ) as mock_head:
lowercase : List[Any] =cached_file(UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=UpperCAmelCase )
self.assertIsNone(UpperCAmelCase )
# This check we did call the fake head request
mock_head.assert_called()
def A__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCAmelCase ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCAmelCase ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCAmelCase ) )
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(UpperCAmelCase , '''is not a valid model identifier''' ):
get_file_from_repo('''bert-base-case''' , UpperCAmelCase )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(UpperCAmelCase , '''is not a valid git identifier''' ):
get_file_from_repo('''bert-base-cased''' , UpperCAmelCase , revision='''ahaha''' )
lowercase : Dict =get_file_from_repo('''bert-base-cased''' , UpperCAmelCase )
# The name is the cached name which is not very easy to test, so instead we load the content.
lowercase : Any =json.loads(open(UpperCAmelCase , '''r''' ).read() )
self.assertEqual(config['''hidden_size'''] , 768 )
def A__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase : Dict =Path(UpperCAmelCase ) / '''a.txt'''
filename.touch()
self.assertEqual(get_file_from_repo(UpperCAmelCase , '''a.txt''' ) , str(UpperCAmelCase ) )
self.assertIsNone(get_file_from_repo(UpperCAmelCase , '''b.txt''' ) )
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RemBertForCausalLM',
'RemBertForMaskedLM',
'RemBertForMultipleChoice',
'RemBertForQuestionAnswering',
'RemBertForSequenceClassification',
'RemBertForTokenClassification',
'RemBertLayer',
'RemBertModel',
'RemBertPreTrainedModel',
'load_tf_weights_in_rembert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRemBertForCausalLM',
'TFRemBertForMaskedLM',
'TFRemBertForMultipleChoice',
'TFRemBertForQuestionAnswering',
'TFRemBertForSequenceClassification',
'TFRemBertForTokenClassification',
'TFRemBertLayer',
'TFRemBertModel',
'TFRemBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = '''dandelin/vilt-b32-finetuned-vqa'''
UpperCamelCase_ = (
'''This is a tool that answers a question about an image. It takes an input named `image` which should be the '''
'''image containing the information, as well as a `question` which should be the question in English. It '''
'''returns a text that is the answer to the question.'''
)
UpperCamelCase_ = '''image_qa'''
UpperCamelCase_ = AutoProcessor
UpperCamelCase_ = AutoModelForVisualQuestionAnswering
UpperCamelCase_ = ['''image''', '''text''']
UpperCamelCase_ = ['''text''']
def __init__( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict:
'''simple docstring'''
requires_backends(self , ['''vision'''] )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Tuple , UpperCAmelCase : "Image" , UpperCAmelCase : str ) -> Tuple:
'''simple docstring'''
return self.pre_processor(UpperCAmelCase , UpperCAmelCase , return_tensors='''pt''' )
def A__ ( self : Dict , UpperCAmelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
with torch.no_grad():
return self.model(**UpperCAmelCase ).logits
def A__ ( self : Dict , UpperCAmelCase : Tuple ) -> List[str]:
'''simple docstring'''
lowercase : str =outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 8 |
'''simple docstring'''
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch'))
def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]:
"""simple docstring"""
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' )
lowercase : Any =STR_OPERATION_TO_FUNC[operation]
if isinstance(__A , __A ):
lowercase : List[Any] =parse(importlib.metadata.version(__A ) )
return operation(__A , parse(__A ) )
def lowercase_ ( __A : str , __A : str ) -> Tuple:
"""simple docstring"""
return compare_versions(__A , __A , __A )
| 8 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 8 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 8 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = ViTImageProcessor if is_vision_available() else None
@property
def A__ ( self : Optional[int] ) -> int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def A__ ( self : int ) -> str:
'''simple docstring'''
lowercase : Tuple =(3, 32, 128)
lowercase : str =tempfile.mkdtemp()
# fmt: off
lowercase : Tuple =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
lowercase : Union[str, Any] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(UpperCAmelCase ) + '''\n''' )
lowercase : Any ={
'''do_normalize''': False,
'''do_resize''': True,
'''image_processor_type''': '''ViTImageProcessor''',
'''resample''': 3,
'''size''': {'''height''': 32, '''width''': 128},
}
lowercase : List[Any] =os.path.join(self.tmpdirname , UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Dict , **UpperCAmelCase : Tuple ) -> List[Any]:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def A__ ( self : str , **UpperCAmelCase : Optional[Any] ) -> List[str]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def A__ ( self : Optional[int] ) -> int:
'''simple docstring'''
lowercase : Any =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
lowercase : List[Any] =Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) )
return image_input
def A__ ( self : Any ) -> int:
'''simple docstring'''
lowercase : Tuple =self.get_tokenizer()
lowercase : Dict =self.get_image_processor()
lowercase : Tuple =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowercase : str =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
lowercase : str =self.get_tokenizer()
lowercase : List[Any] =self.get_image_processor()
lowercase : Dict =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowercase : str =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowercase : str =self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
lowercase : Any =MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def A__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
lowercase : Optional[int] =self.get_image_processor()
lowercase : Dict =self.get_tokenizer()
lowercase : List[Any] =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Any =self.prepare_image_inputs()
lowercase : List[Any] =image_processor(UpperCAmelCase , return_tensors='''np''' )
lowercase : str =processor(images=UpperCAmelCase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def A__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : List[Any] =self.get_image_processor()
lowercase : List[Any] =self.get_tokenizer()
lowercase : str =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : List[str] ='''test'''
lowercase : Optional[int] =processor(text=UpperCAmelCase )
lowercase : Union[str, Any] =tokenizer(UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A__ ( self : Optional[int] ) -> int:
'''simple docstring'''
lowercase : Optional[Any] =self.get_image_processor()
lowercase : Optional[int] =self.get_tokenizer()
lowercase : Optional[Any] =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Any ='''test'''
lowercase : Any =self.prepare_image_inputs()
lowercase : str =processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def A__ ( self : List[str] ) -> str:
'''simple docstring'''
lowercase : str =self.get_image_processor()
lowercase : Optional[Any] =self.get_tokenizer()
lowercase : Dict =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Optional[int] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
lowercase : Optional[int] =processor.char_decode(UpperCAmelCase )
lowercase : Union[str, Any] =tokenizer.batch_decode(UpperCAmelCase )
lowercase : Tuple =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Tuple ) -> Dict:
'''simple docstring'''
lowercase : str =self.get_image_processor()
lowercase : List[Any] =self.get_tokenizer()
lowercase : Any =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : str =None
lowercase : Optional[int] =self.prepare_image_inputs()
lowercase : Optional[int] =processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[Any] =self.get_image_processor()
lowercase : Dict =self.get_tokenizer()
lowercase : int =MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : str =torch.randn(1 , 27 , 38 )
lowercase : List[Any] =torch.randn(1 , 27 , 5_0257 )
lowercase : Union[str, Any] =torch.randn(1 , 27 , 3_0522 )
lowercase : Union[str, Any] =processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
from __future__ import annotations
SCREAMING_SNAKE_CASE = []
def lowercase_ ( __A : list[list[int]] , __A : int , __A : int ) -> bool:
"""simple docstring"""
for i in range(len(__A ) ):
if board[row][i] == 1:
return False
for i in range(len(__A ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ):
if board[i][j] == 1:
return False
return True
def lowercase_ ( __A : list[list[int]] , __A : int ) -> bool:
"""simple docstring"""
if row >= len(__A ):
solution.append(__A )
printboard(__A )
print()
return True
for i in range(len(__A ) ):
if is_safe(__A , __A , __A ):
lowercase : Dict =1
solve(__A , row + 1 )
lowercase : Optional[int] =0
return False
def lowercase_ ( __A : list[list[int]] ) -> None:
"""simple docstring"""
for i in range(len(__A ) ):
for j in range(len(__A ) ):
if board[i][j] == 1:
print('''Q''' , end=''' ''' )
else:
print('''.''' , end=''' ''' )
print()
# n=int(input("The no. of queens"))
SCREAMING_SNAKE_CASE = 8
SCREAMING_SNAKE_CASE = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print('The total no. of solutions are :', len(solution))
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegaForCausalLM',
'MegaForMaskedLM',
'MegaForMultipleChoice',
'MegaForQuestionAnswering',
'MegaForSequenceClassification',
'MegaForTokenClassification',
'MegaModel',
'MegaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
import torch
from diffusers import DiffusionPipeline
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
super().__init__()
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
def __call__( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
lowercase : List[Any] =torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
lowercase : Tuple =1
lowercase : Union[str, Any] =self.unet(UpperCAmelCase , UpperCAmelCase ).sample
lowercase : Dict =self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
lowercase : Any =scheduler_output - scheduler_output + torch.ones_like(UpperCAmelCase )
return result
| 8 |
'''simple docstring'''
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514}
SCREAMING_SNAKE_CASE = {}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = HerbertTokenizer
def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(
UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , )
def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : List[Any] =[self.cls_token_id]
lowercase : Any =[self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Optional[Any] =[self.sep_token_id]
lowercase : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 8 | 1 |
'''simple docstring'''
import torch
from torch import nn
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : List[str]=False ) -> int:
'''simple docstring'''
super().__init__()
lowercase : Optional[Any] =n_token
lowercase : List[Any] =d_embed
lowercase : Dict =d_proj
lowercase : Dict =cutoffs + [n_token]
lowercase : List[str] =[0] + self.cutoffs
lowercase : Union[str, Any] =div_val
lowercase : int =self.cutoffs[0]
lowercase : Dict =len(self.cutoffs ) - 1
lowercase : Dict =self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
lowercase : Any =nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
lowercase : Any =nn.Parameter(torch.zeros(self.n_clusters ) )
lowercase : int =nn.ModuleList()
lowercase : str =nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) )
else:
self.out_projs.append(UpperCAmelCase )
self.out_layers.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) )
else:
for i in range(len(self.cutoffs ) ):
lowercase , lowercase : Union[str, Any] =self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowercase : Optional[int] =d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) )
self.out_layers.append(nn.Linear(UpperCAmelCase , r_idx - l_idx ) )
lowercase : Optional[Any] =keep_order
def A__ ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
if proj is None:
lowercase : Any =nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
lowercase : Dict =nn.functional.linear(UpperCAmelCase , proj.t().contiguous() )
lowercase : Dict =nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def A__ ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=False ) -> str:
'''simple docstring'''
if labels is not None:
# Shift so that tokens < n predict n
lowercase : Dict =hidden[..., :-1, :].contiguous()
lowercase : Dict =labels[..., 1:].contiguous()
lowercase : int =hidden.view(-1 , hidden.size(-1 ) )
lowercase : Optional[Any] =labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' )
else:
lowercase : Tuple =hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
lowercase : Any =self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
lowercase : List[str] =labels != -100
lowercase : List[Any] =torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
lowercase : Optional[int] =(
-nn.functional.log_softmax(UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
lowercase : Tuple =nn.functional.log_softmax(UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
lowercase , lowercase : List[str] =[], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
lowercase , lowercase : Any =self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowercase : Optional[Any] =self.out_layers[0].weight[l_idx:r_idx]
lowercase : str =self.out_layers[0].bias[l_idx:r_idx]
else:
lowercase : Union[str, Any] =self.out_layers[i].weight
lowercase : Dict =self.out_layers[i].bias
if i == 0:
lowercase : List[str] =torch.cat([weight_i, self.cluster_weight] , dim=0 )
lowercase : List[str] =torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCAmelCase )
biases.append(UpperCAmelCase )
lowercase , lowercase , lowercase : Any =weights[0], biases[0], self.out_projs[0]
lowercase : Optional[int] =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : str =nn.functional.log_softmax(UpperCAmelCase , dim=1 )
if labels is None:
lowercase : Any =hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
lowercase : List[Any] =torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
lowercase : Dict =0
lowercase : List[Any] =[0] + self.cutoffs
for i in range(len(UpperCAmelCase ) - 1 ):
lowercase , lowercase : List[Any] =cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
lowercase : List[str] =(labels >= l_idx) & (labels < r_idx)
lowercase : Optional[Any] =mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
lowercase : Any =labels.index_select(0 , UpperCAmelCase ) - l_idx
lowercase : str =head_logprob.index_select(0 , UpperCAmelCase )
lowercase : int =hidden.index_select(0 , UpperCAmelCase )
else:
lowercase : Dict =hidden
if i == 0:
if labels is not None:
lowercase : Optional[int] =head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
lowercase : Union[str, Any] =head_logprob[:, : self.cutoffs[0]]
else:
lowercase , lowercase , lowercase : int =weights[i], biases[i], self.out_projs[i]
lowercase : Union[str, Any] =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : Union[str, Any] =nn.functional.log_softmax(UpperCAmelCase , dim=1 )
lowercase : Any =self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
lowercase : Any =head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
lowercase : int =head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
lowercase : Union[str, Any] =logprob_i
if labels is not None:
if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order:
out.index_copy_(0 , UpperCAmelCase , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def A__ ( self : List[Any] , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
if self.n_clusters == 0:
lowercase : str =self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
lowercase , lowercase : Union[str, Any] =[], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
lowercase , lowercase : Union[str, Any] =self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowercase : int =self.out_layers[0].weight[l_idx:r_idx]
lowercase : int =self.out_layers[0].bias[l_idx:r_idx]
else:
lowercase : str =self.out_layers[i].weight
lowercase : Union[str, Any] =self.out_layers[i].bias
if i == 0:
lowercase : str =torch.cat([weight_i, self.cluster_weight] , dim=0 )
lowercase : Dict =torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCAmelCase )
biases.append(UpperCAmelCase )
lowercase , lowercase , lowercase : Optional[int] =weights[0], biases[0], self.out_projs[0]
lowercase : str =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : int =hidden.new_empty((head_logit.size(0 ), self.n_token) )
lowercase : List[str] =nn.functional.log_softmax(UpperCAmelCase , dim=1 )
lowercase : str =[0] + self.cutoffs
for i in range(len(UpperCAmelCase ) - 1 ):
lowercase , lowercase : Any =cutoff_values[i], cutoff_values[i + 1]
if i == 0:
lowercase : Optional[int] =head_logprob[:, : self.cutoffs[0]]
else:
lowercase , lowercase , lowercase : List[str] =weights[i], biases[i], self.out_projs[i]
lowercase : str =self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : Dict =nn.functional.log_softmax(UpperCAmelCase , dim=1 )
lowercase : Optional[int] =head_logprob[:, -i] + tail_logprob_i
lowercase : str =logprob_i
return out
| 8 |
'''simple docstring'''
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Any ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[int] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Any ='''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Tuple ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : Tuple =self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Optional[Any] ='''1'''
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
lowercase : str ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Optional[int] ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : str =self.get_env()
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''
from transformers import BertConfig, BertModel, BertTokenizer
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
lowercase : int ='''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Any ='''1'''
lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] ='''
from transformers import pipeline
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
lowercase : Tuple ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
lowercase : Tuple =self.get_env()
lowercase : Optional[int] ='''1'''
lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def A__ ( self : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[str] ='''
from transformers import AutoModel
'''
lowercase : Dict ='''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : List[str] ='''1'''
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 8 | 1 |
'''simple docstring'''
import math
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : int=0 ) -> List[str]: # a graph with Node 0,1,...,N-1
'''simple docstring'''
lowercase : str =n
lowercase : Dict =[
[math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase )
] # adjacency matrix for weight
lowercase : Optional[Any] =[
[math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase )
] # dp[i][j] stores minimum distance from i to j
def A__ ( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =w
def A__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
lowercase : List[Any] =min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
return self.dp[u][v]
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 8 |
'''simple docstring'''
SCREAMING_SNAKE_CASE = 'Alexander Joslin'
import operator as op
from .stack import Stack
def lowercase_ ( __A : str ) -> int:
"""simple docstring"""
lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
lowercase : Stack[int] =Stack()
lowercase : Stack[str] =Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__A ) )
elif i in operators:
# RULE 2
operator_stack.push(__A )
elif i == ")":
# RULE 4
lowercase : Optional[Any] =operator_stack.peek()
operator_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : List[str] =operators[opr](__A , __A )
operand_stack.push(__A )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))'
# answer = 45
print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 8 | 1 |
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]=sys.maxsize ) -> Tuple:
'''simple docstring'''
lowercase : Optional[int] ='''bilinear'''
lowercase : Optional[Any] =max_size
lowercase : List[Any] =short_edge_length
def __call__( self : int , UpperCAmelCase : Dict ) -> Dict:
'''simple docstring'''
lowercase : Any =[]
for img in imgs:
lowercase , lowercase : Optional[Any] =img.shape[:2]
# later: provide list and randomly choose index for resize
lowercase : str =np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowercase : int =size * 1.0 / min(UpperCAmelCase , UpperCAmelCase )
if h < w:
lowercase , lowercase : Dict =size, scale * w
else:
lowercase , lowercase : str =scale * h, size
if max(UpperCAmelCase , UpperCAmelCase ) > self.max_size:
lowercase : Any =self.max_size * 1.0 / max(UpperCAmelCase , UpperCAmelCase )
lowercase : Tuple =newh * scale
lowercase : Any =neww * scale
lowercase : List[str] =int(neww + 0.5 )
lowercase : List[str] =int(newh + 0.5 )
if img.dtype == np.uinta:
lowercase : Optional[int] =Image.fromarray(UpperCAmelCase )
lowercase : List[str] =pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowercase : Optional[Any] =np.asarray(UpperCAmelCase )
else:
lowercase : Any =img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowercase : Union[str, Any] =nn.functional.interpolate(
UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=UpperCAmelCase ).squeeze(0 )
img_augs.append(UpperCAmelCase )
return img_augs
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : Dict ) -> Any:
'''simple docstring'''
lowercase : Optional[Any] =ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowercase : Any =cfg.INPUT.FORMAT
lowercase : List[Any] =cfg.SIZE_DIVISIBILITY
lowercase : List[str] =cfg.PAD_VALUE
lowercase : Dict =cfg.INPUT.MAX_SIZE_TEST
lowercase : Optional[Any] =cfg.MODEL.DEVICE
lowercase : int =torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowercase : Tuple =torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowercase : int =lambda UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std
def A__ ( self : List[Any] , UpperCAmelCase : List[Any] ) -> List[Any]:
'''simple docstring'''
lowercase : Optional[Any] =tuple(max(UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) )
lowercase : Union[str, Any] =[im.shape[-2:] for im in images]
lowercase : Tuple =[
nn.functional.pad(
UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(UpperCAmelCase , UpperCAmelCase )
]
return torch.stack(UpperCAmelCase ), torch.tensor(UpperCAmelCase )
def __call__( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=False ) -> List[Any]:
'''simple docstring'''
with torch.no_grad():
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
lowercase : Any =[images]
if single_image:
assert len(UpperCAmelCase ) == 1
for i in range(len(UpperCAmelCase ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(UpperCAmelCase , images.pop(UpperCAmelCase ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(UpperCAmelCase ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowercase : Union[str, Any] =torch.tensor([im.shape[:2] for im in images] )
lowercase : Dict =self.aug(UpperCAmelCase )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowercase : List[str] =[self.normalizer(UpperCAmelCase ) for x in images]
# now pad them to do the following operations
lowercase , lowercase : Dict =self.pad(UpperCAmelCase )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowercase : Union[str, Any] =torch.true_divide(UpperCAmelCase , UpperCAmelCase )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def lowercase_ ( __A : Tuple , __A : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def lowercase_ ( __A : Dict , __A : Tuple[int, int] ) -> Union[str, Any]:
"""simple docstring"""
assert torch.isfinite(__A ).all(), "Box tensor contains infinite or NaN!"
lowercase , lowercase : Optional[Any] =box_size
tensor[:, 0].clamp_(min=0 , max=__A )
tensor[:, 1].clamp_(min=0 , max=__A )
tensor[:, 2].clamp_(min=0 , max=__A )
tensor[:, 3].clamp_(min=0 , max=__A )
| 8 |
'''simple docstring'''
import re
def lowercase_ ( __A : str ) -> bool:
"""simple docstring"""
lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' )
if match := re.search(__A , __A ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator('+918827897895'))
| 8 | 1 |
'''simple docstring'''
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class UpperCAmelCase_ ( __A , __A ):
"""simple docstring"""
@register_to_config
def __init__( self : str , UpperCAmelCase : int = 128 , UpperCAmelCase : int = 256 , UpperCAmelCase : float = 2_0_0_0.0 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2048 , UpperCAmelCase : float = 0.1 , ) -> int:
'''simple docstring'''
super().__init__()
lowercase : Optional[int] =nn.Sequential(
nn.Linear(UpperCAmelCase , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , )
lowercase : Any =nn.Embedding(UpperCAmelCase , UpperCAmelCase )
lowercase : Optional[Any] =False
lowercase : Optional[int] =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
lowercase : Optional[int] =nn.Dropout(p=UpperCAmelCase )
lowercase : Tuple =nn.ModuleList()
for lyr_num in range(UpperCAmelCase ):
# FiLM conditional T5 decoder
lowercase : Dict =DecoderLayer(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase )
self.decoders.append(UpperCAmelCase )
lowercase : Optional[int] =TaLayerNorm(UpperCAmelCase )
lowercase : str =nn.Dropout(p=UpperCAmelCase )
lowercase : Dict =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
def A__ ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[str] =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase , lowercase , lowercase : int =decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
lowercase : int =get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
lowercase : int =self.conditioning_emb(UpperCAmelCase ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
lowercase : int =decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
lowercase : str =torch.broadcast_to(
torch.arange(UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , )
lowercase : Tuple =self.position_encoding(UpperCAmelCase )
lowercase : Any =self.continuous_inputs_projection(UpperCAmelCase )
inputs += position_encodings
lowercase : Optional[int] =self.dropout(UpperCAmelCase )
# decoder: No padding present.
lowercase : List[Any] =torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
lowercase : Any =[(x, self.encoder_decoder_mask(UpperCAmelCase , UpperCAmelCase )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
lowercase : Optional[Any] =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
lowercase : str =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
lowercase : List[str] =lyr(
UpperCAmelCase , conditioning_emb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )[0]
lowercase : Any =self.decoder_norm(UpperCAmelCase )
lowercase : List[Any] =self.post_dropout(UpperCAmelCase )
lowercase : Any =self.spec_out(UpperCAmelCase )
return spec_out
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : int=1e-6 ) -> Any:
'''simple docstring'''
super().__init__()
lowercase : str =nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase ) )
def A__ ( self : Any , UpperCAmelCase : int , UpperCAmelCase : int=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=None , ) -> Tuple:
'''simple docstring'''
lowercase : Optional[int] =self.layer[0](
UpperCAmelCase , conditioning_emb=UpperCAmelCase , attention_mask=UpperCAmelCase , )
if encoder_hidden_states is not None:
lowercase : Union[str, Any] =torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to(
encoder_hidden_states.dtype )
lowercase : List[str] =self.layer[1](
UpperCAmelCase , key_value_states=UpperCAmelCase , attention_mask=UpperCAmelCase , )
# Apply Film Conditional Feed Forward layer
lowercase : List[str] =self.layer[-1](UpperCAmelCase , UpperCAmelCase )
return (hidden_states,)
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
lowercase : Optional[int] =TaLayerNorm(UpperCAmelCase )
lowercase : List[str] =TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase )
lowercase : Optional[Any] =Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase )
lowercase : Any =nn.Dropout(UpperCAmelCase )
def A__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[int] =self.layer_norm(UpperCAmelCase )
if conditioning_emb is not None:
lowercase : Tuple =self.FiLMLayer(UpperCAmelCase , UpperCAmelCase )
# Self-attention block
lowercase : Tuple =self.attention(UpperCAmelCase )
lowercase : Dict =hidden_states + self.dropout(UpperCAmelCase )
return hidden_states
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
super().__init__()
lowercase : str =Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase )
lowercase : Any =TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase )
lowercase : Any =nn.Dropout(UpperCAmelCase )
def A__ ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str]=None , UpperCAmelCase : Any=None , ) -> int:
'''simple docstring'''
lowercase : List[str] =self.layer_norm(UpperCAmelCase )
lowercase : List[Any] =self.attention(
UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , )
lowercase : Tuple =hidden_states + self.dropout(UpperCAmelCase )
return layer_output
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Tuple ) -> List[Any]:
'''simple docstring'''
super().__init__()
lowercase : List[str] =TaDenseGatedActDense(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase )
lowercase : str =TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase )
lowercase : Optional[Any] =TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase )
lowercase : Any =nn.Dropout(UpperCAmelCase )
def A__ ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=None ) -> int:
'''simple docstring'''
lowercase : List[Any] =self.layer_norm(UpperCAmelCase )
if conditioning_emb is not None:
lowercase : Tuple =self.film(UpperCAmelCase , UpperCAmelCase )
lowercase : List[Any] =self.DenseReluDense(UpperCAmelCase )
lowercase : List[str] =hidden_states + self.dropout(UpperCAmelCase )
return hidden_states
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> Dict:
'''simple docstring'''
super().__init__()
lowercase : List[str] =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
lowercase : Dict =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
lowercase : Optional[Any] =nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
lowercase : Optional[int] =nn.Dropout(UpperCAmelCase )
lowercase : Union[str, Any] =NewGELUActivation()
def A__ ( self : List[str] , UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
lowercase : int =self.act(self.wi_a(UpperCAmelCase ) )
lowercase : Optional[Any] =self.wi_a(UpperCAmelCase )
lowercase : Dict =hidden_gelu * hidden_linear
lowercase : Optional[int] =self.dropout(UpperCAmelCase )
lowercase : Union[str, Any] =self.wo(UpperCAmelCase )
return hidden_states
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : Tuple=1e-6 ) -> Optional[int]:
'''simple docstring'''
super().__init__()
lowercase : str =nn.Parameter(torch.ones(UpperCAmelCase ) )
lowercase : Union[str, Any] =eps
def A__ ( self : List[Any] , UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
lowercase : Optional[int] =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCAmelCase )
lowercase : Dict =hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
lowercase : Union[str, Any] =hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def A__ ( self : Union[str, Any] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(UpperCAmelCase , 3.0 )) ))
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Any:
'''simple docstring'''
super().__init__()
lowercase : Any =nn.Linear(UpperCAmelCase , out_features * 2 , bias=UpperCAmelCase )
def A__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
lowercase : Union[str, Any] =self.scale_bias(UpperCAmelCase )
lowercase , lowercase : Dict =torch.chunk(UpperCAmelCase , 2 , -1 )
lowercase : Optional[int] =x * (1 + scale) + shift
return x
| 8 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] =parent
lowercase : Tuple =13
lowercase : Any =7
lowercase : Union[str, Any] =True
lowercase : Any =True
lowercase : Optional[int] =True
lowercase : List[str] =True
lowercase : Tuple =99
lowercase : str =32
lowercase : Union[str, Any] =2
lowercase : Dict =4
lowercase : Union[str, Any] =37
lowercase : Union[str, Any] ='''gelu'''
lowercase : Any =0.1
lowercase : Dict =0.1
lowercase : Dict =512
lowercase : List[str] =16
lowercase : Dict =2
lowercase : int =0.0_2
lowercase : List[Any] =3
lowercase : List[str] =4
lowercase : Optional[Any] =None
def A__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : str =None
if self.use_input_mask:
lowercase : int =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Any =None
if self.use_token_type_ids:
lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase : List[Any] =None
lowercase : List[str] =None
lowercase : List[str] =None
if self.use_labels:
lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : Any =ids_tensor([self.batch_size] , self.num_choices )
lowercase : List[Any] =RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase )
lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowercase : Tuple =[input_ids, input_mask]
lowercase : str =model(UpperCAmelCase )
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any:
'''simple docstring'''
lowercase : Dict =True
lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase )
lowercase : Union[str, Any] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Optional[Any] =model(UpperCAmelCase )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase )
lowercase : List[str] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] =self.num_labels
lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase )
lowercase : Optional[int] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Optional[Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =self.num_choices
lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase )
lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
lowercase : Dict =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =self.num_labels
lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase )
lowercase : Tuple ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any:
'''simple docstring'''
lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase )
lowercase : List[str] ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
lowercase : Optional[Any] =self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) : Optional[int] =config_and_inputs
lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase_ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple:
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : List[Any] =TFRoFormerModelTester(self )
lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def A__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
lowercase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase )
def A__ ( self : int ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
lowercase : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
lowercase : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def A__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def A__ ( self : str ) -> str:
'''simple docstring'''
lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase : List[str] =model(UpperCAmelCase )[0]
# TODO Replace vocab size
lowercase : Tuple =5_0000
lowercase : List[str] =[1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
lowercase : Dict =tf.constant(
[
[
[-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6],
[-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7],
[-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = 1e-4
def A__ ( self : int ) -> List[Any]:
'''simple docstring'''
lowercase : Union[str, Any] =tf.constant([[4, 10]] )
lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
lowercase : Any =emba(input_ids.shape )
lowercase : List[str] =tf.constant(
[[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] )
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
def A__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
lowercase : Optional[Any] =tf.constant(
[
[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0],
[0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7],
[0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0],
] )
lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
lowercase : str =emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = 1e-4
def A__ ( self : Dict ) -> Dict:
'''simple docstring'''
lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :]
lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase : Any =tf.constant(
[
[0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0],
[-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3],
[-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5],
[-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1],
[0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0],
[3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3],
] )
lowercase : int =tf.constant(
[
[0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0],
[0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3],
[1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5],
[2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1],
[-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0],
[-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
| 8 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''image_processor''', '''tokenizer''']
UpperCamelCase_ = '''LayoutLMv2ImageProcessor'''
UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''')
def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , UpperCAmelCase , )
lowercase : Any =kwargs.pop('''feature_extractor''' )
lowercase : Dict =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowercase : List[str] =features['''words''']
lowercase : Optional[Any] =self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
# add pixel values
lowercase : List[str] =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] )
lowercase : Dict =images
return encoded_inputs
def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str:
'''simple docstring'''
lowercase : str =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' )
return images_with_overflow
def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , )
return self.image_processor_class
@property
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , )
return self.image_processor
| 8 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
SCREAMING_SNAKE_CASE = parser.parse_args()
if args.model_type == "bert":
SCREAMING_SNAKE_CASE = BertForMaskedLM.from_pretrained(args.model_name)
SCREAMING_SNAKE_CASE = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
SCREAMING_SNAKE_CASE = model.state_dict()
SCREAMING_SNAKE_CASE = {}
for w in ["word_embeddings", "position_embeddings"]:
SCREAMING_SNAKE_CASE = state_dict[f"""{prefix}.embeddings.{w}.weight"""]
for w in ["weight", "bias"]:
SCREAMING_SNAKE_CASE = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""]
SCREAMING_SNAKE_CASE = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
SCREAMING_SNAKE_CASE = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"""
]
SCREAMING_SNAKE_CASE = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"""
]
SCREAMING_SNAKE_CASE = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"""
]
SCREAMING_SNAKE_CASE = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"""
]
SCREAMING_SNAKE_CASE = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"""
]
SCREAMING_SNAKE_CASE = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"""
]
SCREAMING_SNAKE_CASE = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"""
]
SCREAMING_SNAKE_CASE = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"""
]
std_idx += 1
SCREAMING_SNAKE_CASE = state_dict['cls.predictions.decoder.weight']
SCREAMING_SNAKE_CASE = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
SCREAMING_SNAKE_CASE = state_dict[f"""cls.predictions.transform.dense.{w}"""]
SCREAMING_SNAKE_CASE = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""]
print(f"""N layers selected for distillation: {std_idx}""")
print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 8 |
'''simple docstring'''
def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
"""simple docstring"""
try:
lowercase : Any =int(__A )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
lowercase : Optional[Any] =1
lowercase : Dict =2
while i * i <= n:
while n % i == 0:
lowercase : Optional[int] =i
n //= i
i += 1
if n > 1:
lowercase : Dict =n
return int(__A )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 8 | 1 |
'''simple docstring'''
# Usage:
# ./gen-card-allenai-wmt16.py
import os
from pathlib import Path
def lowercase_ ( __A : int , __A : str , __A : str , __A : Union[str, Any] ) -> int:
"""simple docstring"""
lowercase : Optional[int] ={
'''en''': '''Machine learning is great, isn\'t it?''',
'''ru''': '''Машинное обучение - это здорово, не так ли?''',
'''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
lowercase : Optional[Any] ={
'''wmt16-en-de-dist-12-1''': [28.3, 27.52],
'''wmt16-en-de-dist-6-1''': [27.4, 27.11],
'''wmt16-en-de-12-1''': [26.9, 25.75],
}
lowercase : Tuple =F'{src_lang}-{tgt_lang}'
lowercase : List[Any] =F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n'
model_card_dir.mkdir(parents=__A , exist_ok=__A )
lowercase : str =os.path.join(__A , '''README.md''' )
print(F'Generating {path}' )
with open(__A , '''w''' , encoding='''utf-8''' ) as f:
f.write(__A )
# make sure we are under the root of the project
SCREAMING_SNAKE_CASE = Path(__file__).resolve().parent.parent.parent
SCREAMING_SNAKE_CASE = repo_dir / 'model_cards'
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
SCREAMING_SNAKE_CASE = model_cards_dir / 'allenai' / model_name
write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
| 8 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
lowercase : str =u
for i in range(1 , __A ):
lowercase : Any =temp * (u - i)
return temp
def lowercase_ ( ) -> None:
"""simple docstring"""
lowercase : List[str] =int(input('''enter the numbers of values: ''' ) )
lowercase : list[list[float]] =[]
for _ in range(__A ):
y.append([] )
for i in range(__A ):
for j in range(__A ):
y[i].append(__A )
lowercase : List[Any] =0
print('''enter the values of parameters in a list: ''' )
lowercase : Optional[int] =list(map(__A , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(__A ):
lowercase : str =float(input() )
lowercase : int =int(input('''enter the value to interpolate: ''' ) )
lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , __A ):
for j in range(n - i ):
lowercase : str =y[j + 1][i - 1] - y[j][i - 1]
lowercase : Any =y[0][0]
for i in range(1 , __A ):
summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A )
print(F'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 8 | 1 |
'''simple docstring'''
import os
def lowercase_ ( __A : str = "matrix.txt" ) -> int:
"""simple docstring"""
with open(os.path.join(os.path.dirname(__A ) , __A ) ) as in_file:
lowercase : Union[str, Any] =in_file.read()
lowercase : str =[[int(__A ) for cell in row.split(''',''' )] for row in data.strip().splitlines()]
lowercase : Optional[int] =[[0 for cell in row] for row in grid]
lowercase : List[str] =len(grid[0] )
lowercase : Tuple =[[0 for i in range(__A )] for j in range(__A )]
lowercase : Optional[int] =grid[0][0]
for i in range(1 , __A ):
lowercase : List[str] =grid[0][i] + dp[0][i - 1]
for i in range(1 , __A ):
lowercase : Union[str, Any] =grid[i][0] + dp[i - 1][0]
for i in range(1 , __A ):
for j in range(1 , __A ):
lowercase : str =grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] )
return dp[-1][-1]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 8 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =0
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : str =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : int =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : str =CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict()
config_dict.pop('''image_processor_type''' )
lowercase : str =CLIPImageProcessor(**UpperCAmelCase )
# save in new folder
model_config.save_pretrained(UpperCAmelCase )
config.save_pretrained(UpperCAmelCase )
lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
# make sure private variable is not incorrectly saved
lowercase : int =json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ):
lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' )
def A__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' )
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def A__ ( self : List[str] ) -> str:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase ):
lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCAmelCase ):
lowercase : List[str] =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCAmelCase )
lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , UpperCAmelCase )
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCAmelCase ):
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json'''
lowercase : str =Path(UpperCAmelCase ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) )
lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCAmelCase )
lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def A__ ( self : Any ) -> Any:
'''simple docstring'''
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = True
try:
AutoConfig.register('''custom''' , UpperCAmelCase )
AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase )
# If remote code is not set, the default is to use local
lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowercase : Tuple =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowercase : Dict =AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : int , __A : int ) -> int:
"""simple docstring"""
while b:
lowercase , lowercase : Union[str, Any] =b, a % b
return a
def lowercase_ ( __A : int , __A : int ) -> int:
"""simple docstring"""
return a if b == 0 else euclidean_gcd_recursive(__A , a % b )
def lowercase_ ( ) -> Any:
"""simple docstring"""
print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' )
print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' )
print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' )
print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' )
print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' )
print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' )
print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' )
print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' )
print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' )
print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' )
if __name__ == "__main__":
main()
| 8 |
'''simple docstring'''
from __future__ import annotations
SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2
def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]:
"""simple docstring"""
lowercase : Dict =abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
lowercase : Any =tempfile.mkdtemp()
# fmt: off
lowercase : Optional[int] =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
lowercase : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowercase : List[Any] ={
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
lowercase : Dict =os.path.join(self.tmpdirname , UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any , **UpperCAmelCase : Any ) -> List[Any]:
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def A__ ( self : Tuple , **UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def A__ ( self : List[str] ) -> int:
'''simple docstring'''
lowercase : Optional[int] =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowercase : Any =[Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
lowercase : Optional[Any] =self.get_tokenizer()
lowercase : Optional[int] =self.get_image_processor()
lowercase : int =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowercase : Optional[int] =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def A__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
lowercase : Optional[Any] =VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase : Optional[int] =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowercase : str =self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
lowercase : str =VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def A__ ( self : List[Any] ) -> str:
'''simple docstring'''
lowercase : Any =self.get_image_processor()
lowercase : Optional[int] =self.get_tokenizer()
lowercase : Union[str, Any] =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : str =self.prepare_image_inputs()
lowercase : Any =image_processor(UpperCAmelCase , return_tensors='''np''' )
lowercase : Union[str, Any] =processor(images=UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def A__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
lowercase : str =self.get_image_processor()
lowercase : Optional[Any] =self.get_tokenizer()
lowercase : Dict =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : int ='''lower newer'''
lowercase : List[str] =processor(text=UpperCAmelCase )
lowercase : Tuple =tokenizer(UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A__ ( self : int ) -> Tuple:
'''simple docstring'''
lowercase : Optional[int] =self.get_image_processor()
lowercase : Dict =self.get_tokenizer()
lowercase : Dict =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Dict ='''lower newer'''
lowercase : List[Any] =self.prepare_image_inputs()
lowercase : Dict =processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(UpperCAmelCase ):
processor()
def A__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : List[str] =self.get_image_processor()
lowercase : str =self.get_tokenizer()
lowercase : str =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Optional[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase : Tuple =processor.batch_decode(UpperCAmelCase )
lowercase : Optional[int] =tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
lowercase : Union[str, Any] =self.get_image_processor()
lowercase : List[str] =self.get_tokenizer()
lowercase : Tuple =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Optional[int] ='''lower newer'''
lowercase : Dict =self.prepare_image_inputs()
lowercase : Any =processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 8 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
SCREAMING_SNAKE_CASE = {
'allenai/led-base-16384': 16_384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ) -> Any:
"""simple docstring"""
lowercase : int =(
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
lowercase : Union[str, Any] =bs[:]
lowercase : Tuple =0
for b in range(2**8 ):
if b not in bs:
bs.append(__A )
cs.append(2**8 + n )
n += 1
lowercase : Optional[Any] =[chr(__A ) for n in cs]
return dict(zip(__A , __A ) )
def lowercase_ ( __A : str ) -> List[Any]:
"""simple docstring"""
lowercase : Optional[Any] =set()
lowercase : Tuple =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase : List[str] =char
return pairs
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict:
'''simple docstring'''
lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token
lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token
lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token
lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , )
with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
lowercase : str =json.load(UpperCAmelCase )
lowercase : Optional[int] ={v: k for k, v in self.encoder.items()}
lowercase : Optional[int] =errors # how to handle errors in decoding
lowercase : Tuple =bytes_to_unicode()
lowercase : int ={v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1]
lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges]
lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : Optional[int] ={}
lowercase : Any =add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def A__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return len(self.encoder )
def A__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : List[str] =get_pairs(UpperCAmelCase )
if not pairs:
return token
while True:
lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowercase , lowercase : Optional[int] =bigram
lowercase : Union[str, Any] =[]
lowercase : Optional[Any] =0
while i < len(UpperCAmelCase ):
try:
lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase : Optional[int] =j
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : str =new_word
if len(UpperCAmelCase ) == 1:
break
else:
lowercase : Optional[Any] =get_pairs(UpperCAmelCase )
lowercase : Optional[Any] =''' '''.join(UpperCAmelCase )
lowercase : Union[str, Any] =word
return word
def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Dict =[]
for token in re.findall(self.pat , UpperCAmelCase ):
lowercase : Optional[int] =''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) )
return bpe_tokens
def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase )
def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =''''''.join(UpperCAmelCase )
lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowercase : Optional[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : List[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' )
lowercase : List[str] =0
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
''' Please check that the tokenizer is not corrupted!''' )
lowercase : Any =token_index
writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
lowercase : List[Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Dict =[self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()):
lowercase : Union[str, Any] =''' ''' + text
return (text, kwargs)
def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict:
'''simple docstring'''
lowercase : Optional[int] =super()._pad(
encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , )
# Load from model defaults
if return_attention_mask is None:
lowercase : Tuple ='''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase )
if needs_to_be_padded:
lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase : List[str] =(
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
lowercase : Any =[-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 8 | 1 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def lowercase_ ( __A : str , __A : str , **__A : Optional[Any] ) -> List[str]:
"""simple docstring"""
lowercase : int =AutoConfig.from_pretrained(__A , **__A )
lowercase : int =AutoModelForSeqaSeqLM.from_config(__A )
model.save_pretrained(__A )
AutoTokenizer.from_pretrained(__A ).save_pretrained(__A )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 8 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]:
'''simple docstring'''
lowercase : Any =list(poly_a or [0] )[:]
lowercase : Dict =list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
lowercase : int =len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
lowercase : List[str] =len(self.polyB )
# Add 0 to make lengths equal a power of 2
lowercase : Tuple =int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
lowercase : str =self.__multiply()
def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple:
'''simple docstring'''
lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB]
# Corner case
if len(UpperCAmelCase ) <= 1:
return dft[0]
#
lowercase : List[Any] =self.c_max_length // 2
while next_ncol > 0:
lowercase : str =[[] for i in range(UpperCAmelCase )]
lowercase : List[str] =self.root**next_ncol
# First half of next step
lowercase : Union[str, Any] =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
lowercase : Any =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCAmelCase ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
lowercase : Tuple =new_dft
lowercase : List[Any] =next_ncol // 2
return dft[0]
def A__ ( self : int ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.__dft('''A''' )
lowercase : Union[str, Any] =self.__dft('''B''' )
lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
lowercase : Tuple =2
while next_ncol <= self.c_max_length:
lowercase : Tuple =[[] for i in range(UpperCAmelCase )]
lowercase : Tuple =self.root ** (next_ncol // 2)
lowercase : Optional[int] =1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
lowercase : List[Any] =new_inverse_c
next_ncol *= 2
# Unpack
lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Dict ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''A = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) )
lowercase : List[str] ='''B = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) )
lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.product ) )
return f'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
SCREAMING_SNAKE_CASE = {
'allenai/led-base-16384': 16_384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ) -> Any:
"""simple docstring"""
lowercase : int =(
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
lowercase : Union[str, Any] =bs[:]
lowercase : Tuple =0
for b in range(2**8 ):
if b not in bs:
bs.append(__A )
cs.append(2**8 + n )
n += 1
lowercase : Optional[Any] =[chr(__A ) for n in cs]
return dict(zip(__A , __A ) )
def lowercase_ ( __A : str ) -> List[Any]:
"""simple docstring"""
lowercase : Optional[Any] =set()
lowercase : Tuple =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase : List[str] =char
return pairs
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict:
'''simple docstring'''
lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token
lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token
lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token
lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token
lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , )
with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
lowercase : str =json.load(UpperCAmelCase )
lowercase : Optional[int] ={v: k for k, v in self.encoder.items()}
lowercase : Optional[int] =errors # how to handle errors in decoding
lowercase : Tuple =bytes_to_unicode()
lowercase : int ={v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1]
lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges]
lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : Optional[int] ={}
lowercase : Any =add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def A__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return len(self.encoder )
def A__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : List[str] =get_pairs(UpperCAmelCase )
if not pairs:
return token
while True:
lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowercase , lowercase : Optional[int] =bigram
lowercase : Union[str, Any] =[]
lowercase : Optional[Any] =0
while i < len(UpperCAmelCase ):
try:
lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase : Optional[int] =j
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase : List[str] =tuple(UpperCAmelCase )
lowercase : str =new_word
if len(UpperCAmelCase ) == 1:
break
else:
lowercase : Optional[Any] =get_pairs(UpperCAmelCase )
lowercase : Optional[Any] =''' '''.join(UpperCAmelCase )
lowercase : Union[str, Any] =word
return word
def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Dict =[]
for token in re.findall(self.pat , UpperCAmelCase ):
lowercase : Optional[int] =''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) )
return bpe_tokens
def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase )
def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =''''''.join(UpperCAmelCase )
lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowercase : Optional[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : List[Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' )
lowercase : List[str] =0
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
''' Please check that the tokenizer is not corrupted!''' )
lowercase : Any =token_index
writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
lowercase : List[Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Dict =[self.sep_token_id]
lowercase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()):
lowercase : Union[str, Any] =''' ''' + text
return (text, kwargs)
def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict:
'''simple docstring'''
lowercase : Optional[int] =super()._pad(
encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , )
# Load from model defaults
if return_attention_mask is None:
lowercase : Tuple ='''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase )
if needs_to_be_padded:
lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase : List[str] =(
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
lowercase : Any =[-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 8 |
'''simple docstring'''
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : List[Any] =str(bin(__A ) )
binary_number += "0" * shift_amount
return binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : Union[str, Any] =str(bin(__A ) )[2:]
if shift_amount >= len(__A ):
return "0b0"
lowercase : Any =binary_number[: len(__A ) - shift_amount]
return "0b" + shifted_binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number
lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:]
lowercase : int =(
'''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number
)
if shift_amount >= len(__A ):
return "0b" + binary_number[0] * len(__A )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__A ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
'''simple docstring'''
import argparse
import os
import re
SCREAMING_SNAKE_CASE = 'src/diffusers'
# Pattern that looks at the indentation in a line.
SCREAMING_SNAKE_CASE = re.compile(r'^(\s*)\S')
# Pattern that matches `"key":" and puts `key` in group 0.
SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
SCREAMING_SNAKE_CASE = re.compile(r'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
SCREAMING_SNAKE_CASE = re.compile(r'\[([^\]]+)\]')
def lowercase_ ( __A : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Dict =_re_indent.search(__A )
return "" if search is None else search.groups()[0]
def lowercase_ ( __A : List[str] , __A : Tuple="" , __A : List[str]=None , __A : Dict=None ) -> str:
"""simple docstring"""
lowercase : List[str] =0
lowercase : List[Any] =code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(__A ):
index += 1
lowercase : Tuple =['''\n'''.join(lines[:index] )]
else:
lowercase : Optional[Any] =[]
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowercase : List[str] =[lines[index]]
index += 1
while index < len(__A ) and (end_prompt is None or not lines[index].startswith(__A )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(__A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(__A ) )
if index < len(__A ) - 1:
lowercase : Tuple =[lines[index + 1]]
index += 1
else:
lowercase : List[Any] =[]
else:
blocks.append('''\n'''.join(__A ) )
lowercase : Any =[lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(__A ) > 0:
blocks.append('''\n'''.join(__A ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(__A ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def lowercase_ ( __A : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
def _inner(__A : Tuple ):
return key(__A ).lower().replace('''_''' , '''''' )
return _inner
def lowercase_ ( __A : str , __A : Union[str, Any]=None ) -> Union[str, Any]:
"""simple docstring"""
def noop(__A : Optional[Any] ):
return x
if key is None:
lowercase : str =noop
# Constants are all uppercase, they go first.
lowercase : int =[obj for obj in objects if key(__A ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowercase : Tuple =[obj for obj in objects if key(__A )[0].isupper() and not key(__A ).isupper()]
# Functions begin with a lowercase, they go last.
lowercase : List[str] =[obj for obj in objects if not key(__A )[0].isupper()]
lowercase : Dict =ignore_underscore(__A )
return sorted(__A , key=__A ) + sorted(__A , key=__A ) + sorted(__A , key=__A )
def lowercase_ ( __A : Union[str, Any] ) -> int:
"""simple docstring"""
def _replace(__A : List[str] ):
lowercase : Dict =match.groups()[0]
if "," not in imports:
return F'[{imports}]'
lowercase : Union[str, Any] =[part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase : Any =keys[:-1]
return "[" + ", ".join([F'"{k}"' for k in sort_objects(__A )] ) + "]"
lowercase : Tuple =import_statement.split('''\n''' )
if len(__A ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowercase : int =2 if lines[1].strip() == '''[''' else 1
lowercase : List[str] =[(i, _re_strip_line.search(__A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowercase : Tuple =sort_objects(__A , key=lambda __A : x[1] )
lowercase : List[Any] =[lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(__A ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowercase : Union[str, Any] =_re_bracket_content.sub(_replace , lines[1] )
else:
lowercase : List[str] =[part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase : Union[str, Any] =keys[:-1]
lowercase : Optional[int] =get_indent(lines[1] ) + ''', '''.join([F'"{k}"' for k in sort_objects(__A )] )
return "\n".join(__A )
else:
# Finally we have to deal with imports fitting on one line
lowercase : Optional[Any] =_re_bracket_content.sub(_replace , __A )
return import_statement
def lowercase_ ( __A : int , __A : int=True ) -> int:
"""simple docstring"""
with open(__A , '''r''' ) as f:
lowercase : Optional[Any] =f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowercase : Tuple =split_code_in_indented_blocks(
__A , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(__A ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowercase : int =main_blocks[block_idx]
lowercase : List[Any] =block.split('''\n''' )
# Get to the start of the imports.
lowercase : List[str] =0
while line_idx < len(__A ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowercase : int =len(__A )
else:
line_idx += 1
if line_idx >= len(__A ):
continue
# Ignore beginning and last line: they don't contain anything.
lowercase : int ='''\n'''.join(block_lines[line_idx:-1] )
lowercase : List[Any] =get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowercase : int =split_code_in_indented_blocks(__A , indent_level=__A )
# We have two categories of import key: list or _import_structure[key].append/extend
lowercase : List[str] =_re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowercase : int =[(pattern.search(__A ).groups()[0] if pattern.search(__A ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowercase : List[Any] =[(i, key) for i, key in enumerate(__A ) if key is not None]
lowercase : Optional[int] =[x[0] for x in sorted(__A , key=lambda __A : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowercase : Optional[Any] =0
lowercase : str =[]
for i in range(len(__A ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
lowercase : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(__A )
count += 1
# And we put our main block back together with its first and last line.
lowercase : Any ='''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(__A ):
if check_only:
return True
else:
print(F'Overwriting {file}.' )
with open(__A , '''w''' ) as f:
f.write('''\n'''.join(__A ) )
def lowercase_ ( __A : Tuple=True ) -> List[str]:
"""simple docstring"""
lowercase : Tuple =[]
for root, _, files in os.walk(__A ):
if "__init__.py" in files:
lowercase : Optional[int] =sort_imports(os.path.join(__A , '''__init__.py''' ) , check_only=__A )
if result:
lowercase : Optional[Any] =[os.path.join(__A , '''__init__.py''' )]
if len(__A ) > 0:
raise ValueError(F'Would overwrite {len(__A )} files, run `make style`.' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
SCREAMING_SNAKE_CASE = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 8 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class UpperCAmelCase_ :
"""simple docstring"""
@staticmethod
def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
pass
def lowercase_ ( __A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
SCREAMING_SNAKE_CASE = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : Dict =pipeline(
'''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowercase : Optional[Any] =INVOICE_URL
lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
lowercase : Dict ='''What is the placebo?'''
lowercase : Optional[Any] =[
{
'''image''': load_image(UpperCAmelCase ),
'''question''': question,
},
{
'''image''': image,
'''question''': question,
},
{
'''image''': image,
'''question''': question,
'''word_boxes''': word_boxes,
},
]
return dqa_pipeline, examples
def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 )
self.assertEqual(
UpperCAmelCase , [
[
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
{'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' )
lowercase : Union[str, Any] =INVOICE_URL
lowercase : Tuple ='''How many cats are there?'''
lowercase : Optional[int] =[
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39},
{'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40},
]
lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
# We can optionnally pass directly the words and bounding boxes
lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png'''
lowercase : Dict =[]
lowercase : str =[]
lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 )
self.assertEqual(UpperCAmelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : int ) -> Any:
'''simple docstring'''
lowercase : Union[str, Any] =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , )
lowercase : Dict =INVOICE_URL
lowercase : str ='''What is the invoice number?'''
lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : List[Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def A__ ( self : Dict ) -> List[str]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , )
lowercase : Dict =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Any =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
{'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : str ) -> Dict:
'''simple docstring'''
lowercase : Any =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : Tuple =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , )
lowercase : Tuple =INVOICE_URL
lowercase : Any ='''What is the invoice number?'''
lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
lowercase : str =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
]
]
* 2 , )
lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
lowercase : Dict =AutoTokenizer.from_pretrained(
'''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase )
lowercase : List[Any] =pipeline(
'''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , )
lowercase : str =INVOICE_URL
lowercase : int ='''What is the invoice number?'''
lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
lowercase : Union[str, Any] =dqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
[
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
]
]
* 2 , )
lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) )
# This model should also work if `image` is set to None
lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [
{'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
{'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16},
] , )
@slow
@require_torch
def A__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase : str =pipeline(
'''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , )
lowercase : Any =INVOICE_URL
lowercase : Union[str, Any] ='''What is the invoice number?'''
lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] )
@require_tf
@unittest.skip('''Document question answering not implemented in TF''' )
def A__ ( self : Any ) -> Any:
'''simple docstring'''
pass
| 8 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase_ ( __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = OpenAIGPTTokenizer
UpperCamelCase_ = OpenAIGPTTokenizerFast
UpperCamelCase_ = True
UpperCamelCase_ = False
def A__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase : int =[
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
lowercase : List[str] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : int =['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', '''''']
lowercase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(UpperCAmelCase ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(UpperCAmelCase ) )
def A__ ( self : Tuple , UpperCAmelCase : Optional[Any] ) -> Any:
'''simple docstring'''
return "lower newer", "lower newer"
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : str =OpenAIGPTTokenizer(self.vocab_file , self.merges_file )
lowercase : Any ='''lower'''
lowercase : Dict =['''low''', '''er</w>''']
lowercase : int =tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
lowercase : Any =tokens + ['''<unk>''']
lowercase : Tuple =[14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
def A__ ( self : Optional[Any] , UpperCAmelCase : Dict=15 ) -> Optional[int]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
lowercase : List[Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
# Simple input
lowercase : str ='''This is a simple input'''
lowercase : int =['''This is a simple input 1''', '''This is a simple input 2''']
lowercase : Optional[int] =('''This is a simple input''', '''This is a pair''')
lowercase : List[str] =[
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' )
# Simple input
self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' )
# Simple input
self.assertRaises(
UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , )
# Pair input
self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' )
# Pair input
self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' )
# Pair input
self.assertRaises(
UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , )
def A__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
pass
@require_ftfy
@require_spacy
@require_tokenizers
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
pass
| 8 |
'''simple docstring'''
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
if digit_amount > 0:
return round(number - int(__A ) , __A )
return number - int(__A )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 8 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
}
SCREAMING_SNAKE_CASE = {
'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'},
'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'},
}
SCREAMING_SNAKE_CASE = {
'ctrl': 256,
}
SCREAMING_SNAKE_CASE = {
'Pregnancy': 168_629,
'Christianity': 7_675,
'Explain': 106_423,
'Fitness': 63_440,
'Saving': 63_163,
'Ask': 27_171,
'Ass': 95_985,
'Joke': 163_509,
'Questions': 45_622,
'Thoughts': 49_605,
'Retail': 52_342,
'Feminism': 164_338,
'Writing': 11_992,
'Atheism': 192_263,
'Netflix': 48_616,
'Computing': 39_639,
'Opinion': 43_213,
'Alone': 44_967,
'Funny': 58_917,
'Gaming': 40_358,
'Human': 4_088,
'India': 1_331,
'Joker': 77_138,
'Diet': 36_206,
'Legal': 11_859,
'Norman': 4_939,
'Tip': 72_689,
'Weight': 52_343,
'Movies': 46_273,
'Running': 23_425,
'Science': 2_090,
'Horror': 37_793,
'Confession': 60_572,
'Finance': 12_250,
'Politics': 16_360,
'Scary': 191_985,
'Support': 12_654,
'Technologies': 32_516,
'Teenage': 66_160,
'Event': 32_769,
'Learned': 67_460,
'Notion': 182_770,
'Wikipedia': 37_583,
'Books': 6_665,
'Extract': 76_050,
'Confessions': 102_701,
'Conspiracy': 75_932,
'Links': 63_674,
'Narcissus': 150_425,
'Relationship': 54_766,
'Relationships': 134_796,
'Reviews': 41_671,
'News': 4_256,
'Translation': 26_820,
'multilingual': 128_406,
}
def lowercase_ ( __A : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase : Tuple =set()
lowercase : Tuple =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase : Any =char
lowercase : Union[str, Any] =set(__A )
return pairs
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = CONTROL_CODES
def __init__( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Dict="<unk>" , **UpperCAmelCase : Tuple ) -> List[str]:
'''simple docstring'''
super().__init__(unk_token=UpperCAmelCase , **UpperCAmelCase )
with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
lowercase : List[Any] =json.load(UpperCAmelCase )
lowercase : Union[str, Any] ={v: k for k, v in self.encoder.items()}
with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
lowercase : Tuple =merges_handle.read().split('''\n''' )[1:-1]
lowercase : List[str] =[tuple(merge.split() ) for merge in merges]
lowercase : Tuple =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : Dict ={}
@property
def A__ ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
return len(self.encoder )
def A__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self : str , UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowercase : Dict =tuple(UpperCAmelCase )
lowercase : Any =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
lowercase : Dict =get_pairs(UpperCAmelCase )
if not pairs:
return token
while True:
lowercase : List[Any] =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowercase , lowercase : Tuple =bigram
lowercase : Union[str, Any] =[]
lowercase : Dict =0
while i < len(UpperCAmelCase ):
try:
lowercase : List[Any] =word.index(UpperCAmelCase , UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase : int =j
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase : int =tuple(UpperCAmelCase )
lowercase : Optional[Any] =new_word
if len(UpperCAmelCase ) == 1:
break
else:
lowercase : int =get_pairs(UpperCAmelCase )
lowercase : List[str] ='''@@ '''.join(UpperCAmelCase )
lowercase : Optional[Any] =word[:-4]
lowercase : Union[str, Any] =word
return word
def A__ ( self : int , UpperCAmelCase : List[str] ) -> Any:
'''simple docstring'''
lowercase : int =[]
lowercase : Any =re.findall(R'''\S+\n?''' , UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(''' ''' ) ) )
return split_tokens
def A__ ( self : int , UpperCAmelCase : str ) -> Optional[int]:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def A__ ( self : Tuple , UpperCAmelCase : List[str] ) -> Optional[Any]:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase , self.unk_token )
def A__ ( self : Optional[Any] , UpperCAmelCase : List[str] ) -> Dict:
'''simple docstring'''
lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ).replace('''@@ ''' , '''''' ).strip()
return out_string
def A__ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowercase : Union[str, Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : Union[str, Any] =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' )
lowercase : Dict =0
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
''' Please check that the tokenizer is not corrupted!''' )
lowercase : List[str] =token_index
writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 8 |
'''simple docstring'''
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]:
"""simple docstring"""
return [
int(1_0_0_0 * (box[0] / width) ),
int(1_0_0_0 * (box[1] / height) ),
int(1_0_0_0 * (box[2] / width) ),
int(1_0_0_0 * (box[3] / height) ),
]
def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase : int =to_pil_image(__A )
lowercase , lowercase : Tuple =pil_image.size
lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A )
lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()]
lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowercase : Tuple =[]
for x, y, w, h in zip(__A , __A , __A , __A ):
lowercase : str =[x, y, x + w, y + h]
actual_boxes.append(__A )
# finally, normalize the bounding boxes
lowercase : List[str] =[]
for box in actual_boxes:
normalized_boxes.append(normalize_box(__A , __A , __A ) )
assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = ['''pixel_values''']
def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224}
lowercase : Optional[Any] =get_size_dict(UpperCAmelCase )
lowercase : Optional[Any] =do_resize
lowercase : List[Any] =size
lowercase : List[str] =resample
lowercase : Dict =do_rescale
lowercase : str =rescale_value
lowercase : Optional[int] =do_normalize
lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD
lowercase : List[Any] =apply_ocr
lowercase : Union[str, Any] =ocr_lang
lowercase : str =tesseract_config
def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
lowercase : Tuple =get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
lowercase : Optional[Any] =(size['''height'''], size['''width'''])
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image:
'''simple docstring'''
lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize
lowercase : Tuple =size if size is not None else self.size
lowercase : Optional[int] =get_size_dict(UpperCAmelCase )
lowercase : List[str] =resample if resample is not None else self.resample
lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale
lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize
lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean
lowercase : Optional[int] =image_std if image_std is not None else self.image_std
lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr
lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang
lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config
lowercase : str =make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' )
# All transformations expect numpy arrays.
lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , '''pytesseract''' )
lowercase : int =[]
lowercase : Tuple =[]
for image in images:
lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
words_batch.append(UpperCAmelCase )
boxes_batch.append(UpperCAmelCase )
if do_resize:
lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_rescale:
lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase )
if apply_ocr:
lowercase : int =words_batch
lowercase : List[str] =boxes_batch
return data
| 8 | 1 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any=13 , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : int=3 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : str=[1, 2, 1] , UpperCAmelCase : Optional[Any]=[2, 2, 4] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Union[str, Any]=2.0 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=0.0_2 , UpperCAmelCase : str=1e-5 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=10 , UpperCAmelCase : Tuple=8 , ) -> Optional[Any]:
'''simple docstring'''
lowercase : Any =parent
lowercase : int =batch_size
lowercase : List[Any] =image_size
lowercase : int =patch_size
lowercase : List[Any] =num_channels
lowercase : Dict =embed_dim
lowercase : List[Any] =depths
lowercase : List[Any] =num_heads
lowercase : int =window_size
lowercase : Optional[Any] =mlp_ratio
lowercase : List[str] =qkv_bias
lowercase : str =hidden_dropout_prob
lowercase : Any =attention_probs_dropout_prob
lowercase : List[str] =drop_path_rate
lowercase : Tuple =hidden_act
lowercase : Optional[int] =use_absolute_embeddings
lowercase : Dict =patch_norm
lowercase : str =layer_norm_eps
lowercase : Tuple =initializer_range
lowercase : List[str] =is_training
lowercase : List[str] =scope
lowercase : Optional[Any] =use_labels
lowercase : Optional[Any] =type_sequence_label_size
lowercase : str =encoder_stride
def A__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
lowercase : List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase : Union[str, Any] =None
if self.use_labels:
lowercase : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Tuple =self.get_config()
return config, pixel_values, labels
def A__ ( self : str ) -> Optional[int]:
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def A__ ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
lowercase : str =SwinvaModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : Any =model(UpperCAmelCase )
lowercase : Union[str, Any] =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowercase : Any =int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
lowercase : str =SwinvaForMaskedImageModeling(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowercase : int =1
lowercase : Tuple =SwinvaForMaskedImageModeling(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : Tuple =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase : Any =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def A__ ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> List[Any]:
'''simple docstring'''
lowercase : int =self.type_sequence_label_size
lowercase : str =SwinvaForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : Optional[int] =model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A__ ( self : int ) -> int:
'''simple docstring'''
lowercase : List[Any] =self.prepare_config_and_inputs()
lowercase , lowercase , lowercase : List[Any] =config_and_inputs
lowercase : Dict ={'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
UpperCamelCase_ = (
{'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
lowercase : List[str] =SwinvaModelTester(self )
lowercase : List[str] =ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 )
def A__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A__ ( self : Dict ) -> int:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
@unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' )
def A__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''Swinv2 does not use inputs_embeds''' )
def A__ ( self : Dict ) -> int:
'''simple docstring'''
pass
def A__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Optional[Any] =model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowercase : Dict =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase , lowercase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Optional[Any] =model_class(UpperCAmelCase )
lowercase : List[Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase : Dict =[*signature.parameters.keys()]
lowercase : Optional[int] =['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A__ ( self : int ) -> List[str]:
'''simple docstring'''
lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common()
lowercase : int =True
for model_class in self.all_model_classes:
lowercase : List[str] =True
lowercase : Tuple =False
lowercase : Any =True
lowercase : Dict =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : Any =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowercase : int =outputs.attentions
lowercase : Dict =len(self.model_tester.depths )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowercase : List[Any] =True
lowercase : Union[str, Any] =config.window_size**2
lowercase : Tuple =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : Any =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowercase : Union[str, Any] =outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
lowercase : Optional[int] =len(UpperCAmelCase )
# Check attention is always last and order is fine
lowercase : int =True
lowercase : Union[str, Any] =True
lowercase : List[Any] =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : Optional[int] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
if hasattr(self.model_tester , '''num_hidden_states_types''' ):
lowercase : Tuple =self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
lowercase : List[Any] =2
self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase ) )
lowercase : Optional[Any] =outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def A__ ( self : int , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
lowercase : Dict =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : int =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowercase : Tuple =outputs.hidden_states
lowercase : List[Any] =getattr(
self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# Swinv2 has a different seq_length
lowercase : Optional[int] =(
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase : Any =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
lowercase : Union[str, Any] =outputs.reshaped_hidden_states
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
lowercase , lowercase , lowercase , lowercase : List[str] =reshaped_hidden_states[0].shape
lowercase : List[Any] =(
reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def A__ ( self : str ) -> List[Any]:
'''simple docstring'''
lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common()
lowercase : int =(
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowercase : int =True
self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase : Tuple =True
self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
lowercase , lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
lowercase : Any =3
lowercase : int =(
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowercase : Optional[int] =(
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowercase : Dict =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowercase : Optional[Any] =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowercase : List[str] =True
self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase : Tuple =True
self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) )
def A__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase )
def A__ ( self : int ) -> Tuple:
'''simple docstring'''
lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
@slow
def A__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase : int =SwinvaModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def A__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
lowercase , lowercase : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
lowercase : int =_config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowercase : str =model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A__ ( self : str ) -> Any:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' )
if is_vision_available()
else None
)
@slow
def A__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
lowercase : List[str] =SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to(
UpperCAmelCase )
lowercase : Any =self.default_image_processor
lowercase : List[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
lowercase : List[str] =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowercase : Optional[Any] =model(**UpperCAmelCase )
# verify the logits
lowercase : Union[str, Any] =torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowercase : Union[str, Any] =torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
| 8 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =parent
lowercase : Any =13
lowercase : Any =7
lowercase : Optional[int] =True
lowercase : Optional[int] =True
lowercase : Tuple =False
lowercase : Optional[Any] =True
lowercase : Dict =99
lowercase : Union[str, Any] =32
lowercase : Union[str, Any] =2
lowercase : Union[str, Any] =4
lowercase : List[str] =37
lowercase : str ='''gelu'''
lowercase : Dict =0.1
lowercase : List[Any] =0.1
lowercase : List[str] =512
lowercase : Optional[int] =16
lowercase : Optional[Any] =2
lowercase : List[str] =0.0_2
lowercase : Any =3
lowercase : Optional[Any] =4
lowercase : int =None
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Any =None
if self.use_input_mask:
lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Union[str, Any] =None
lowercase : Any =None
lowercase : str =None
if self.use_labels:
lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices )
lowercase : Dict =DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : int =TFDistilBertModel(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : List[str] =model(UpperCAmelCase )
lowercase : str =[input_ids, input_mask]
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase )
lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase )
lowercase : int ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
lowercase : List[str] =model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase )
lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : Union[str, Any] =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]:
'''simple docstring'''
lowercase : List[Any] =self.num_choices
lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase )
lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
lowercase : Tuple ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
lowercase : Tuple =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase )
lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
lowercase : str =model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self : List[str] ) -> Dict:
'''simple docstring'''
lowercase : int =self.prepare_config_and_inputs()
((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs
lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
UpperCamelCase_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Dict ) -> str:
'''simple docstring'''
lowercase : str =TFDistilBertModelTester(self )
lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase )
def A__ ( self : Tuple ) -> Any:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase )
def A__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
lowercase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase )
def A__ ( self : Any ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase )
def A__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase )
def A__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase )
@slow
def A__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase : List[Any] =model(UpperCAmelCase )[0]
lowercase : str =[1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
lowercase : Optional[int] =tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
| 8 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase_ ( __A : float , __A : int ) -> float:
"""simple docstring"""
lowercase : str =u
for i in range(1 , __A ):
lowercase : Any =temp * (u - i)
return temp
def lowercase_ ( ) -> None:
"""simple docstring"""
lowercase : List[str] =int(input('''enter the numbers of values: ''' ) )
lowercase : list[list[float]] =[]
for _ in range(__A ):
y.append([] )
for i in range(__A ):
for j in range(__A ):
y[i].append(__A )
lowercase : List[Any] =0
print('''enter the values of parameters in a list: ''' )
lowercase : Optional[int] =list(map(__A , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(__A ):
lowercase : str =float(input() )
lowercase : int =int(input('''enter the value to interpolate: ''' ) )
lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , __A ):
for j in range(n - i ):
lowercase : str =y[j + 1][i - 1] - y[j][i - 1]
lowercase : Any =y[0][0]
for i in range(1 , __A ):
summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A )
print(F'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RemBertForCausalLM',
'RemBertForMaskedLM',
'RemBertForMultipleChoice',
'RemBertForQuestionAnswering',
'RemBertForSequenceClassification',
'RemBertForTokenClassification',
'RemBertLayer',
'RemBertModel',
'RemBertPreTrainedModel',
'load_tf_weights_in_rembert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRemBertForCausalLM',
'TFRemBertForMaskedLM',
'TFRemBertForMultipleChoice',
'TFRemBertForQuestionAnswering',
'TFRemBertForSequenceClassification',
'TFRemBertForTokenClassification',
'TFRemBertLayer',
'TFRemBertModel',
'TFRemBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
SCREAMING_SNAKE_CASE = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.'
def lowercase_ ( __A : str=None ) -> List[str]:
"""simple docstring"""
if subparsers is not None:
lowercase : Optional[int] =subparsers.add_parser('''tpu-config''' , description=_description )
else:
lowercase : List[Any] =argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description )
# Core arguments
lowercase : Dict =parser.add_argument_group(
'''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' )
config_args.add_argument(
'''--config_file''' , type=__A , default=__A , help='''Path to the config file to use for accelerate.''' , )
config_args.add_argument(
'''--tpu_name''' , default=__A , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , )
config_args.add_argument(
'''--tpu_zone''' , default=__A , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , )
lowercase : Any =parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' )
pod_args.add_argument(
'''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , )
pod_args.add_argument(
'''--command_file''' , default=__A , help='''The path to the file containing the commands to run on the pod on startup.''' , )
pod_args.add_argument(
'''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , )
pod_args.add_argument(
'''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , )
pod_args.add_argument(
'''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , )
pod_args.add_argument(
'''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' )
if subparsers is not None:
parser.set_defaults(func=__A )
return parser
def lowercase_ ( __A : Dict ) -> List[str]:
"""simple docstring"""
lowercase : List[str] =None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(__A ):
lowercase : List[Any] =load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
lowercase : Any =defaults.command_file
if not args.command and defaults.commands is not None:
lowercase : List[Any] =defaults.commands
if not args.tpu_name:
lowercase : Dict =defaults.tpu_name
if not args.tpu_zone:
lowercase : Dict =defaults.tpu_zone
if args.accelerate_version == "dev":
lowercase : str ='''git+https://github.com/huggingface/accelerate.git'''
elif args.accelerate_version == "latest":
lowercase : int ='''accelerate -U'''
elif isinstance(parse(args.accelerate_version ) , __A ):
lowercase : Any =F'accelerate=={args.accelerate_version}'
if not args.command_file and not args.command:
raise ValueError('''You must specify either a command file or a command to run on the pod.''' )
if args.command_file:
with open(args.command_file , '''r''' ) as f:
lowercase : List[str] =[f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , __A ):
lowercase : Union[str, Any] =[line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
lowercase : Tuple =['''cd /usr/share''']
if args.install_accelerate:
new_cmd += [F'pip install {args.accelerate_version}']
new_cmd += args.command
lowercase : Dict ='''; '''.join(__A )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
lowercase : int =['''gcloud''']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'Running {" ".join(__A )}' )
return
subprocess.run(__A )
print('''Successfully setup pod.''' )
def lowercase_ ( ) -> Any:
"""simple docstring"""
lowercase : str =tpu_command_parser()
lowercase : Any =parser.parse_args()
tpu_command_launcher(__A )
| 8 |
'''simple docstring'''
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch'))
def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]:
"""simple docstring"""
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' )
lowercase : Any =STR_OPERATION_TO_FUNC[operation]
if isinstance(__A , __A ):
lowercase : List[Any] =parse(importlib.metadata.version(__A ) )
return operation(__A , parse(__A ) )
def lowercase_ ( __A : str , __A : str ) -> Tuple:
"""simple docstring"""
return compare_versions(__A , __A , __A )
| 8 | 1 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
@add_end_docstrings(__A )
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : Optional[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> int:
'''simple docstring'''
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def A__ ( self : List[str] , UpperCAmelCase : Any=None ) -> Optional[int]:
'''simple docstring'''
lowercase : Tuple ={}
if top_k is not None:
lowercase : Optional[Any] =top_k
return {}, {}, postprocess_params
def __call__( self : Dict , UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase : Optional[Any] ) -> List[str]:
'''simple docstring'''
return super().__call__(UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowercase : Union[str, Any] =load_image(UpperCAmelCase )
lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def A__ ( self : Dict , UpperCAmelCase : Union[str, Any] ) -> int:
'''simple docstring'''
lowercase : Optional[int] =self.model(**UpperCAmelCase )
return model_outputs
def A__ ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=5 ) -> Optional[Any]:
'''simple docstring'''
if top_k > self.model.config.num_labels:
lowercase : int =self.model.config.num_labels
if self.framework == "pt":
lowercase : Dict =model_outputs.logits.softmax(-1 )[0]
lowercase , lowercase : Tuple =probs.topk(UpperCAmelCase )
elif self.framework == "tf":
lowercase : Dict =stable_softmax(model_outputs.logits , axis=-1 )[0]
lowercase : Dict =tf.math.top_k(UpperCAmelCase , k=UpperCAmelCase )
lowercase , lowercase : Tuple =topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
lowercase : Optional[Any] =scores.tolist()
lowercase : Optional[Any] =ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase , UpperCAmelCase )]
| 8 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 8 | 1 |
'''simple docstring'''
def lowercase_ ( __A : int , __A : list ) -> Union[str, Any]:
"""simple docstring"""
_enforce_args(__A , __A )
if n == 0:
return 0
lowercase : List[str] =float('''-inf''' )
for i in range(1 , n + 1 ):
lowercase : List[Any] =max(
__A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) )
return max_revue
def lowercase_ ( __A : int , __A : list ) -> Dict:
"""simple docstring"""
_enforce_args(__A , __A )
lowercase : Any =[float('''-inf''' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(__A , __A , __A )
def lowercase_ ( __A : int , __A : list , __A : list ) -> Optional[int]:
"""simple docstring"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
lowercase : Optional[int] =float('''-inf''' )
for i in range(1 , n + 1 ):
lowercase : List[str] =max(
__A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , )
lowercase : List[str] =max_revenue
return max_rev[n]
def lowercase_ ( __A : int , __A : list ) -> Optional[Any]:
"""simple docstring"""
_enforce_args(__A , __A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
lowercase : List[Any] =[float('''-inf''' ) for _ in range(n + 1 )]
lowercase : Optional[int] =0
for i in range(1 , n + 1 ):
lowercase : int =max_rev[i]
for j in range(1 , i + 1 ):
lowercase : Union[str, Any] =max(__A , prices[j - 1] + max_rev[i - j] )
lowercase : Union[str, Any] =max_revenue_i
return max_rev[n]
def lowercase_ ( __A : int , __A : list ) -> Tuple:
"""simple docstring"""
if n < 0:
lowercase : List[str] =F'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(__A )
if n > len(__A ):
lowercase : List[Any] =(
'''Each integral piece of rod must have a corresponding price. '''
F'Got n = {n} but length of prices = {len(__A )}'
)
raise ValueError(__A )
def lowercase_ ( ) -> Tuple:
"""simple docstring"""
lowercase : str =[6, 1_0, 1_2, 1_5, 2_0, 2_3]
lowercase : Optional[Any] =len(__A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
lowercase : int =3_6
lowercase : str =top_down_cut_rod(__A , __A )
lowercase : int =bottom_up_cut_rod(__A , __A )
lowercase : str =naive_cut_rod_recursive(__A , __A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False, False, False
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
UpperCamelCase_ = None
UpperCamelCase_ = True
UpperCamelCase_ = True
UpperCamelCase_ = None
# Automatically constructed
UpperCamelCase_ = "dict"
UpperCamelCase_ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} )
UpperCamelCase_ = field(default='''Audio''' , init=__A , repr=__A )
def __call__( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return self.pa_type
def A__ ( self : Any , UpperCAmelCase : Union[str, bytes, dict] ) -> dict:
'''simple docstring'''
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err
if isinstance(UpperCAmelCase , UpperCAmelCase ):
return {"bytes": None, "path": value}
elif isinstance(UpperCAmelCase , UpperCAmelCase ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
lowercase : List[Any] =BytesIO()
sf.write(UpperCAmelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith('''pcm''' ):
# "PCM" only has raw audio bytes
if value.get('''sampling_rate''' ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' )
if value.get('''bytes''' ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
lowercase : Union[str, Any] =np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2767
else:
lowercase : List[Any] =np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2767
lowercase : List[str] =BytesIO(bytes() )
sf.write(UpperCAmelCase , UpperCAmelCase , value['''sampling_rate'''] , format='''wav''' )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get('''path''' )}
elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )}
else:
raise ValueError(
f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' )
def A__ ( self : str , UpperCAmelCase : dict , UpperCAmelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict:
'''simple docstring'''
if not self.decode:
raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' )
lowercase , lowercase : List[str] =(value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None)
if path is None and file is None:
raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err
lowercase : Optional[int] =xsplitext(UpperCAmelCase )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
'''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, '''
'''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
'''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, '''
'''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' )
if file is None:
lowercase : List[Any] =token_per_repo_id or {}
lowercase : List[Any] =path.split('''::''' )[-1]
try:
lowercase : Union[str, Any] =string_to_dict(UpperCAmelCase , config.HUB_DATASETS_URL )['''repo_id''']
lowercase : List[Any] =token_per_repo_id[repo_id]
except (ValueError, KeyError):
lowercase : Any =None
with xopen(UpperCAmelCase , '''rb''' , use_auth_token=UpperCAmelCase ) as f:
lowercase , lowercase : List[str] =sf.read(UpperCAmelCase )
else:
lowercase , lowercase : int =sf.read(UpperCAmelCase )
lowercase : List[Any] =array.T
if self.mono:
lowercase : List[str] =librosa.to_mono(UpperCAmelCase )
if self.sampling_rate and self.sampling_rate != sampling_rate:
lowercase : Dict =librosa.resample(UpperCAmelCase , orig_sr=UpperCAmelCase , target_sr=self.sampling_rate )
lowercase : Any =self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def A__ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
if self.decode:
raise ValueError('''Cannot flatten a decoded Audio feature.''' )
return {
"bytes": Value('''binary''' ),
"path": Value('''string''' ),
}
def A__ ( self : Optional[int] , UpperCAmelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray:
'''simple docstring'''
if pa.types.is_string(storage.type ):
lowercase : Optional[int] =pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() )
lowercase : Optional[Any] =pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
lowercase : Union[str, Any] =pa.array([None] * len(UpperCAmelCase ) , type=pa.string() )
lowercase : List[Any] =pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ):
lowercase : List[Any] =pa.array([Audio().encode_example(UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('''bytes''' ) >= 0:
lowercase : List[Any] =storage.field('''bytes''' )
else:
lowercase : Any =pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index('''path''' ) >= 0:
lowercase : Any =storage.field('''path''' )
else:
lowercase : int =pa.array([None] * len(UpperCAmelCase ) , type=pa.string() )
lowercase : Union[str, Any] =pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
return array_cast(UpperCAmelCase , self.pa_type )
def A__ ( self : List[Any] , UpperCAmelCase : pa.StructArray ) -> pa.StructArray:
'''simple docstring'''
@no_op_if_value_is_null
def path_to_bytes(UpperCAmelCase : Dict ):
with xopen(UpperCAmelCase , '''rb''' ) as f:
lowercase : str =f.read()
return bytes_
lowercase : List[str] =pa.array(
[
(path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
lowercase : str =pa.array(
[os.path.basename(UpperCAmelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , )
lowercase : Optional[int] =pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() )
return array_cast(UpperCAmelCase , self.pa_type )
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE = {
'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegaForCausalLM',
'MegaForMaskedLM',
'MegaForMultipleChoice',
'MegaForQuestionAnswering',
'MegaForSequenceClassification',
'MegaForTokenClassification',
'MegaModel',
'MegaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 8 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCAmelCase_ ( __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = BioGptTokenizer
UpperCamelCase_ = False
def A__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase : Tuple =[
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
lowercase : List[Any] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowercase : int =['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
lowercase : Union[str, Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(UpperCAmelCase ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(UpperCAmelCase ) )
def A__ ( self : str , UpperCAmelCase : Tuple ) -> Tuple:
'''simple docstring'''
lowercase : Dict ='''lower newer'''
lowercase : Optional[int] ='''lower newer'''
return input_text, output_text
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
lowercase : Any =BioGptTokenizer(self.vocab_file , self.merges_file )
lowercase : str ='''lower'''
lowercase : str =['''low''', '''er</w>''']
lowercase : List[str] =tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
lowercase : Optional[Any] =tokens + ['''<unk>''']
lowercase : Dict =[14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
@slow
def A__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
lowercase : List[str] =BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
lowercase : int =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase )
lowercase : List[Any] =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase )
lowercase : str =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
lowercase : List[str] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 8 |
'''simple docstring'''
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514}
SCREAMING_SNAKE_CASE = {}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = HerbertTokenizer
def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(
UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , )
def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : List[Any] =[self.cls_token_id]
lowercase : Any =[self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1]
def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Optional[Any] =[self.sep_token_id]
lowercase : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 8 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def lowercase_ ( __A : int ) -> Union[str, Any]:
"""simple docstring"""
lowercase : str =[tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class UpperCAmelCase_ ( __A , __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = StableDiffusionLatentUpscalePipeline
UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'''height''',
'''width''',
'''cross_attention_kwargs''',
'''negative_prompt_embeds''',
'''prompt_embeds''',
}
UpperCamelCase_ = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''}
UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
UpperCamelCase_ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCamelCase_ = frozenset([] )
UpperCamelCase_ = True
@property
def A__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase : str =1
lowercase : List[str] =4
lowercase : Union[str, Any] =(16, 16)
lowercase : Dict =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase )
return image
def A__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
lowercase : Optional[int] =UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=UpperCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=UpperCAmelCase , only_cross_attention=UpperCAmelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
lowercase : List[str] =AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
lowercase : Union[str, Any] =EulerDiscreteScheduler(prediction_type='''sample''' )
lowercase : int =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , )
lowercase : Dict =CLIPTextModel(UpperCAmelCase )
lowercase : int =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
lowercase : List[Any] ={
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=0 ) -> List[str]:
'''simple docstring'''
if str(UpperCAmelCase ).startswith('''mps''' ):
lowercase : int =torch.manual_seed(UpperCAmelCase )
else:
lowercase : Union[str, Any] =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowercase : List[str] ={
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def A__ ( self : str ) -> List[Any]:
'''simple docstring'''
lowercase : str ='''cpu'''
lowercase : List[str] =self.get_dummy_components()
lowercase : str =self.pipeline_class(**UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowercase : List[str] =self.get_dummy_inputs(UpperCAmelCase )
lowercase : int =pipe(**UpperCAmelCase ).images
lowercase : str =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 256, 256, 3) )
lowercase : Dict =np.array(
[0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] )
lowercase : int =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCAmelCase , 1e-3 )
def A__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def A__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def A__ ( self : str ) -> int:
'''simple docstring'''
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def A__ ( self : Dict ) -> int:
'''simple docstring'''
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def A__ ( self : int ) -> Tuple:
'''simple docstring'''
super().test_save_load_local(expected_max_difference=3e-3 )
def A__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def A__ ( self : Dict ) -> Dict:
'''simple docstring'''
lowercase : Dict =[
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
lowercase : int =self.get_dummy_components()
lowercase : Dict =self.pipeline_class(**UpperCAmelCase )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowercase : int =self.get_dummy_inputs(UpperCAmelCase )
lowercase : int =2
lowercase : Optional[Any] =[]
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
lowercase : Dict =getattr(UpperCAmelCase , scheduler_enum.name )
lowercase : Tuple =scheduler_cls.from_config(pipe.scheduler.config )
lowercase : Dict =pipe(**UpperCAmelCase )[0]
outputs.append(UpperCAmelCase )
assert check_same_shape(UpperCAmelCase )
@require_torch_gpu
@slow
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
lowercase : Tuple =torch.manual_seed(33 )
lowercase : Dict =StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
lowercase : List[str] =StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
lowercase : str ='''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
lowercase : Dict =pipe(UpperCAmelCase , generator=UpperCAmelCase , output_type='''latent''' ).images
lowercase : Union[str, Any] =upscaler(
prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase , output_type='''np''' , ).images[0]
lowercase : str =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5e-2
def A__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
lowercase : str =torch.manual_seed(33 )
lowercase : Optional[int] =StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
lowercase : Union[str, Any] ='''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
lowercase : Union[str, Any] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
lowercase : Optional[Any] =upscaler(
prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase , output_type='''np''' , ).images[0]
lowercase : str =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5e-2
| 8 |
'''simple docstring'''
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Any ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[int] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Any ='''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Tuple ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : Tuple =self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Optional[Any] ='''1'''
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : str ) -> List[str]:
'''simple docstring'''
lowercase : str ='''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
lowercase : Optional[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
lowercase : Optional[int] ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCAmelCase )
BertModel.from_pretrained(UpperCAmelCase )
BertTokenizer.from_pretrained(UpperCAmelCase )
pipeline(task='''fill-mask''' , model=UpperCAmelCase )
# baseline - just load from_pretrained with normal network
lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
lowercase : str =self.get_env()
lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] ='''
from transformers import BertConfig, BertModel, BertTokenizer
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
lowercase : int ='''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : Any ='''1'''
lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Optional[int] ='''
from transformers import pipeline
'''
lowercase : List[Any] ='''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
lowercase : Tuple ='''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
lowercase : Tuple =self.get_env()
lowercase : Optional[int] ='''1'''
lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def A__ ( self : int ) -> Optional[int]:
'''simple docstring'''
lowercase : List[str] ='''
from transformers import AutoModel
'''
lowercase : Dict ='''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
lowercase : Optional[Any] =self.get_env()
lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
lowercase : List[str] ='''1'''
lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 8 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : Dict ) -> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def A__ ( self : Any ) -> List[str]:
'''simple docstring'''
lowercase : int =1
lowercase : List[str] =3
lowercase : Optional[int] =(32, 32)
lowercase : List[Any] =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase )
return image
@property
def A__ ( self : Tuple ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
lowercase : Optional[int] =UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def A__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
lowercase : int =AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def A__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
torch.manual_seed(0 )
lowercase : Dict =RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , )
return RobertaSeriesModelWithTransformation(UpperCAmelCase )
@property
def A__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
def extract(*UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : int ) -> str:
'''simple docstring'''
lowercase : Any =torch.ones([0] )
def A__ ( self : List[Any] , UpperCAmelCase : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.pixel_values.to(UpperCAmelCase )
return self
return Out()
return extract
def A__ ( self : Any ) -> List[str]:
'''simple docstring'''
lowercase : Optional[Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase : Dict =self.dummy_cond_unet
lowercase : Dict =PNDMScheduler(skip_prk_steps=UpperCAmelCase )
lowercase : str =self.dummy_vae
lowercase : str =self.dummy_text_encoder
lowercase : Dict =XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowercase : str =77
lowercase : Any =self.dummy_image.to(UpperCAmelCase )
lowercase : Dict =init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowercase : Union[str, Any] =AltDiffusionImgaImgPipeline(
unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase : Optional[int] =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase )
lowercase : Any =alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowercase : List[Any] ='''A painting of a squirrel eating a burger'''
lowercase : List[Any] =torch.Generator(device=UpperCAmelCase ).manual_seed(0 )
lowercase : Optional[int] =alt_pipe(
[prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=UpperCAmelCase , )
lowercase : List[str] =output.images
lowercase : Any =torch.Generator(device=UpperCAmelCase ).manual_seed(0 )
lowercase : Dict =alt_pipe(
[prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0]
lowercase : List[Any] =image[0, -3:, -3:, -1]
lowercase : int =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowercase : Any =np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def A__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
lowercase : Dict =self.dummy_cond_unet
lowercase : int =PNDMScheduler(skip_prk_steps=UpperCAmelCase )
lowercase : List[str] =self.dummy_vae
lowercase : List[str] =self.dummy_text_encoder
lowercase : int =XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowercase : str =77
lowercase : Dict =self.dummy_image.to(UpperCAmelCase )
# put models in fp16
lowercase : Union[str, Any] =unet.half()
lowercase : Dict =vae.half()
lowercase : Optional[Any] =bert.half()
# make sure here that pndm scheduler skips prk
lowercase : Union[str, Any] =AltDiffusionImgaImgPipeline(
unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase : Dict =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase )
lowercase : Optional[Any] =alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowercase : str ='''A painting of a squirrel eating a burger'''
lowercase : Optional[int] =torch.manual_seed(0 )
lowercase : Any =alt_pipe(
[prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , image=UpperCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def A__ ( self : int ) -> Tuple:
'''simple docstring'''
lowercase : Dict =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowercase : Optional[Any] =init_image.resize((760, 504) )
lowercase : Optional[Any] ='''BAAI/AltDiffusion'''
lowercase : Union[str, Any] =AltDiffusionImgaImgPipeline.from_pretrained(
UpperCAmelCase , safety_checker=UpperCAmelCase , )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
pipe.enable_attention_slicing()
lowercase : List[str] ='''A fantasy landscape, trending on artstation'''
lowercase : str =torch.manual_seed(0 )
lowercase : List[str] =pipe(
prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type='''np''' , )
lowercase : List[str] =output.images[0]
lowercase : List[Any] =image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
lowercase : List[Any] =np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : int ) -> int:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase : Optional[int] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowercase : Dict =init_image.resize((768, 512) )
lowercase : Dict =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowercase : Any ='''BAAI/AltDiffusion'''
lowercase : Any =AltDiffusionImgaImgPipeline.from_pretrained(
UpperCAmelCase , safety_checker=UpperCAmelCase , )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
pipe.enable_attention_slicing()
lowercase : Tuple ='''A fantasy landscape, trending on artstation'''
lowercase : Union[str, Any] =torch.manual_seed(0 )
lowercase : Union[str, Any] =pipe(
prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type='''np''' , )
lowercase : List[Any] =output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 8 |
'''simple docstring'''
SCREAMING_SNAKE_CASE = 'Alexander Joslin'
import operator as op
from .stack import Stack
def lowercase_ ( __A : str ) -> int:
"""simple docstring"""
lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
lowercase : Stack[int] =Stack()
lowercase : Stack[str] =Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__A ) )
elif i in operators:
# RULE 2
operator_stack.push(__A )
elif i == ")":
# RULE 4
lowercase : Optional[Any] =operator_stack.peek()
operator_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : Optional[Any] =operand_stack.peek()
operand_stack.pop()
lowercase : List[str] =operators[opr](__A , __A )
operand_stack.push(__A )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))'
# answer = 45
print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 8 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.