code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __magic_name__ ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 4_2 SCREAMING_SNAKE_CASE_ : int = None def _UpperCAmelCase ( a : str , a : Optional[Any]=0.9_99 , a : Union[str, Any]="cosine" , ) -> int: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(a : List[str] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase_ : Any = [] for i in range(UpperCAmelCase__ ): lowercase_ : Dict = i / num_diffusion_timesteps lowercase_ : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase__ ) / alpha_bar_fn(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) return torch.tensor(UpperCAmelCase__ , dtype=torch.floataa ) class __magic_name__ ( _a, _a ): """simple docstring""" @register_to_config def __init__( self , _lowercase = 1000 , _lowercase = "fixed_small_log" , _lowercase = True , _lowercase = 1.0 , _lowercase = "epsilon" , _lowercase = "squaredcos_cap_v2" , ) -> Dict: if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) lowercase_ : Dict = betas_for_alpha_bar(_A ) lowercase_ : Any = 1.0 - self.betas lowercase_ : int = torch.cumprod(self.alphas , dim=0 ) lowercase_ : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowercase_ : Tuple = 1.0 # setable values lowercase_ : str = None lowercase_ : Optional[Any] = torch.from_numpy(np.arange(0 , _A )[::-1].copy() ) lowercase_ : Dict = variance_type def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Dict: return sample def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Any: lowercase_ : Any = num_inference_steps lowercase_ : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowercase_ : Optional[int] = (np.arange(0 , _A ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowercase_ : Tuple = torch.from_numpy(_A ).to(_A ) def lowerCamelCase__ ( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ) -> Any: if prev_timestep is None: lowercase_ : Optional[Any] = t - 1 lowercase_ : str = self.alphas_cumprod[t] lowercase_ : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase_ : Dict = 1 - alpha_prod_t lowercase_ : Optional[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase_ : int = self.betas[t] else: lowercase_ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase_ : str = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowercase_ : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowercase_ : List[str] = torch.log(torch.clamp(_A , min=1E-2_0 ) ) lowercase_ : Optional[int] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowercase_ : Optional[int] = variance.log() lowercase_ : Optional[int] = beta.log() lowercase_ : Optional[Any] = (predicted_variance + 1) / 2 lowercase_ : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase=None , _lowercase = True , ) -> Dict: lowercase_ : Union[str, Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowercase_ , lowercase_ : int = torch.split(_A , sample.shape[1] , dim=1 ) else: lowercase_ : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: lowercase_ : Any = t - 1 lowercase_ : Dict = self.alphas_cumprod[t] lowercase_ : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase_ : int = 1 - alpha_prod_t lowercase_ : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase_ : List[str] = self.betas[t] lowercase_ : int = self.alphas[t] else: lowercase_ : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev lowercase_ : str = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase_ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase_ : Tuple = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase_ : int = torch.clamp( _A , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowercase_ : int = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase_ : Optional[Any] = 0 if t > 0: lowercase_ : str = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_A , device=model_output.device ) lowercase_ : Optional[int] = self._get_variance( _A , predicted_variance=_A , prev_timestep=_A , ) if self.variance_type == "fixed_small_log": lowercase_ : List[str] = variance elif self.variance_type == "learned_range": lowercase_ : Tuple = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" ' for the UnCLIPScheduler.' ) lowercase_ : int = variance * variance_noise lowercase_ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_A , pred_original_sample=_A ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , ) -> int: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowercase_ : int = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowercase_ : Union[str, Any] = timesteps.to(original_samples.device ) lowercase_ : str = alphas_cumprod[timesteps] ** 0.5 lowercase_ : Optional[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowercase_ : Optional[int] = sqrt_alpha_prod.unsqueeze(-1 ) lowercase_ : int = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase_ : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowercase_ : List[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowercase_ : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image A: int = ["text", "image", "audio"] def _UpperCAmelCase ( a : List[str] ) -> str: """simple docstring""" lowercase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): inputs.append(create_inputs(UpperCAmelCase__ ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def _UpperCAmelCase ( a : List ) -> List[Any]: """simple docstring""" lowercase_ : List[Any] = [] for output in outputs: if isinstance(UpperCAmelCase__ , (str, AgentText) ): output_types.append('text' ) elif isinstance(UpperCAmelCase__ , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(UpperCAmelCase__ , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class __magic_name__ : """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) lowercase_ : Any = self.tool.inputs for _input in inputs: if isinstance(_input , __UpperCamelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : List[str] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Any = create_inputs(self.tool.inputs ) lowercase_ : Optional[int] = self.tool(*__UpperCamelCase ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : str = [outputs] self.assertListEqual(output_types(__UpperCamelCase ) , self.tool.outputs ) def lowerCamelCase__ ( self ) -> Union[str, Any]: self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : List[Any] = create_inputs(self.tool.inputs ) lowercase_ : Tuple = self.tool(*__UpperCamelCase ) if not isinstance(__UpperCamelCase , __UpperCamelCase ): lowercase_ : Dict = [outputs] self.assertEqual(len(__UpperCamelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(__UpperCamelCase , self.tool.outputs ): lowercase_ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : int = create_inputs(self.tool.inputs ) lowercase_ : int = [] for _input, input_type in zip(__UpperCamelCase , self.tool.inputs ): if isinstance(__UpperCamelCase , __UpperCamelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Tuple = self.tool(*__UpperCamelCase ) if not isinstance(__UpperCamelCase , __UpperCamelCase ): lowercase_ : Any = [outputs] self.assertEqual(len(__UpperCamelCase ) , len(self.tool.outputs ) )
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
from __future__ import annotations A: str = "Muhammad Umer Farooq" A: Any = "MIT" A: int = "1.0.0" A: Union[str, Any] = "Muhammad Umer Farooq" A: List[Any] = "[email protected]" A: List[str] = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase ) -> Optional[Any]: super().__init__() lowercase_ : List[str] = [] lowercase_ : Optional[Any] = domain def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> str: if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowercase_ : Dict = parse.urljoin(self.domain , _lowercase ) self.urls.append(_lowercase ) def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" return ".".join(get_sub_domain_name(_UpperCamelCase ).split('.' )[-2:] ) def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" return parse.urlparse(_UpperCamelCase ).netloc def _UpperCAmelCase ( a : str = "https://github.com" ) -> list[str]: """simple docstring""" lowercase_ : List[Any] = get_domain_name(_UpperCamelCase ) # Initialize the parser lowercase_ : str = Parser(_UpperCamelCase ) try: # Open URL lowercase_ : int = requests.get(_UpperCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowercase_ : List[Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowercase_ : Optional[Any] = requests.get(_UpperCamelCase ) # Get the valid email. lowercase_ : int = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCamelCase ) if __name__ == "__main__": A: Dict = emails_from_url("https://github.com") print(f"""{len(emails)} emails found:""") print("\n".join(sorted(emails)))
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
'''simple docstring''' def _UpperCAmelCase ( a : List[Any] ) -> Optional[int]: """simple docstring""" lowercase_ : List[Any] = [] if len(a ) == 1: return [nums.copy()] for _ in range(len(a ) ): lowercase_ : Any = nums.pop(0 ) lowercase_ : List[Any] = permute(a ) for perm in permutations: perm.append(a ) result.extend(a ) nums.append(a ) return result def _UpperCAmelCase ( a : Tuple ) -> List[Any]: """simple docstring""" def backtrack(a : List[Any] ): if start == len(a ) - 1: output.append(nums[:] ) else: for i in range(a , len(a ) ): lowercase_ , lowercase_ : Dict = nums[i], nums[start] backtrack(start + 1 ) lowercase_ , lowercase_ : int = nums[i], nums[start] # backtrack lowercase_ : Tuple = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function A: Optional[Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
716
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
0
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) A: Dict = getLogger(__name__) def _UpperCAmelCase ( a : Union[str, Any] , a : str , a : str , a : int = 8 , a : int = 1_0_2_4 , a : int="val" , a : Optional[Any]=None , a : List[Any]=False , a : List[Any]="summarization" , a : Union[str, Any]=None , a : List[Any]=1 , a : Dict = None , a : List[str]="" , **a : Tuple , ) -> Any: """simple docstring""" lowercase_ : List[str] = str(a ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=a ) lowercase_ : Optional[Any] = Path(a ) lowercase_ : str = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(a ) lowercase_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).cuda() if fpaa: lowercase_ : str = model.half() # determine if we need to increase num_beams use_task_specific_params(a , a ) # update config with task specific params lowercase_ : Optional[Any] = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowercase_ : Optional[int] = num_return_sequences lowercase_ : Any = AutoTokenizer.from_pretrained(a ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: lowercase_ : Optional[int] = tokenizer.model_max_length if prefix is None: lowercase_ : int = prefix or getattr(model.config , 'prefix' , '' ) or '''''' lowercase_ : Union[str, Any] = SeqaSeqDataset( a , a , a , max_target_length=1_0_2_4 , type_path=a , n_obs=a , prefix=a , **a , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowercase_ : Tuple = ds.make_sortish_sampler(a , distributed=a , add_extra_examples=a , shuffle=a ) lowercase_ : List[Any] = DataLoader(a , sampler=a , batch_size=a , collate_fn=ds.collate_fn ) lowercase_ : Any = [] for batch in tqdm(a ): lowercase_ : str = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=a , num_beams=a , **a , ) lowercase_ : Tuple = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) lowercase_ : Tuple = batch['''ids'''] if num_return_sequences > 1: lowercase_ : str = chunks(a , a ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(a ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(a , a ) return results, sampler.num_replicas def _UpperCAmelCase ( ) -> Dict: """simple docstring""" lowercase_ : Dict = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=a , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=a , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=a , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=a , default=a ) parser.add_argument( '--type_path' , type=a , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=a , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=a , default=8 , required=a , help='batch size' ) parser.add_argument( '--local_rank' , type=a , default=-1 , required=a , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=a , default=a , required=a , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=a , default=1 , required=a , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=a , default=6_0_0 , required=a , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=a , default=a , required=a ) parser.add_argument('--tgt_lang' , type=a , default=a , required=a ) parser.add_argument( '--prefix' , type=a , required=a , default=a , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) lowercase_ : Any = time.time() lowercase_ : List[Any] = parser.parse_known_args() lowercase_ : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(a ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) lowercase_ : str = Path(args.save_dir + '_tmp' ) Path(a ).mkdir(exist_ok=a ) # this handles locking. lowercase_ : List[Any] = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowercase_ : Optional[Any] = {} if args.src_lang is not None: lowercase_ : Union[str, Any] = args.src_lang if args.tgt_lang is not None: lowercase_ : Optional[int] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=a ) lowercase_ : Dict = eval_data_dir( args.data_dir , a , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=a , **a , ) if args.local_rank <= 0: lowercase_ : Optional[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=a ) lowercase_ : Tuple = gather_results_from_each_node(a , a , args.sync_timeout ) lowercase_ : Dict = combine_partial_results(a ) if args.num_return_sequences > 1: lowercase_ : Tuple = save_dir.joinpath('pseudolabel_results.json' ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(a , a ) return lowercase_ : str = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(a ) as f: lowercase_ : Optional[Any] = [x.rstrip() for x in f.readlines()][: len(a )] # Calculate metrics, save metrics, and save _generations.txt lowercase_ : Any = '''translation''' in args.task lowercase_ : List[str] = calculate_bleu if calc_bleu else calculate_rouge lowercase_ : Union[str, Any] = '''bleu''' if calc_bleu else '''rouge''' lowercase_ : Dict = score_fn(a , a ) lowercase_ : int = len(a ) lowercase_ : Union[str, Any] = time.time() - start_time lowercase_ : List[Any] = round(runtime / metrics['n_obs'] , 4 ) lowercase_ : Union[str, Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics lowercase_ : Tuple = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(a , a , indent=a ) print(a ) write_txt_file(a , save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(a , save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(a ) def _UpperCAmelCase ( a : Dict ) -> str: """simple docstring""" lowercase_ : int = [] for partial_result in partial_results: records.extend(a ) lowercase_ : List[str] = sorted(a , key=lambda a : x["id"] ) lowercase_ : Optional[Any] = [x['''pred'''] for x in records] return preds def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase_ : Optional[int] = time.time() logger.info('waiting for all nodes to finish' ) lowercase_ : str = None while (time.time() - start_wait) < timeout: lowercase_ : int = list(save_dir.glob('rank_*.json' ) ) if len(a ) < num_replicas: continue try: # make sure all json files are fully saved lowercase_ : List[Any] = lmap(a , a ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
717
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
0
'''simple docstring''' import re def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" if len(re.findall('[ATCG]' , snake_case_ ) ) != len(snake_case_ ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
0
import os import sys import unittest A: Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A: Any = os.path.join("tests", "models", "bert", "test_modeling_bert.py") A: Optional[int] = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Union[str, Any] = get_test_to_tester_mapping(_lowercase ) lowercase_ : List[str] = get_test_to_tester_mapping(_lowercase ) lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'} lowercase_ : Dict = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Dict = get_model_to_test_mapping(_lowercase ) lowercase_ : Union[str, Any] = get_model_to_test_mapping(_lowercase ) lowercase_ : Optional[int] = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowercase_ : str = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : List[str] = get_model_to_tester_mapping(_lowercase ) lowercase_ : Union[str, Any] = get_model_to_tester_mapping(_lowercase ) lowercase_ : Union[str, Any] = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowercase_ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase )
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor A: Any = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> None: warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
'''simple docstring''' import numpy class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> None: lowercase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowercase_ : Union[str, Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowercase_ : List[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowercase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowercase_ : Any = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowercase_ : Union[str, Any] = numpy.zeros(output_array.shape ) def lowerCamelCase__ ( self ) -> numpy.ndarray: lowercase_ : List[str] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowercase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowercase_ : str = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCamelCase__ ( self ) -> None: lowercase_ : Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowercase_ : Optional[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowercase_ : Tuple = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> None: for iteration in range(1 , iterations + 1 ): lowercase_ : Optional[Any] = self.feedforward() self.back_propagation() if give_loss: lowercase_ : str = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"Iteration {iteration} Loss: {loss}" ) def lowerCamelCase__ ( self , _lowercase ) -> int: lowercase_ : List[str] = input_arr lowercase_ : Any = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowercase_ : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowercase_ : List[str] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _UpperCAmelCase ( a : numpy.ndarray ) -> str: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def _UpperCAmelCase ( a : numpy.ndarray ) -> List[str]: """simple docstring""" return (value) * (1 - (value)) def _UpperCAmelCase ( ) -> Any: """simple docstring""" lowercase_ : str = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowercase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowercase_ : Union[str, Any] = TwoHiddenLayerNeuralNetwork( input_array=a , output_array=a ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a , iterations=1_0 , give_loss=a ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
721
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A: Any = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" A: Union[str, Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" A: Union[str, Any] = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" A: Any = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" A: Union[str, Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=[1, 10, 100] , _lowercase=4 , _lowercase=3.0 ) -> List[Any]: if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=_lowercase ) as executor: lowercase_ : List[Any] = [] lowercase_ : Union[str, Any] = Counter() lowercase_ : List[Any] = 0 lowercase_ : Any = defaultdict(_lowercase ) for task_id, (candidates, test_case) in enumerate(zip(_lowercase , _lowercase ) ): for candidate in candidates: lowercase_ : str = candidate + '\n' + test_case lowercase_ : Tuple = (test_program, timeout, task_id, completion_id[task_id]) lowercase_ : List[Any] = executor.submit(_lowercase , *_lowercase ) futures.append(_lowercase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_lowercase ): lowercase_ : Optional[Any] = future.result() results[result["task_id"]].append((result['completion_id'], result) ) lowercase_ : Optional[Any] = [], [] for result in results.values(): result.sort() lowercase_ : Dict = [r[1]['passed'] for r in result] total.append(len(_lowercase ) ) correct.append(sum(_lowercase ) ) lowercase_ : Optional[Any] = np.array(_lowercase ) lowercase_ : List[Any] = np.array(_lowercase ) lowercase_ : List[str] = k lowercase_ : Dict = {f"pass@{k}": estimate_pass_at_k(_lowercase , _lowercase , _lowercase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCAmelCase ( a : Union[str, Any] , a : Union[str, Any] , a : Any ) -> Any: """simple docstring""" def estimator(a : int , a : int , a : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(a , a ): lowercase_ : Optional[Any] = itertools.repeat(a , len(a ) ) else: assert len(a ) == len(a ) lowercase_ : Tuple = iter(a ) return np.array([estimator(int(a ) , int(a ) , a ) for n, c in zip(a , a )] )
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" lowercase_ : int = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ : List[str] = True for i in range(0 , len(a ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ : Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : List[Any] = False for i in range(1 , len(a ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ : List[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : Dict = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A: Optional[Any] = [int(x) for x in input().split()] # inputing elements of the list in one line A: int = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A: List[str] = logging.get_logger(__name__) def _UpperCAmelCase ( a : str , a : str ) -> Optional[Any]: """simple docstring""" lowercase_ : Dict = b.T lowercase_ : str = np.sum(np.square(a ) , axis=1 ) lowercase_ : Optional[Any] = np.sum(np.square(a ) , axis=0 ) lowercase_ : Optional[int] = np.matmul(a , a ) lowercase_ : Any = aa[:, None] - 2 * ab + ba[None, :] return d def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[Any] = x.reshape(-1 , 3 ) lowercase_ : Union[str, Any] = squared_euclidean_distance(a , a ) return np.argmin(a , axis=1 ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ['pixel_values'] def __init__( self , _lowercase = None , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = True , _lowercase = True , **_lowercase , ) -> None: super().__init__(**_lowercase ) lowercase_ : Optional[Any] = size if size is not None else {'height': 256, 'width': 256} lowercase_ : Optional[Any] = get_size_dict(_lowercase ) lowercase_ : List[str] = np.array(_lowercase ) if clusters is not None else None lowercase_ : Dict = do_resize lowercase_ : Dict = size lowercase_ : Optional[int] = resample lowercase_ : Dict = do_normalize lowercase_ : Tuple = do_color_quantize def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BILINEAR , _lowercase = None , **_lowercase , ) -> np.ndarray: lowercase_ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( _lowercase , size=(size['height'], size['width']) , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None , ) -> np.ndarray: lowercase_ : Optional[Any] = rescale(image=_lowercase , scale=1 / 127.5 , data_format=_lowercase ) lowercase_ : Optional[Any] = image - 1 return image def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> PIL.Image.Image: lowercase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : Any = get_size_dict(_lowercase ) lowercase_ : Any = resample if resample is not None else self.resample lowercase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowercase_ : Union[str, Any] = clusters if clusters is not None else self.clusters lowercase_ : Dict = np.array(_lowercase ) lowercase_ : str = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. lowercase_ : Tuple = [to_numpy_array(_lowercase ) for image in images] if do_resize: lowercase_ : Dict = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_normalize: lowercase_ : str = [self.normalize(image=_lowercase ) for image in images] if do_color_quantize: lowercase_ : Tuple = [to_channel_dimension_format(_lowercase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowercase_ : List[Any] = np.array(_lowercase ) lowercase_ : Optional[int] = color_quantize(_lowercase , _lowercase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowercase_ : Optional[int] = images.shape[0] lowercase_ : Optional[Any] = images.reshape(_lowercase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowercase_ : List[str] = list(_lowercase ) else: lowercase_ : List[str] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] lowercase_ : int = {'input_ids': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
'''simple docstring''' from math import factorial, pi def _UpperCAmelCase ( a : float , a : int = 3_0 ) -> float: """simple docstring""" if not isinstance(a , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(a , a ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) lowercase_ : Dict = float(a ) lowercase_ : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(a ) ) def _UpperCAmelCase ( a : float , a : int = 3_0 ) -> float: """simple docstring""" if not isinstance(a , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(a , a ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) lowercase_ : int = float(a ) lowercase_ : int = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(a ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
703
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
0
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
704
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A: Dict = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'maskformer-swin' SCREAMING_SNAKE_CASE_ : Dict = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _lowercase=224 , _lowercase=4 , _lowercase=3 , _lowercase=96 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 12, 24] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=None , _lowercase=None , **_lowercase , ) -> str: super().__init__(**_lowercase ) lowercase_ : List[str] = image_size lowercase_ : Dict = patch_size lowercase_ : Union[str, Any] = num_channels lowercase_ : Tuple = embed_dim lowercase_ : int = depths lowercase_ : str = len(_lowercase ) lowercase_ : Optional[Any] = num_heads lowercase_ : Any = window_size lowercase_ : int = mlp_ratio lowercase_ : Dict = qkv_bias lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : List[str] = drop_path_rate lowercase_ : Any = hidden_act lowercase_ : Union[str, Any] = use_absolute_embeddings lowercase_ : Tuple = layer_norm_eps lowercase_ : str = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ : Optional[Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) lowercase_ : Tuple = ['stem'] + [f"stage{idx}" for idx in range(1 , len(_lowercase ) + 1 )] lowercase_ : List[str] = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
705
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A: Dict = logging.get_logger(__name__) A: Union[str, Any] = "▁" A: Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} A: str = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } A: Optional[Any] = { "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off A: Dict = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __magic_name__ ( UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : List[int] = [] def __init__( self , _lowercase , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = None , _lowercase=None , _lowercase=False , **_lowercase , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token lowercase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ : Union[str, Any] = legacy_behaviour super().__init__( bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , tokenizer_file=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_lowercase , **_lowercase , ) lowercase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowercase ) ) lowercase_ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : List[str] = 1 lowercase_ : Optional[int] = len(self.sp_model ) lowercase_ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowercase ) } lowercase_ : Tuple = {v: k for k, v in self.lang_code_to_id.items()} lowercase_ : Optional[int] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase_ : Optional[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase_ : List[str] = src_lang if src_lang is not None else 'eng_Latn' lowercase_ : Union[str, Any] = self.lang_code_to_id[self._src_lang] lowercase_ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Tuple: lowercase_ : Dict = self.__dict__.copy() lowercase_ : Tuple = None lowercase_ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowercase ) -> int: lowercase_ : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase_ : str = {} lowercase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ ( self ) -> Optional[int]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) lowercase_ : Union[str, Any] = [1] * len(self.prefix_tokens ) lowercase_ : Union[str, Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase )) + suffix_ones return prefix_ones + ([0] * len(_lowercase )) + ([0] * len(_lowercase )) + suffix_ones def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : Any = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase_ : Dict = src_lang lowercase_ : str = self(_lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , **_lowercase ) lowercase_ : str = self.convert_tokens_to_ids(_lowercase ) lowercase_ : Any = tgt_lang_id return inputs def lowerCamelCase__ ( self ) -> str: lowercase_ : Dict = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self , _lowercase ) -> List[str]: return self.sp_model.encode(_lowercase , out_type=_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : str = self.sp_model.PieceToId(_lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self , _lowercase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self , _lowercase ) -> List[str]: lowercase_ : Union[str, Any] = ''.join(_lowercase ).replace(_lowercase , ' ' ).strip() return out_string def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : Any = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , 'wb' ) as fi: lowercase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def lowerCamelCase__ ( self , _lowercase , _lowercase = "eng_Latn" , _lowercase = None , _lowercase = "fra_Latn" , **_lowercase , ) -> BatchEncoding: lowercase_ : Optional[int] = src_lang lowercase_ : int = tgt_lang return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : Optional[Any] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase_ : Any = [] lowercase_ : Tuple = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : str = [self.cur_lang_code] lowercase_ : Union[str, Any] = [self.eos_token_id] def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : str = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase_ : List[Any] = [] lowercase_ : List[str] = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : int = [self.cur_lang_code] lowercase_ : Union[str, Any] = [self.eos_token_id]
706
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets A: int = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" A: str = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" A: Tuple = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="auto" , _lowercase=-1 , _lowercase=0.9 , _lowercase=5 , _lowercase=500 , _lowercase="gpt2-large" , _lowercase=-1 , _lowercase=1024 , _lowercase=25 , _lowercase=5 , _lowercase=True , _lowercase=25 , ) -> str: lowercase_ : Dict = compute_mauve( p_text=_lowercase , q_text=_lowercase , p_features=_lowercase , q_features=_lowercase , p_tokens=_lowercase , q_tokens=_lowercase , num_buckets=_lowercase , pca_max_data=_lowercase , kmeans_explained_var=_lowercase , kmeans_num_redo=_lowercase , kmeans_max_iter=_lowercase , featurize_model_name=_lowercase , device_id=_lowercase , max_text_length=_lowercase , divergence_curve_discretization_size=_lowercase , mauve_scaling_factor=_lowercase , verbose=_lowercase , seed=_lowercase , ) return out
707
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE_ : str = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : str = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE_ : Tuple = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def snake_case__ ( self ) -> List[str]: torch.manual_seed(0 ) lowercase_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) lowercase_ : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) lowercase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) lowercase_ : Dict = CLIPTextModel(_lowercase ) lowercase_ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase_ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case__ ( self , _lowercase , _lowercase=0 ) -> int: if str(_lowercase ).startswith('mps' ): lowercase_ : Tuple = torch.manual_seed(_lowercase ) else: lowercase_ : List[str] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase_ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case__ ( self ) -> Optional[Any]: lowercase_ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase_ : List[str] = self.get_dummy_components() lowercase_ : int = TextToVideoSDPipeline(**_lowercase ) lowercase_ : Dict = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) lowercase_ : Optional[Any] = self.get_dummy_inputs(_lowercase ) lowercase_ : Any = 'np' lowercase_ : Union[str, Any] = sd_pipe(**_lowercase ).frames lowercase_ : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowercase_ : List[str] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ) -> Optional[int]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowercase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case__ ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowercase , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case__ ( self ) -> Optional[Any]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case__ ( self ) -> Optional[int]: pass def snake_case__ ( self ) -> Union[str, Any]: return super().test_progress_bar() @slow @skip_mps class __magic_name__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> int: lowercase_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) lowercase_ : List[str] = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) lowercase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ : int = pipe.to('cuda' ) lowercase_ : int = 'Spiderman is surfing' lowercase_ : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : int = pipe(_lowercase , generator=_lowercase , num_inference_steps=25 , output_type='pt' ).frames lowercase_ : Tuple = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def snake_case__ ( self ) -> int: lowercase_ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) lowercase_ : Union[str, Any] = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) lowercase_ : List[str] = pipe.to('cuda' ) lowercase_ : str = 'Spiderman is surfing' lowercase_ : Any = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : List[str] = pipe(_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='pt' ).frames lowercase_ : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
708
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A: Dict = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Any = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys A: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
709
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __a: Any = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" __a: Tuple = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" __a: Optional[int] = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase=True , _lowercase=False ) -> str: if rouge_types is None: lowercase_ : Union[str, Any] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] lowercase_ : Optional[Any] = rouge_scorer.RougeScorer(rouge_types=_lowercase , use_stemmer=_lowercase ) if use_aggregator: lowercase_ : List[str] = scoring.BootstrapAggregator() else: lowercase_ : str = [] for ref, pred in zip(_lowercase , _lowercase ): lowercase_ : Optional[Any] = scorer.score(_lowercase , _lowercase ) if use_aggregator: aggregator.add_scores(_lowercase ) else: scores.append(_lowercase ) if use_aggregator: lowercase_ : Optional[int] = aggregator.aggregate() else: lowercase_ : Optional[int] = {} for key in scores[0]: lowercase_ : int = [score[key] for score in scores] return result
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = (DPMSolverSinglestepScheduler,) SCREAMING_SNAKE_CASE_ : Any = (('num_inference_steps', 2_5),) def lowerCamelCase__ ( self , **_lowercase ) -> Tuple: lowercase_ : Union[str, Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**_lowercase ) return config def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> Dict: lowercase_ : Union[str, Any] = dict(self.forward_default_kwargs ) lowercase_ : List[Any] = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : List[str] = self.dummy_sample lowercase_ : Dict = 0.1 * sample lowercase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ : Optional[int] = self.get_scheduler_config(**_lowercase ) lowercase_ : List[str] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : int = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ : Any = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1 ): lowercase_ : Optional[int] = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : List[Any] = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self ) -> List[str]: pass def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> List[str]: lowercase_ : int = dict(self.forward_default_kwargs ) lowercase_ : int = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : Any = self.dummy_sample lowercase_ : Optional[Any] = 0.1 * sample lowercase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ : List[str] = self.get_scheduler_config() lowercase_ : Any = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) lowercase_ : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : Any = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) lowercase_ : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ : Dict = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Union[str, Any] = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self , _lowercase=None , **_lowercase ) -> Optional[Any]: if scheduler is None: lowercase_ : Union[str, Any] = self.scheduler_classes[0] lowercase_ : Optional[Any] = self.get_scheduler_config(**_lowercase ) lowercase_ : str = scheduler_class(**_lowercase ) lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : Optional[Any] = self.get_scheduler_config(**_lowercase ) lowercase_ : int = scheduler_class(**_lowercase ) lowercase_ : Tuple = 10 lowercase_ : List[Any] = self.dummy_model() lowercase_ : Any = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : str = model(_lowercase , _lowercase ) lowercase_ : Dict = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample return sample def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase_ : Tuple = 50 lowercase_ : int = self.dummy_model() lowercase_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowercase_ : int = model(_lowercase , _lowercase ) lowercase_ : Any = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample lowercase_ : Any = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.25_74 ) < 1E-3 def lowerCamelCase__ ( self ) -> Dict: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: # make sure that iterating over schedulers with same config names gives same results # for defaults lowercase_ : str = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase_ : List[str] = self.full_loop(scheduler=_lowercase ) lowercase_ : Tuple = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 lowercase_ : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowercase_ : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase_ : int = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase_ : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase_ : Any = self.full_loop(scheduler=_lowercase ) lowercase_ : Tuple = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def lowerCamelCase__ ( self ) -> Dict: self.check_over_configs(thresholding=_lowercase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='dpmsolver++' , solver_order=_lowercase , solver_type=_lowercase , ) def lowerCamelCase__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) lowercase_ : Union[str, Any] = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase ).any(), "Samples have nan numbers" def lowerCamelCase__ ( self ) -> int: self.check_over_configs(lower_order_final=_lowercase ) self.check_over_configs(lower_order_final=_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowerCamelCase__ ( self ) -> Tuple: self.check_over_configs(variance_type=_lowercase ) self.check_over_configs(variance_type='learned_range' ) def lowerCamelCase__ ( self ) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0 ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Tuple = self.full_loop() lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[Any] = self.full_loop(use_karras_sigmas=_lowercase ) lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.22_48 ) < 1E-3 def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Union[str, Any] = self.full_loop(prediction_type='v_prediction' ) lowercase_ : str = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.14_53 ) < 1E-3 def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=_lowercase ) lowercase_ : List[str] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.06_49 ) < 1E-3 def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[int] = self.scheduler_classes[0] lowercase_ : List[str] = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0 ) lowercase_ : Optional[int] = scheduler_class(**_lowercase ) lowercase_ : str = 10 lowercase_ : List[str] = self.dummy_model() lowercase_ : int = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : Optional[int] = model(_lowercase , _lowercase ) lowercase_ : int = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample assert sample.dtype == torch.floataa
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
0
A: Optional[Any] = tuple[float, float, float] A: Union[str, Any] = tuple[float, float, float] def _UpperCAmelCase ( a : Pointad , a : Pointad ) -> Vectorad: """simple docstring""" lowercase_ : int = end_pointa[0] - end_pointa[0] lowercase_ : Tuple = end_pointa[1] - end_pointa[1] lowercase_ : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _UpperCAmelCase ( a : Vectorad , a : Vectorad ) -> Vectorad: """simple docstring""" lowercase_ : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase_ : Union[str, Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase_ : Optional[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _UpperCAmelCase ( a : Vectorad , a : int ) -> bool: """simple docstring""" return tuple(round(a , a ) for x in vector ) == (0, 0, 0) def _UpperCAmelCase ( a : Pointad , a : Pointad , a : Pointad , a : int = 1_0 ) -> bool: """simple docstring""" lowercase_ : Union[str, Any] = create_vector(a , a ) lowercase_ : Union[str, Any] = create_vector(a , a ) return is_zero_vector(get_ad_vectors_cross(a , a ) , a )
712
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
0
def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowercase_ : str = 4 lowercase_ : Union[str, Any] = (1 << p) - 1 for _ in range(p - 2 ): lowercase_ : Optional[int] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A: Dict = "src/diffusers" A: Any = "." # This is to make sure the diffusers module imported is the one in the repo. A: Dict = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) A: Any = spec.loader.load_module() def _UpperCAmelCase ( a : str , a : Any ) -> Tuple: """simple docstring""" return line.startswith(a ) or len(a ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , a ) is not None def _UpperCAmelCase ( a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : Tuple = object_name.split('.' ) lowercase_ : str = 0 # First let's find the module where our object lives. lowercase_ : Any = parts[i] while i < len(a ) and not os.path.isfile(os.path.join(a , f"{module}.py" ) ): i += 1 if i < len(a ): lowercase_ : Union[str, Any] = os.path.join(a , parts[i] ) if i >= len(a ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(a , f"{module}.py" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase_ : int = f.readlines() # Now let's find the class / func in the code! lowercase_ : Optional[int] = '' lowercase_ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(a ) and re.search(Rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(a ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase_ : str = line_index while line_index < len(a ) and _should_continue(lines[line_index] , a ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase_ : Union[str, Any] = lines[start_index:line_index] return "".join(a ) A: List[str] = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") A: Optional[int] = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") A: Dict = re.compile(r"<FILL\s+[^>]*>") def _UpperCAmelCase ( a : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase_ : str = code.split('\n' ) lowercase_ : Optional[int] = 0 while idx < len(a ) and len(lines[idx] ) == 0: idx += 1 if idx < len(a ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _UpperCAmelCase ( a : Optional[Any] ) -> Tuple: """simple docstring""" lowercase_ : str = len(get_indent(a ) ) > 0 if has_indent: lowercase_ : List[str] = f"class Bla:\n{code}" lowercase_ : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=a ) lowercase_ : List[str] = black.format_str(a , mode=a ) lowercase_ : Any = style_docstrings_in_code(a ) return result[len('class Bla:\n' ) :] if has_indent else result def _UpperCAmelCase ( a : Optional[Any] , a : int=False ) -> Any: """simple docstring""" with open(a , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase_ : str = f.readlines() lowercase_ : int = [] lowercase_ : Optional[Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(a ): lowercase_ : Optional[int] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase_ : Any = search.groups() lowercase_ : int = find_code_in_diffusers(a ) lowercase_ : Optional[int] = get_indent(a ) lowercase_ : Any = line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase_ : List[Any] = theoretical_indent lowercase_ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase_ : Tuple = True while line_index < len(a ) and should_continue: line_index += 1 if line_index >= len(a ): break lowercase_ : Any = lines[line_index] lowercase_ : Tuple = _should_continue(a , a ) and re.search(f"^{indent}# End copy" , a ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase_ : Any = lines[start_index:line_index] lowercase_ : Any = ''.join(a ) # Remove any nested `Copied from` comments to avoid circular copies lowercase_ : str = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(a ) is None] lowercase_ : str = '\n'.join(a ) # Before comparing, use the `replace_pattern` on the original code. if len(a ) > 0: lowercase_ : Optional[Any] = replace_pattern.replace('with' , '' ).split(',' ) lowercase_ : int = [_re_replace_pattern.search(a ) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase_ : str = pattern.groups() lowercase_ : Dict = re.sub(a , a , a ) if option.strip() == "all-casing": lowercase_ : str = re.sub(obja.lower() , obja.lower() , a ) lowercase_ : List[Any] = re.sub(obja.upper() , obja.upper() , a ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase_ : Any = blackify(lines[start_index - 1] + theoretical_code ) lowercase_ : int = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowercase_ : Tuple = lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase_ : List[Any] = start_index + 1 if overwrite and len(a ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) return diffs def _UpperCAmelCase ( a : bool = False ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = glob.glob(os.path.join(a , '**/*.py' ) , recursive=a ) lowercase_ : List[str] = [] for filename in all_files: lowercase_ : Tuple = is_copy_consistent(a , a ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(a ) > 0: lowercase_ : Tuple = '\n'.join(a ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": A: Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A: str = parser.parse_args() check_copies(args.fix_and_overwrite)
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A: List[Any] = None A: Dict = logging.get_logger(__name__) A: Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A: List[str] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } A: Optional[Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } A: str = "▁" # Segments (not really needed) A: str = 0 A: Any = 1 A: Union[str, Any] = 2 A: str = 3 A: List[str] = 4 class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'left' SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase="<s>" , _lowercase="</s>" , _lowercase="<unk>" , _lowercase="<sep>" , _lowercase="<pad>" , _lowercase="<cls>" , _lowercase="<mask>" , _lowercase=["<eop>", "<eod>"] , **_lowercase , ) -> int: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) lowercase_ : Optional[int] = 3 lowercase_ : List[str] = do_lower_case lowercase_ : Tuple = remove_space lowercase_ : List[Any] = keep_accents lowercase_ : int = vocab_file lowercase_ : List[Any] = False if not self.vocab_file else True def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : str = [self.sep_token_id] lowercase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : int = [self.sep_token_id] lowercase_ : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : Any = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
'''simple docstring''' A: List[Any] = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A: Optional[int] = [{"type": "code", "content": INSTALL_CONTENT}] A: Dict = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
716
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: Optional[int] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys A: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
717
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A: int = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Tuple = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
0
import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: List[str] = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A: Optional[int] = sys.version_info >= (3, 1_0) def _UpperCAmelCase ( a : Tuple=None , a : List[str]=None ) -> Dict: """simple docstring""" return field(default_factory=lambda: default , metadata=a ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : float SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : bool @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 4_2 SCREAMING_SNAKE_CASE_ : str = field(default='toto', metadata={'help': 'help message'} ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : Optional[bool] = None class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 'titi' SCREAMING_SNAKE_CASE_ : Any = 'toto' class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'titi' SCREAMING_SNAKE_CASE_ : Optional[int] = 'toto' SCREAMING_SNAKE_CASE_ : List[Any] = 4_2 @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : BasicEnum = "toto" def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : str = BasicEnum(self.foo ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : MixedTypeEnum = "toto" def lowerCamelCase__ ( self ) -> str: lowercase_ : Dict = MixedTypeEnum(self.foo ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[float] = field(default=UpperCAmelCase_, metadata={'help': 'help message'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE_ : Optional[List[int]] = list_field(default=[] ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE_ : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE_ : List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) SCREAMING_SNAKE_CASE_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[int] = field() SCREAMING_SNAKE_CASE_ : str = field() SCREAMING_SNAKE_CASE_ : BasicEnum = field() def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Dict = BasicEnum(self.required_enum ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : "BasicEnum" = field() SCREAMING_SNAKE_CASE_ : "Optional[bool]" = None SCREAMING_SNAKE_CASE_ : "str" = field(default='toto', metadata={'help': 'help message'} ) SCREAMING_SNAKE_CASE_ : "List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : bool | None = None @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int | None = None SCREAMING_SNAKE_CASE_ : float | None = field(default=UpperCAmelCase_, metadata={'help': 'help message'} ) SCREAMING_SNAKE_CASE_ : str | None = None SCREAMING_SNAKE_CASE_ : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE_ : list[int] | None = list_field(default=[] ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase_ : List[str] = {k: v for k, v in vars(_lowercase ).items() if k != 'container'} lowercase_ : List[str] = {k: v for k, v in vars(_lowercase ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , _lowercase ) and yy.get('choices' , _lowercase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](_lowercase ) , yy['type'](_lowercase ) ) del xx["type"], yy["type"] self.assertEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[int] = HfArgumentParser(_lowercase ) lowercase_ : List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_lowercase , required=_lowercase ) expected.add_argument('--bar' , type=_lowercase , required=_lowercase ) expected.add_argument('--baz' , type=_lowercase , required=_lowercase ) expected.add_argument('--flag' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='?' ) self.argparsersEqual(_lowercase , _lowercase ) lowercase_ : List[Any] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] (lowercase_ ) : Any = parser.parse_args_into_dataclasses(_lowercase , look_for_args_file=_lowercase ) self.assertFalse(example.flag ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Union[str, Any] = HfArgumentParser(_lowercase ) lowercase_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=_lowercase ) expected.add_argument('--baz' , default='toto' , type=_lowercase , help='help message' ) self.argparsersEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Any = argparse.ArgumentParser() expected.add_argument('--foo' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='?' ) expected.add_argument('--baz' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=_lowercase , dest='baz' ) expected.add_argument('--opt' , type=_lowercase , default=_lowercase ) lowercase_ : Any = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: lowercase_ : List[str] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) lowercase_ : Dict = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) lowercase_ : Any = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) lowercase_ : Optional[Any] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) lowercase_ : Any = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) lowercase_ : str = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Any = HfArgumentParser(_lowercase ) lowercase_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) lowercase_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowercase_ : List[str] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase_ : Any = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowercase_ : List[str] = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase_ : Optional[Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) lowercase_ : Any = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCamelCase__ ( self ) -> int: @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Literal["titi", "toto", 4_2] = "toto" lowercase_ : Tuple = HfArgumentParser(_lowercase ) lowercase_ : Dict = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) lowercase_ : Any = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowercase_ : Dict = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowercase_ : int = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Union[str, Any] = HfArgumentParser(_lowercase ) lowercase_ : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=_lowercase ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=_lowercase ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_lowercase ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) lowercase_ : int = parser.parse_args([] ) self.assertEqual( _lowercase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase_ : Any = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(_lowercase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo' , default=_lowercase , type=_lowercase ) expected.add_argument('--bar' , default=_lowercase , type=_lowercase , help='help message' ) expected.add_argument('--baz' , default=_lowercase , type=_lowercase ) expected.add_argument('--ces' , nargs='+' , default=[] , type=_lowercase ) expected.add_argument('--des' , nargs='+' , default=[] , type=_lowercase ) lowercase_ : Any = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: lowercase_ : List[Any] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) lowercase_ : Any = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , bar=_lowercase , baz=_lowercase , ces=[] , des=[] ) ) lowercase_ : Optional[Any] = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(_lowercase , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[str] = HfArgumentParser(_lowercase ) lowercase_ : Dict = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=_lowercase , required=_lowercase ) expected.add_argument('--required_str' , type=_lowercase , required=_lowercase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_lowercase , ) self.argparsersEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Tuple = HfArgumentParser(_lowercase ) lowercase_ : List[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_lowercase , required=_lowercase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_lowercase , ) expected.add_argument('--opt' , type=_lowercase , default=_lowercase ) expected.add_argument('--baz' , default='toto' , type=_lowercase , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Optional[int] = HfArgumentParser(_lowercase ) lowercase_ : Dict = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } lowercase_ : List[str] = parser.parse_dict(_lowercase )[0] lowercase_ : List[Any] = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Dict = HfArgumentParser(_lowercase ) lowercase_ : Optional[int] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(_lowercase , parser.parse_dict , _lowercase , allow_extra_keys=_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Dict = HfArgumentParser(_lowercase ) lowercase_ : List[str] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = os.path.join(_lowercase , 'temp_json' ) os.mkdir(_lowercase ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(_lowercase , _lowercase ) lowercase_ : int = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] lowercase_ : List[str] = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : List[str] = HfArgumentParser(_lowercase ) lowercase_ : List[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : str = os.path.join(_lowercase , 'temp_yaml' ) os.mkdir(_lowercase ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(_lowercase , _lowercase ) lowercase_ : List[Any] = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] lowercase_ : Optional[Any] = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : str = HfArgumentParser(_lowercase ) self.assertIsNotNone(_lowercase )
721
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging A: str = logging.get_logger(__name__) def _UpperCAmelCase ( a : List[str] , a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : int = set() lowercase_ : int = [] def parse_line(a : Tuple ): for line in fp: if isinstance(a , a ): lowercase_ : Dict = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(a ) > 0: lowercase_ : Optional[Any] = '\n'.join(a ) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets ): selected_warnings.add(a ) buffer.clear() continue else: lowercase_ : Optional[int] = line.strip() buffer.append(a ) if from_gh: for filename in os.listdir(a ): lowercase_ : Dict = os.path.join(a , a ) if not os.path.isdir(a ): # read the file if filename != "warnings.txt": continue with open(a ) as fp: parse_line(a ) else: try: with zipfile.ZipFile(a ) as z: for filename in z.namelist(): if not os.path.isdir(a ): # read the file if filename != "warnings.txt": continue with z.open(a ) as fp: parse_line(a ) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def _UpperCAmelCase ( a : str , a : int ) -> Dict: """simple docstring""" lowercase_ : int = set() lowercase_ : Union[str, Any] = [os.path.join(a , a ) for p in os.listdir(a ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(a , a ) ) return selected_warnings if __name__ == "__main__": def _UpperCAmelCase ( a : List[Any] ) -> Optional[Any]: """simple docstring""" return values.split(',' ) A: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) A: Dict = parser.parse_args() A: Optional[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links A: Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts A: Optional[Any] = extract_warnings(args.output_dir, args.targets) A: Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' from collections.abc import Callable def _UpperCAmelCase ( a : Callable[[float], float] , a : float , a : float ) -> float: """simple docstring""" lowercase_ : float = a lowercase_ : float = b if function(a ) == 0: # one of the a or b is a root for the function return a elif function(a ) == 0: return b elif ( function(a ) * function(a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowercase_ : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(a ) == 0: return mid elif function(a ) * function(a ) < 0: lowercase_ : Dict = mid else: lowercase_ : Optional[Any] = mid lowercase_ : Any = start + (end - start) / 2.0 return mid def _UpperCAmelCase ( a : float ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging A: Optional[Any] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ['input_features', 'attention_mask'] def __init__( self , _lowercase=80 , _lowercase=1_6000 , _lowercase=0.0 , _lowercase=10 , _lowercase=25 , _lowercase="hamming_window" , _lowercase=3_2768.0 , _lowercase=0.97 , _lowercase=1.0 , _lowercase=True , _lowercase=True , _lowercase=False , **_lowercase , ) -> int: super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) lowercase_ : str = feature_size lowercase_ : Optional[Any] = sampling_rate lowercase_ : str = padding_value lowercase_ : Optional[int] = hop_length lowercase_ : Optional[int] = win_length lowercase_ : Optional[int] = frame_signal_scale lowercase_ : List[Any] = preemphasis_coeff lowercase_ : str = mel_floor lowercase_ : Tuple = normalize_means lowercase_ : List[Any] = normalize_vars lowercase_ : Optional[int] = win_function lowercase_ : List[Any] = return_attention_mask lowercase_ : Optional[int] = win_length * sampling_rate // 1000 lowercase_ : Dict = hop_length * sampling_rate // 1000 lowercase_ : Union[str, Any] = optimal_fft_length(self.sample_size ) lowercase_ : str = (self.n_fft // 2) + 1 def lowerCamelCase__ ( self , _lowercase ) -> np.ndarray: if self.win_function == "hamming_window": lowercase_ : Any = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowercase ) else: lowercase_ : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function ) lowercase_ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) lowercase_ : List[Any] = spectrogram( one_waveform * self.frame_signal_scale , window=_lowercase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowercase , preemphasis=self.preemphasis_coeff , mel_filters=_lowercase , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: # make sure we normalize float32 arrays if self.normalize_means: lowercase_ : Any = x[:input_length].mean(axis=0 ) lowercase_ : Optional[Any] = np.subtract(_lowercase , _lowercase ) if self.normalize_vars: lowercase_ : List[Any] = x[:input_length].std(axis=0 ) lowercase_ : List[str] = np.divide(_lowercase , _lowercase ) if input_length < x.shape[0]: lowercase_ : List[Any] = padding_value # make sure array is in float32 lowercase_ : Optional[Any] = x.astype(np.floataa ) return x def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[np.ndarray]: lowercase_ : List[str] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowercase , _lowercase , self.padding_value ) for x, n in zip(_lowercase , _lowercase )] def __call__( self , _lowercase , _lowercase = False , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase_ : Optional[Any] = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowercase_ : Optional[Any] = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : str = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): lowercase_ : str = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : List[Any] = [raw_speech] # extract fbank features lowercase_ : str = [self._extract_mfsc_features(_lowercase ) for one_waveform in raw_speech] # convert into correct format for padding lowercase_ : Any = BatchFeature({'input_features': features} ) lowercase_ : Any = self.pad( _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) # make sure list is in array format lowercase_ : str = padded_inputs.get('input_features' ) if isinstance(input_features[0] , _lowercase ): lowercase_ : Optional[Any] = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features] lowercase_ : str = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowercase_ : Dict = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowercase_ : Optional[int] = ( np.array(_lowercase , dtype=np.intaa ) if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowercase_ : Any = self.normalize( padded_inputs['input_features'] , attention_mask=_lowercase ) if return_tensors is not None: lowercase_ : Optional[int] = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING A: Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> List[Any]: super().__init__(*_lowercase , **_lowercase ) requires_backends(self , 'vision' ) self.check_model_type(_lowercase ) def __call__( self , _lowercase , **_lowercase ) -> int: return super().__call__(_lowercase , **_lowercase ) def lowerCamelCase__ ( self , **_lowercase ) -> Optional[int]: return {}, {}, {} def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : List[Any] = load_image(_lowercase ) lowercase_ : str = image.size lowercase_ : Union[str, Any] = self.image_processor(images=_lowercase , return_tensors=self.framework ) return model_inputs def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = self.model(**_lowercase ) return model_outputs def lowerCamelCase__ ( self , _lowercase ) -> Tuple: lowercase_ : int = model_outputs.predicted_depth lowercase_ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=_lowercase ) lowercase_ : str = prediction.squeeze().cpu().numpy() lowercase_ : List[str] = (output * 255 / np.max(_lowercase )).astype('uint8' ) lowercase_ : Union[str, Any] = Image.fromarray(_lowercase ) lowercase_ : List[Any] = {} lowercase_ : Dict = predicted_depth lowercase_ : Optional[Any] = depth return output_dict
703
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
0
'''simple docstring''' import requests A: Tuple = "YOUR API KEY" def _UpperCAmelCase ( a : str , a : str = giphy_api_key ) -> list: """simple docstring""" lowercase_ : Dict = '+'.join(query.split() ) lowercase_ : str = f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" lowercase_ : str = requests.get(a ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
704
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
705
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
0
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : str , a : str ) -> bool: """simple docstring""" lowercase_ : Union[str, Any] = get_failure_array(a ) # 2) Step through text searching for pattern lowercase_ : Dict = 0, 0 # index into text, pattern while i < len(a ): if pattern[j] == text[i]: if j == (len(a ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowercase_ : Optional[Any] = failure[j - 1] continue i += 1 return False def _UpperCAmelCase ( a : str ) -> list[int]: """simple docstring""" lowercase_ : int = [0] lowercase_ : List[Any] = 0 lowercase_ : Union[str, Any] = 1 while j < len(a ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowercase_ : Dict = failure[i - 1] continue j += 1 failure.append(a ) return failure if __name__ == "__main__": # Test 1) A: Optional[int] = "abc1abc12" A: Optional[int] = "alskfjaldsabc1abc1abc12k23adsfabcabc" A: List[Any] = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) A: List[Any] = "ABABX" A: List[Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) A: Union[str, Any] = "AAAB" A: Union[str, Any] = "ABAAAAAB" assert kmp(pattern, text) # Test 4) A: Optional[int] = "abcdabcy" A: Union[str, Any] = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) A: Tuple = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
706
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A: Optional[Any] = logging.get_logger(__name__) A: List[str] = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] A: Dict = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" lowercase_ : int = torch.load(a , map_location='cpu' ) return sd def _UpperCAmelCase ( a : List[Any] , a : Tuple , a : Tuple=rename_keys_prefix ) -> List[str]: """simple docstring""" lowercase_ : Dict = OrderedDict() lowercase_ : Tuple = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase_ : Optional[Any] = key for name_pair in rename_keys_prefix: lowercase_ : Optional[Any] = new_key.replace(name_pair[0] , name_pair[1] ) lowercase_ : int = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase_ : List[Any] = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def _UpperCAmelCase ( a : Optional[Any] , a : Any ) -> Any: """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: lowercase_ : Any = 'pretraining' if "vcr" in checkpoint_path: lowercase_ : Dict = {'visual_embedding_dim': 5_1_2} elif "vqa_advanced" in checkpoint_path: lowercase_ : Tuple = {'visual_embedding_dim': 2_0_4_8} elif "vqa" in checkpoint_path: lowercase_ : List[Any] = {'visual_embedding_dim': 2_0_4_8} elif "nlvr" in checkpoint_path: lowercase_ : Optional[int] = {'visual_embedding_dim': 1_0_2_4} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: lowercase_ : Tuple = {'visual_embedding_dim': 5_1_2} lowercase_ : List[Any] = 'multichoice' elif "vqa_advanced" in checkpoint_path: lowercase_ : Tuple = {'visual_embedding_dim': 2_0_4_8} lowercase_ : str = 'vqa_advanced' elif "vqa" in checkpoint_path: lowercase_ : List[str] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9} lowercase_ : Optional[Any] = 'vqa' elif "nlvr" in checkpoint_path: lowercase_ : int = { 'visual_embedding_dim': 1_0_2_4, 'num_labels': 2, } lowercase_ : List[Any] = 'nlvr' lowercase_ : Any = VisualBertConfig(**a ) # Load State Dict lowercase_ : Any = load_state_dict(a ) lowercase_ : Optional[Any] = get_new_dict(a , a ) if model_type == "pretraining": lowercase_ : Union[str, Any] = VisualBertForPreTraining(a ) elif model_type == "vqa": lowercase_ : int = VisualBertForQuestionAnswering(a ) elif model_type == "nlvr": lowercase_ : Union[str, Any] = VisualBertForVisualReasoning(a ) elif model_type == "multichoice": lowercase_ : List[Any] = VisualBertForMultipleChoice(a ) model.load_state_dict(a ) # Save Checkpoints Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) if __name__ == "__main__": A: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") A: Union[str, Any] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
707
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ShapEPipeline SCREAMING_SNAKE_CASE_ : List[Any] = ['prompt'] SCREAMING_SNAKE_CASE_ : Tuple = ['prompt'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE_ : int = False @property def snake_case__ ( self ) -> Dict: return 32 @property def snake_case__ ( self ) -> int: return 32 @property def snake_case__ ( self ) -> List[str]: return self.time_input_dim * 4 @property def snake_case__ ( self ) -> str: return 8 @property def snake_case__ ( self ) -> Tuple: lowercase_ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def snake_case__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowercase_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_lowercase ) @property def snake_case__ ( self ) -> Any: torch.manual_seed(0 ) lowercase_ : Union[str, Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } lowercase_ : Union[str, Any] = PriorTransformer(**_lowercase ) return model @property def snake_case__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase_ : List[str] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } lowercase_ : Dict = ShapERenderer(**_lowercase ) return model def snake_case__ ( self ) -> Tuple: lowercase_ : Optional[int] = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_text_encoder lowercase_ : Optional[int] = self.dummy_tokenizer lowercase_ : List[Any] = self.dummy_renderer lowercase_ : Any = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=_lowercase , clip_sample=_lowercase , clip_sample_range=1.0 , ) lowercase_ : str = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def snake_case__ ( self , _lowercase , _lowercase=0 ) -> Tuple: if str(_lowercase ).startswith('mps' ): lowercase_ : Union[str, Any] = torch.manual_seed(_lowercase ) else: lowercase_ : int = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase_ : Union[str, Any] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def snake_case__ ( self ) -> Dict: lowercase_ : Optional[Any] = 'cpu' lowercase_ : List[Any] = self.get_dummy_components() lowercase_ : Optional[Any] = self.pipeline_class(**_lowercase ) lowercase_ : List[str] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase_ : Dict = pipe(**self.get_dummy_inputs(_lowercase ) ) lowercase_ : Dict = output.images[0] lowercase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase_ : int = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self ) -> Union[str, Any]: lowercase_ : str = torch_device == 'cpu' lowercase_ : str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowercase , relax_max_difference=_lowercase , ) def snake_case__ ( self ) -> Optional[Any]: lowercase_ : int = self.get_dummy_components() lowercase_ : Any = self.pipeline_class(**_lowercase ) lowercase_ : Optional[int] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase_ : List[Any] = 1 lowercase_ : int = 2 lowercase_ : Union[str, Any] = self.get_dummy_inputs(_lowercase ) for key in inputs.keys(): if key in self.batch_params: lowercase_ : List[Any] = batch_size * [inputs[key]] lowercase_ : Tuple = pipe(**_lowercase , num_images_per_prompt=_lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> Union[str, Any]: lowercase_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) lowercase_ : int = ShapEPipeline.from_pretrained('openai/shap-e' ) lowercase_ : str = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) lowercase_ : Union[str, Any] = pipe( 'a shark' , generator=_lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
708
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule A: Dict = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys A: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=64 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , _lowercase=2 , _lowercase=2 , _lowercase=2 , _lowercase=2 , _lowercase=4 , _lowercase=1 , ) -> Dict: lowercase_ : Tuple = parent lowercase_ : Any = batch_size lowercase_ : Dict = seq_length lowercase_ : int = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Tuple = use_token_type_ids lowercase_ : List[Any] = use_labels lowercase_ : List[Any] = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Tuple = intermediate_size lowercase_ : str = hidden_act lowercase_ : str = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : List[str] = max_position_embeddings lowercase_ : Any = type_vocab_size lowercase_ : str = type_sequence_label_size lowercase_ : Optional[Any] = initializer_range lowercase_ : List[str] = num_labels lowercase_ : Dict = num_choices lowercase_ : Union[str, Any] = scope lowercase_ : Any = q_groups lowercase_ : Dict = k_groups lowercase_ : Optional[int] = v_groups lowercase_ : str = post_attention_groups lowercase_ : Union[str, Any] = intermediate_groups lowercase_ : Any = output_groups def lowerCamelCase__ ( self ) -> Dict: lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Dict = None lowercase_ : int = None lowercase_ : List[str] = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ) -> Union[str, Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: lowercase_ : Tuple = SqueezeBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = model(_lowercase , _lowercase ) lowercase_ : Tuple = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: lowercase_ : Dict = SqueezeBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Optional[Any] = SqueezeBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: lowercase_ : Tuple = self.num_labels lowercase_ : Any = SqueezeBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : str = self.num_labels lowercase_ : Any = SqueezeBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : Any = self.num_choices lowercase_ : Any = SqueezeBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Dict = model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : str = self.prepare_config_and_inputs() (lowercase_) : Optional[int] = config_and_inputs lowercase_ : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE_ : List[str] = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = False def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Tuple = SqueezeBertModelTester(self ) lowercase_ : Optional[int] = ConfigTester(self , config_class=_lowercase , dim=37 ) def lowerCamelCase__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> int: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_lowercase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_lowercase ) @slow def lowerCamelCase__ ( self ) -> Any: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = SqueezeBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_sentencepiece @require_tokenizers @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) lowercase_ : Union[str, Any] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) lowercase_ : Optional[int] = model(_lowercase )[0] lowercase_ : str = torch.Size((1, 3) ) self.assertEqual(output.shape , _lowercase ) lowercase_ : str = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-4 ) )
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A: List[Any] = logging.get_logger(__name__) A: List[Any] = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class __magic_name__ : """simple docstring""" def __init__( self , _lowercase=None , **_lowercase ) -> int: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) lowercase_ : Optional[Any] = model lowercase_ : str = kwargs.get('model_save_dir' , _lowercase ) lowercase_ : Union[str, Any] = kwargs.get('latest_model_name' , _lowercase ) def __call__( self , **_lowercase ) -> Optional[Any]: lowercase_ : str = {k: np.array(_lowercase ) for k, v in kwargs.items()} return self.model.run(_lowercase , _lowercase ) @staticmethod def lowerCamelCase__ ( _lowercase , _lowercase=None , _lowercase=None ) -> Union[str, Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) lowercase_ : Optional[int] = 'CPUExecutionProvider' return ort.InferenceSession(_lowercase , providers=[provider] , sess_options=_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None , **_lowercase ) -> Dict: lowercase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowercase_ : Any = self.model_save_dir.joinpath(self.latest_model_name ) lowercase_ : Dict = Path(_lowercase ).joinpath(_lowercase ) try: shutil.copyfile(_lowercase , _lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowercase_ : Optional[Any] = self.model_save_dir.joinpath(_lowercase ) if src_path.exists(): lowercase_ : Optional[int] = Path(_lowercase ).joinpath(_lowercase ) try: shutil.copyfile(_lowercase , _lowercase ) except shutil.SameFileError: pass def lowerCamelCase__ ( self , _lowercase , **_lowercase , ) -> List[str]: if os.path.isfile(_lowercase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_lowercase , exist_ok=_lowercase ) # saving model weights/files self._save_pretrained(_lowercase , **_lowercase ) @classmethod def lowerCamelCase__ ( cls , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ) -> Any: lowercase_ : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowercase ): lowercase_ : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(_lowercase , _lowercase ) , provider=_lowercase , sess_options=_lowercase ) lowercase_ : str = Path(_lowercase ) # load model from hub else: # download model lowercase_ : Optional[Any] = hf_hub_download( repo_id=_lowercase , filename=_lowercase , use_auth_token=_lowercase , revision=_lowercase , cache_dir=_lowercase , force_download=_lowercase , ) lowercase_ : Union[str, Any] = Path(_lowercase ).parent lowercase_ : Optional[int] = Path(_lowercase ).name lowercase_ : List[Any] = OnnxRuntimeModel.load_model(_lowercase , provider=_lowercase , sess_options=_lowercase ) return cls(model=_lowercase , **_lowercase ) @classmethod def lowerCamelCase__ ( cls , _lowercase , _lowercase = True , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[int]: lowercase_ : List[str] = None if len(str(_lowercase ).split('@' ) ) == 2: lowercase_ : int = model_id.split('@' ) return cls._from_pretrained( model_id=_lowercase , revision=_lowercase , cache_dir=_lowercase , force_download=_lowercase , use_auth_token=_lowercase , **_lowercase , )
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
0
def _UpperCAmelCase ( a : Tuple ) -> str: """simple docstring""" lowercase_ : Tuple = len(a ) for i in range(length - 1 ): lowercase_ : str = i for k in range(i + 1 , a ): if collection[k] < collection[least]: lowercase_ : Optional[int] = k if least != i: lowercase_ : List[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": A: int = input("Enter numbers separated by a comma:\n").strip() A: int = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
712
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
0
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[int] = {"vocab_file": "vocab.txt"} A: Optional[int] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } A: Optional[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def _UpperCAmelCase ( a : Any ) -> List[str]: """simple docstring""" with open(a , 'r' ) as f: lowercase_ : int = f.read().splitlines() return [l.strip() for l in lines] class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[str] = ['input_ids', 'attention_mask'] def __init__( self , _lowercase , _lowercase="<unk>" , _lowercase="<cls>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase="<eos>" , **_lowercase , ) -> Any: super().__init__(**_lowercase ) lowercase_ : Dict = load_vocab_file(_lowercase ) lowercase_ : Tuple = dict(enumerate(self.all_tokens ) ) lowercase_ : Dict = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ : Optional[Any] = unk_token lowercase_ : Dict = cls_token lowercase_ : List[Any] = pad_token lowercase_ : List[Any] = mask_token lowercase_ : Dict = eos_token lowercase_ : Dict = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowerCamelCase__ ( self , _lowercase ) -> str: return self._id_to_token.get(_lowercase , self.unk_token ) def lowerCamelCase__ ( self , _lowercase ) -> int: return self._token_to_id.get(_lowercase , self._token_to_id.get(self.unk_token ) ) def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> List[Any]: return text.split() def lowerCamelCase__ ( self , _lowercase=False ) -> List[Any]: return len(self._id_to_token ) def lowerCamelCase__ ( self ) -> Any: return {token: i for i, token in enumerate(self.all_tokens )} def lowerCamelCase__ ( self , _lowercase ) -> int: return self._token_to_id.get(_lowercase , self._token_to_id.get(self.unk_token ) ) def lowerCamelCase__ ( self , _lowercase ) -> str: return self._id_to_token.get(_lowercase , self.unk_token ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : Union[str, Any] = [self.cls_token_id] lowercase_ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ : Optional[int] = [1] + ([0] * len(_lowercase )) + [1] if token_ids_a is not None: mask += [0] * len(_lowercase ) + [1] return mask def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Tuple: lowercase_ : Any = os.path.join(_lowercase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(_lowercase , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def lowerCamelCase__ ( self ) -> int: return self.get_vocab_size(with_added_tokens=_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = False ) -> int: return super()._add_tokens(_lowercase , special_tokens=_lowercase )
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A: Tuple = logging.get_logger(__name__) A: Optional[int] = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'transfo-xl' SCREAMING_SNAKE_CASE_ : int = ['mems'] SCREAMING_SNAKE_CASE_ : Tuple = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=26_7735 , _lowercase=[2_0000, 4_0000, 20_0000] , _lowercase=1024 , _lowercase=1024 , _lowercase=16 , _lowercase=64 , _lowercase=4096 , _lowercase=4 , _lowercase=False , _lowercase=18 , _lowercase=1600 , _lowercase=1000 , _lowercase=True , _lowercase=True , _lowercase=0 , _lowercase=-1 , _lowercase=True , _lowercase=0.1 , _lowercase=0.0 , _lowercase=True , _lowercase="normal" , _lowercase=0.01 , _lowercase=0.01 , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0 , **_lowercase , ) -> Optional[Any]: lowercase_ : Union[str, Any] = vocab_size lowercase_ : str = [] self.cutoffs.extend(_lowercase ) if proj_share_all_but_first: lowercase_ : List[Any] = [False] + [True] * len(self.cutoffs ) else: lowercase_ : List[str] = [False] + [False] * len(self.cutoffs ) lowercase_ : str = d_model lowercase_ : int = d_embed lowercase_ : Dict = d_head lowercase_ : Optional[int] = d_inner lowercase_ : int = div_val lowercase_ : List[str] = pre_lnorm lowercase_ : Any = n_layer lowercase_ : Dict = n_head lowercase_ : Tuple = mem_len lowercase_ : Optional[int] = same_length lowercase_ : List[str] = attn_type lowercase_ : Optional[int] = clamp_len lowercase_ : int = sample_softmax lowercase_ : List[str] = adaptive lowercase_ : List[str] = dropout lowercase_ : Union[str, Any] = dropatt lowercase_ : int = untie_r lowercase_ : Optional[Any] = init lowercase_ : Union[str, Any] = init_range lowercase_ : Any = proj_init_std lowercase_ : List[Any] = init_std lowercase_ : Optional[Any] = layer_norm_epsilon super().__init__(eos_token_id=_lowercase , **_lowercase ) @property def lowerCamelCase__ ( self ) -> int: # Message copied from Transformer-XL documentation logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def lowerCamelCase__ ( self , _lowercase ) -> Tuple: # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
716
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
0
'''simple docstring''' def _UpperCAmelCase ( a : str , a : int ) -> str: """simple docstring""" lowercase_ : list[list[str]] = [[] for _ in range(a )] lowercase_ : Dict = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(a ) <= key: return input_string for position, character in enumerate(a ): lowercase_ : Dict = position % (lowest * 2) # puts it in bounds lowercase_ : int = min(a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(a ) lowercase_ : List[str] = [''.join(a ) for row in temp_grid] lowercase_ : Optional[int] = ''.join(a ) return output_string def _UpperCAmelCase ( a : str , a : int ) -> str: """simple docstring""" lowercase_ : List[Any] = [] lowercase_ : List[str] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string lowercase_ : list[list[str]] = [[] for _ in range(a )] # generates template for position in range(len(a ) ): lowercase_ : Tuple = position % (lowest * 2) # puts it in bounds lowercase_ : str = min(a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) lowercase_ : List[Any] = 0 for row in temp_grid: # fills in the characters lowercase_ : List[str] = input_string[counter : counter + len(a )] grid.append(list(a ) ) counter += len(a ) lowercase_ : Tuple = '' # reads as zigzag for position in range(len(a ) ): lowercase_ : int = position % (lowest * 2) # puts it in bounds lowercase_ : str = min(a , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _UpperCAmelCase ( a : str ) -> dict[int, str]: """simple docstring""" lowercase_ : Tuple = {} for key_guess in range(1 , len(a ) ): # tries every key lowercase_ : str = decrypt(a , a ) return results if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Tuple = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Dict = 'tokenizer_file' SCREAMING_SNAKE_CASE_ : List[str] = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def lowerCamelCase__ ( self ) -> List[Any]: super().setUp() lowercase_ : int = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self , **_lowercase ) -> Any: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[int] = self.get_rust_tokenizer() lowercase_ : Any = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] lowercase_ : Dict = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] lowercase_ : List[Any] = tokenizer.batch_encode_plus(_lowercase )['input_ids'] self.assertListEqual(_lowercase , _lowercase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=6 ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase_ : int = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase_ : Dict = 'This is a simple input' lowercase_ : List[str] = ['This is a simple input 1', 'This is a simple input 2'] lowercase_ : List[Any] = ('This is a simple input', 'This is a pair') lowercase_ : List[str] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) lowercase_ : List[Any] = None # Hotfixing padding = None self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='max_length' ) # Simple input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='max_length' ) # Simple input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='max_length' , ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='max_length' ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='max_length' ) # Pair input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='max_length' , ) def lowerCamelCase__ ( self ) -> int: lowercase_ : List[str] = self.get_rust_tokenizer() lowercase_ : Dict = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_lowercase ) lowercase_ : Optional[Any] = next(iter(_lowercase ) )['premise'] # pick up one data lowercase_ : Any = list(sample_data.values() ) lowercase_ : int = list(map(tokenizer.encode , _lowercase ) ) lowercase_ : Optional[Any] = [tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) for x in output_tokens] self.assertListEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> int: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
0
A: Union[str, Any] = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 1_0: "a", 1_1: "b", 1_2: "c", 1_3: "d", 1_4: "e", 1_5: "f", } def _UpperCAmelCase ( a : float ) -> str: """simple docstring""" assert type(a ) in (int, float) and decimal == int(a ) lowercase_ : Tuple = int(a ) lowercase_ : int = '' lowercase_ : Tuple = False if decimal < 0: lowercase_ : Optional[Any] = True decimal *= -1 while decimal > 0: lowercase_ : Dict = divmod(a , 1_6 ) lowercase_ : Tuple = values[remainder] + hexadecimal lowercase_ : Optional[Any] = '0x' + hexadecimal if negative: lowercase_ : str = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
0
'''simple docstring''' import random def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" lowercase_ : List[str] = num - 1 lowercase_ : Dict = 0 while s % 2 == 0: lowercase_ : Union[str, Any] = s // 2 t += 1 for _ in range(5 ): lowercase_ : Any = random.randrange(2 , num - 1 ) lowercase_ : Any = pow(a , a , a ) if v != 1: lowercase_ : Any = 0 while v != (num - 1): if i == t - 1: return False else: lowercase_ : Union[str, Any] = i + 1 lowercase_ : Tuple = (v**2) % num return True def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" if num < 2: return False lowercase_ : List[str] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(a ) def _UpperCAmelCase ( a : int = 1_0_2_4 ) -> int: """simple docstring""" while True: lowercase_ : int = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(a ): return num if __name__ == "__main__": A: str = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=64 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> str: lowercase_ : str = parent lowercase_ : Optional[int] = batch_size lowercase_ : Tuple = seq_length lowercase_ : str = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Tuple = use_token_type_ids lowercase_ : int = use_labels lowercase_ : Tuple = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Any = embedding_size lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Optional[Any] = intermediate_size lowercase_ : Union[str, Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : str = type_vocab_size lowercase_ : int = type_sequence_label_size lowercase_ : List[str] = initializer_range lowercase_ : Union[str, Any] = num_labels lowercase_ : List[str] = num_choices lowercase_ : Dict = scope def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Union[str, Any] = None if self.use_input_mask: lowercase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : List[str] = None if self.use_token_type_ids: lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Tuple = None lowercase_ : Any = None lowercase_ : List[Any] = None if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ) -> List[str]: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = MegatronBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) lowercase_ : List[str] = model(_lowercase , token_type_ids=_lowercase ) lowercase_ : List[Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : Optional[Any] = MegatronBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : Dict = MegatronBertForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Optional[Any] = MegatronBertForNextSentencePrediction(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: lowercase_ : Tuple = MegatronBertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Union[str, Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , next_sentence_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : Optional[Any] = MegatronBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: lowercase_ : Dict = self.num_labels lowercase_ : Optional[int] = MegatronBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : str = self.num_labels lowercase_ : List[str] = MegatronBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[int] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = self.num_choices lowercase_ : Tuple = MegatronBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Tuple = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Optional[int] = self.prepare_config_and_inputs() ( lowercase_ ) : Tuple = config_and_inputs lowercase_ : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : List[str] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Any = True # test_resize_embeddings = False SCREAMING_SNAKE_CASE_ : List[str] = False def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> Dict: lowercase_ : Any = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): lowercase_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) lowercase_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Optional[Any] = MegatronBertModelTester(self ) lowercase_ : Optional[int] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def lowerCamelCase__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowercase ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowercase ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowercase ) def _UpperCAmelCase ( a : List[Any] ) -> List[Any]: """simple docstring""" return torch.tensor( a , dtype=torch.long , device=a , ) A: Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.' ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Optional[int] = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: lowercase_ : Optional[Any] = os.path.join(os.environ['MYDIR'] , _lowercase ) lowercase_ : List[str] = MegatronBertModel.from_pretrained(_lowercase ) model.to(_lowercase ) model.half() lowercase_ : Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowercase_ : List[Any] = model(_lowercase )[0] lowercase_ : int = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , _lowercase ) lowercase_ : Union[str, Any] = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): lowercase_ : int = output[0, ii, jj] lowercase_ : Any = expected[3 * ii + jj] lowercase_ : int = 'ii={} jj={} a={} b={}'.format(_lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(math.isclose(_lowercase , _lowercase , rel_tol=_lowercase , abs_tol=_lowercase ) , msg=_lowercase )
721
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A: List[Any] = logging.get_logger(__name__) A: Union[str, Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } A: Dict = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } A: Any = { "ctrl": 2_5_6, } A: int = { "Pregnancy": 1_6_8_6_2_9, "Christianity": 7_6_7_5, "Explain": 1_0_6_4_2_3, "Fitness": 6_3_4_4_0, "Saving": 6_3_1_6_3, "Ask": 2_7_1_7_1, "Ass": 9_5_9_8_5, "Joke": 1_6_3_5_0_9, "Questions": 4_5_6_2_2, "Thoughts": 4_9_6_0_5, "Retail": 5_2_3_4_2, "Feminism": 1_6_4_3_3_8, "Writing": 1_1_9_9_2, "Atheism": 1_9_2_2_6_3, "Netflix": 4_8_6_1_6, "Computing": 3_9_6_3_9, "Opinion": 4_3_2_1_3, "Alone": 4_4_9_6_7, "Funny": 5_8_9_1_7, "Gaming": 4_0_3_5_8, "Human": 4_0_8_8, "India": 1_3_3_1, "Joker": 7_7_1_3_8, "Diet": 3_6_2_0_6, "Legal": 1_1_8_5_9, "Norman": 4_9_3_9, "Tip": 7_2_6_8_9, "Weight": 5_2_3_4_3, "Movies": 4_6_2_7_3, "Running": 2_3_4_2_5, "Science": 2_0_9_0, "Horror": 3_7_7_9_3, "Confession": 6_0_5_7_2, "Finance": 1_2_2_5_0, "Politics": 1_6_3_6_0, "Scary": 1_9_1_9_8_5, "Support": 1_2_6_5_4, "Technologies": 3_2_5_1_6, "Teenage": 6_6_1_6_0, "Event": 3_2_7_6_9, "Learned": 6_7_4_6_0, "Notion": 1_8_2_7_7_0, "Wikipedia": 3_7_5_8_3, "Books": 6_6_6_5, "Extract": 7_6_0_5_0, "Confessions": 1_0_2_7_0_1, "Conspiracy": 7_5_9_3_2, "Links": 6_3_6_7_4, "Narcissus": 1_5_0_4_2_5, "Relationship": 5_4_7_6_6, "Relationships": 1_3_4_7_9_6, "Reviews": 4_1_6_7_1, "News": 4_2_5_6, "Translation": 2_6_8_2_0, "multilingual": 1_2_8_4_0_6, } def _UpperCAmelCase ( a : Tuple ) -> List[Any]: """simple docstring""" lowercase_ : Optional[Any] = set() lowercase_ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ : Union[str, Any] = char lowercase_ : List[str] = set(a ) return pairs class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = CONTROL_CODES def __init__( self , _lowercase , _lowercase , _lowercase="<unk>" , **_lowercase ) -> Any: super().__init__(unk_token=_lowercase , **_lowercase ) with open(_lowercase , encoding='utf-8' ) as vocab_handle: lowercase_ : List[Any] = json.load(_lowercase ) lowercase_ : int = {v: k for k, v in self.encoder.items()} with open(_lowercase , encoding='utf-8' ) as merges_handle: lowercase_ : List[Any] = merges_handle.read().split('\n' )[1:-1] lowercase_ : List[Any] = [tuple(merge.split() ) for merge in merges] lowercase_ : List[str] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) lowercase_ : Union[str, Any] = {} @property def lowerCamelCase__ ( self ) -> str: return len(self.encoder ) def lowerCamelCase__ ( self ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self , _lowercase ) -> str: if token in self.cache: return self.cache[token] lowercase_ : List[Any] = tuple(_lowercase ) lowercase_ : str = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowercase_ : Union[str, Any] = get_pairs(_lowercase ) if not pairs: return token while True: lowercase_ : Tuple = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowercase_ : Optional[Any] = bigram lowercase_ : Dict = [] lowercase_ : Tuple = 0 while i < len(_lowercase ): try: lowercase_ : List[Any] = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ : List[Any] = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ : List[str] = tuple(_lowercase ) lowercase_ : Tuple = new_word if len(_lowercase ) == 1: break else: lowercase_ : Optional[Any] = get_pairs(_lowercase ) lowercase_ : Union[str, Any] = '@@ '.join(_lowercase ) lowercase_ : int = word[:-4] lowercase_ : Any = word return word def lowerCamelCase__ ( self , _lowercase ) -> List[str]: lowercase_ : Optional[Any] = [] lowercase_ : Optional[int] = re.findall(r'\S+\n?' , _lowercase ) for token in words: split_tokens.extend(list(self.bpe(_lowercase ).split(' ' ) ) ) return split_tokens def lowerCamelCase__ ( self , _lowercase ) -> Dict: return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: return self.decoder.get(_lowercase , self.unk_token ) def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : Union[str, Any] = ' '.join(_lowercase ).replace('@@ ' , '' ).strip() return out_string def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : Optional[Any] = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : Optional[Any] = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + '\n' ) lowercase_ : Optional[Any] = 0 with open(_lowercase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowercase_ : Optional[Any] = token_index writer.write(' '.join(_lowercase ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowercase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(_lowercase , 'num_heads' ) ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=64 , _lowercase=3 , _lowercase=[16, 48, 96] , _lowercase=[1, 3, 6] , _lowercase=[1, 2, 10] , _lowercase=[7, 3, 3] , _lowercase=[4, 2, 2] , _lowercase=[2, 1, 1] , _lowercase=[2, 2, 2] , _lowercase=[False, False, True] , _lowercase=[0.0, 0.0, 0.0] , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=True , _lowercase=True , _lowercase=2 , ) -> Dict: lowercase_ : Any = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = image_size lowercase_ : Tuple = patch_sizes lowercase_ : int = patch_stride lowercase_ : Optional[Any] = patch_padding lowercase_ : Optional[int] = is_training lowercase_ : List[Any] = use_labels lowercase_ : List[str] = num_labels lowercase_ : Optional[int] = num_channels lowercase_ : Any = embed_dim lowercase_ : Optional[Any] = num_heads lowercase_ : str = stride_kv lowercase_ : List[Any] = depth lowercase_ : int = cls_token lowercase_ : Optional[Any] = attention_drop_rate lowercase_ : Optional[int] = initializer_range lowercase_ : int = layer_norm_eps def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : str = None if self.use_labels: lowercase_ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ) -> Optional[int]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : Optional[Any] = CvtModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model(_lowercase ) lowercase_ : Optional[Any] = (self.image_size, self.image_size) lowercase_ : Dict = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase_ : str = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase_ : List[str] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: lowercase_ : List[Any] = self.num_labels lowercase_ : Union[str, Any] = CvtForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[int] = self.prepare_config_and_inputs() lowercase_ : Dict = config_and_inputs lowercase_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = (CvtModel, CvtForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Dict = False def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[Any] = CvtModelTester(self ) lowercase_ : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def lowerCamelCase__ ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase__ ( self ) -> List[Any]: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase__ ( self ) -> Union[str, Any]: pass def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(_lowercase ) lowercase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : int = [*signature.parameters.keys()] lowercase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): lowercase_ : int = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): lowercase_ : List[str] = model(**self._prepare_for_class(_lowercase , _lowercase ) ) lowercase_ : Any = outputs.hidden_states lowercase_ : str = len(self.model_tester.depth ) self.assertEqual(len(_lowercase ) , _lowercase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Union[str, Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__ ( self ) -> Optional[Any]: pass @slow def lowerCamelCase__ ( self ) -> Union[str, Any]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[int] = CvtModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowercase ) lowercase_ : Tuple = self.default_image_processor lowercase_ : Any = prepare_img() lowercase_ : Union[str, Any] = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : Optional[Any] = model(**_lowercase ) # verify the logits lowercase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowercase ) lowercase_ : int = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) )
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A: Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = XLMProphetNetTokenizer SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Optional[int] = True def lowerCamelCase__ ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowercase_ : List[Any] = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Dict = '[PAD]' lowercase_ : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_lowercase ) , 1012 ) def lowerCamelCase__ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowerCamelCase__ ( self ) -> str: lowercase_ : List[str] = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) lowercase_ : str = tokenizer.tokenize('This is a test' ) self.assertListEqual(_lowercase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase_ : int = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def lowerCamelCase__ ( self ) -> Any: return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : List[Any] = 'Hello World!' lowercase_ : Any = [3_5389, 6672, 49, 2] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def lowerCamelCase__ ( self ) -> Any: # fmt: off lowercase_ : int = {'input_ids': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated A: int = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ A: int = "https://storage.googleapis.com/cvdf-datasets/mnist/" def _UpperCAmelCase ( a : List[Any] ) -> List[Any]: """simple docstring""" lowercase_ : str = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=a )[0] @deprecated(a , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: lowercase_ : List[str] = _readaa(a ) if magic != 2_0_5_1: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowercase_ : Optional[int] = _readaa(a ) lowercase_ : Tuple = _readaa(a ) lowercase_ : Optional[Any] = _readaa(a ) lowercase_ : Tuple = bytestream.read(rows * cols * num_images ) lowercase_ : Optional[int] = numpy.frombuffer(a , dtype=numpy.uinta ) lowercase_ : Optional[Any] = data.reshape(a , a , a , 1 ) return data @deprecated(a , 'Please use tf.one_hot on tensors.' ) def _UpperCAmelCase ( a : Optional[Any] , a : List[str] ) -> Any: """simple docstring""" lowercase_ : Dict = labels_dense.shape[0] lowercase_ : List[Any] = numpy.arange(a ) * num_classes lowercase_ : Union[str, Any] = numpy.zeros((num_labels, num_classes) ) lowercase_ : List[str] = 1 return labels_one_hot @deprecated(a , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( a : Optional[Any] , a : str=False , a : Tuple=1_0 ) -> str: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: lowercase_ : int = _readaa(a ) if magic != 2_0_4_9: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowercase_ : Tuple = _readaa(a ) lowercase_ : Union[str, Any] = bytestream.read(a ) lowercase_ : int = numpy.frombuffer(a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(a , a ) return labels class __magic_name__ : """simple docstring""" @deprecated( _lowercase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , _lowercase , _lowercase , _lowercase=False , _lowercase=False , _lowercase=dtypes.floataa , _lowercase=True , _lowercase=None , ) -> int: lowercase_ : Union[str, Any] = random_seed.get_seed(_lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowercase_ : Optional[int] = dtypes.as_dtype(_lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowercase_ : Optional[int] = 1_0000 lowercase_ : int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" lowercase_ : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowercase_ : Optional[Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowercase_ : Union[str, Any] = images.astype(numpy.floataa ) lowercase_ : str = numpy.multiply(_lowercase , 1.0 / 255.0 ) lowercase_ : Dict = images lowercase_ : Union[str, Any] = labels lowercase_ : int = 0 lowercase_ : List[Any] = 0 @property def lowerCamelCase__ ( self ) -> Tuple: return self._images @property def lowerCamelCase__ ( self ) -> Tuple: return self._labels @property def lowerCamelCase__ ( self ) -> Dict: return self._num_examples @property def lowerCamelCase__ ( self ) -> Optional[Any]: return self._epochs_completed def lowerCamelCase__ ( self , _lowercase , _lowercase=False , _lowercase=True ) -> int: if fake_data: lowercase_ : str = [1] * 784 lowercase_ : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_lowercase )], [fake_label for _ in range(_lowercase )], ) lowercase_ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowercase_ : List[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_lowercase ) lowercase_ : Optional[Any] = self.images[perma] lowercase_ : Optional[Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowercase_ : List[str] = self._num_examples - start lowercase_ : List[str] = self._images[start : self._num_examples] lowercase_ : Union[str, Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowercase_ : int = numpy.arange(self._num_examples ) numpy.random.shuffle(_lowercase ) lowercase_ : List[str] = self.images[perm] lowercase_ : Dict = self.labels[perm] # Start next epoch lowercase_ : List[str] = 0 lowercase_ : int = batch_size - rest_num_examples lowercase_ : Dict = self._index_in_epoch lowercase_ : Union[str, Any] = self._images[start:end] lowercase_ : List[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowercase_ : Any = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(a , 'Please write your own downloading logic.' ) def _UpperCAmelCase ( a : Dict , a : Any , a : str ) -> List[str]: """simple docstring""" if not gfile.Exists(a ): gfile.MakeDirs(a ) lowercase_ : Tuple = os.path.join(a , a ) if not gfile.Exists(a ): urllib.request.urlretrieve(a , a ) # noqa: S310 with gfile.GFile(a ) as f: lowercase_ : str = f.size() print('Successfully downloaded' , a , a , 'bytes.' ) return filepath @deprecated( a , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def _UpperCAmelCase ( a : Union[str, Any] , a : int=False , a : Dict=False , a : List[Any]=dtypes.floataa , a : List[str]=True , a : Tuple=5_0_0_0 , a : Any=None , a : Optional[int]=DEFAULT_SOURCE_URL , ) -> Optional[int]: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=a , one_hot=a , dtype=a , seed=a ) lowercase_ : Tuple = fake() lowercase_ : Tuple = fake() lowercase_ : Tuple = fake() return _Datasets(train=a , validation=a , test=a ) if not source_url: # empty string check lowercase_ : Dict = DEFAULT_SOURCE_URL lowercase_ : List[Any] = 'train-images-idx3-ubyte.gz' lowercase_ : str = 'train-labels-idx1-ubyte.gz' lowercase_ : Optional[int] = 't10k-images-idx3-ubyte.gz' lowercase_ : Optional[Any] = 't10k-labels-idx1-ubyte.gz' lowercase_ : Tuple = _maybe_download( a , a , source_url + train_images_file ) with gfile.Open(a , 'rb' ) as f: lowercase_ : Optional[int] = _extract_images(a ) lowercase_ : Optional[int] = _maybe_download( a , a , source_url + train_labels_file ) with gfile.Open(a , 'rb' ) as f: lowercase_ : Optional[Any] = _extract_labels(a , one_hot=a ) lowercase_ : Dict = _maybe_download( a , a , source_url + test_images_file ) with gfile.Open(a , 'rb' ) as f: lowercase_ : Optional[Any] = _extract_images(a ) lowercase_ : List[str] = _maybe_download( a , a , source_url + test_labels_file ) with gfile.Open(a , 'rb' ) as f: lowercase_ : int = _extract_labels(a , one_hot=a ) if not 0 <= validation_size <= len(a ): lowercase_ : List[str] = ( 'Validation size should be between 0 and ' f"{len(a )}. Received: {validation_size}." ) raise ValueError(a ) lowercase_ : List[Any] = train_images[:validation_size] lowercase_ : List[str] = train_labels[:validation_size] lowercase_ : Any = train_images[validation_size:] lowercase_ : Optional[int] = train_labels[validation_size:] lowercase_ : Optional[int] = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowercase_ : Optional[int] = _DataSet(a , a , **a ) lowercase_ : List[Any] = _DataSet(a , a , **a ) lowercase_ : Optional[Any] = _DataSet(a , a , **a ) return _Datasets(train=a , validation=a , test=a )
703
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: Tuple = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'altclip_text_model' def __init__( self , _lowercase=25_0002 , _lowercase=1024 , _lowercase=24 , _lowercase=16 , _lowercase=4096 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=514 , _lowercase=1 , _lowercase=0.02 , _lowercase=0.02 , _lowercase=1E-0_5 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=768 , **_lowercase , ) -> str: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ : Tuple = vocab_size lowercase_ : str = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : List[str] = hidden_act lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : Union[str, Any] = type_vocab_size lowercase_ : Any = initializer_range lowercase_ : str = initializer_factor lowercase_ : Tuple = layer_norm_eps lowercase_ : Union[str, Any] = position_embedding_type lowercase_ : int = use_cache lowercase_ : List[Any] = project_dim class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 'altclip_vision_model' def __init__( self , _lowercase=768 , _lowercase=3072 , _lowercase=512 , _lowercase=12 , _lowercase=12 , _lowercase=3 , _lowercase=224 , _lowercase=32 , _lowercase="quick_gelu" , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1.0 , **_lowercase , ) -> Optional[int]: super().__init__(**_lowercase ) lowercase_ : List[str] = hidden_size lowercase_ : Any = intermediate_size lowercase_ : int = projection_dim lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = num_channels lowercase_ : Optional[Any] = patch_size lowercase_ : Optional[Any] = image_size lowercase_ : Tuple = initializer_range lowercase_ : List[str] = initializer_factor lowercase_ : Any = attention_dropout lowercase_ : str = layer_norm_eps lowercase_ : Tuple = hidden_act @classmethod def lowerCamelCase__ ( cls , _lowercase , **_lowercase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase ) lowercase_ : int = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": lowercase_ : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'altclip' SCREAMING_SNAKE_CASE_ : Any = True def __init__( self , _lowercase=None , _lowercase=None , _lowercase=768 , _lowercase=2.65_92 , **_lowercase ) -> int: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase_ : List[str] = kwargs.pop('text_config_dict' , _lowercase ) lowercase_ : Optional[Any] = kwargs.pop('vision_config_dict' , _lowercase ) super().__init__(**_lowercase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase_ : List[str] = {} # This is the complete result when using `text_config_dict`. lowercase_ : str = AltCLIPTextConfig(**_lowercase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase_ : int = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: lowercase_ : List[str] = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(_lowercase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowercase_ : Dict = {} # This is the complete result when using `vision_config_dict`. lowercase_ : Optional[Any] = AltCLIPVisionConfig(**_lowercase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase_ : List[str] = { str(_lowercase ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase_ : Union[str, Any] = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: lowercase_ : Any = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(_lowercase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowercase_ : List[Any] = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: lowercase_ : Optional[Any] = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) lowercase_ : int = AltCLIPTextConfig(**_lowercase ) lowercase_ : Any = AltCLIPVisionConfig(**_lowercase ) lowercase_ : Union[str, Any] = projection_dim lowercase_ : List[Any] = logit_scale_init_value lowercase_ : str = 1.0 @classmethod def lowerCamelCase__ ( cls , _lowercase , _lowercase , **_lowercase ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase_ : Union[str, Any] = self.text_config.to_dict() lowercase_ : int = self.vision_config.to_dict() lowercase_ : Optional[int] = self.__class__.model_type return output
704
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A: int = logging.getLogger(__name__) @dataclass class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.0, metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) SCREAMING_SNAKE_CASE_ : bool = field(default=UpperCAmelCase_, metadata={'help': 'Whether to SortishSamler or not.'} ) SCREAMING_SNAKE_CASE_ : bool = field( default=UpperCAmelCase_, metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) SCREAMING_SNAKE_CASE_ : bool = field(default=UpperCAmelCase_, metadata={'help': 'whether to use adafactor'} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=UpperCAmelCase_, metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=UpperCAmelCase_, metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field(default=UpperCAmelCase_, metadata={'help': 'Dropout probability. Goes into model.config.'} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=UpperCAmelCase_, metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default='linear', metadata={'help': f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""}, )
705
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate A: Tuple = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) A: Any = [] A: Dict = [] A: Optional[Any] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} A: str = [ { "type": "header", "text": { "type": "plain_text", "text": f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", "emoji": True, }, } ] A: Optional[int] = 0 for log in Path().glob("*.log"): A: Dict = 0 with open(log, "r") as f: for line in f: A: str = json.loads(line) if line.get("nodeid", "") != "": A: List[Any] = line["nodeid"] if line.get("duration", None) is not None: A: Dict = f"""{line['duration']:.4f}""" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) A: Tuple = [] log.unlink() A: Dict = "" A: Tuple = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" A: Union[str, Any] = [] A: str = {} for test in failed_tests: A: List[str] = test[0].split("::") A: Any = data[0].split("/")[-1] if data[0] not in filesafailed: A: List[str] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) A: List[str] = [test[0] for test in failed_table] A: Optional[Any] = list(set(files)) # Count number of instances in failed_tests A: Tuple = [] for file in individual_files: table.append([file, len(filesafailed[file])]) A: Optional[Any] = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: A: Tuple = "Too many failed tests, please see the full report in the Action results." A: Optional[int] = len(err) + 1_0 A: str = message[: 3_0_0_0 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: A: List[Any] = "No failed tests! 🤗" print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient A: List[str] = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": A: List[Any] = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) A: Optional[Any] = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) A: List[str] = { "type": "context", "elements": [ { "type": "plain_text", "text": f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) A: Dict = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) A: int = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name A: List[Any] = "" for i, row in enumerate(test_failures): if row[0] != test_class: A: str = row[0] else: A: Any = "" A: str = { "type": "section", "text": { "type": "mrkdwn", "text": f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
706
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=3 , _lowercase=32 , _lowercase=3 , _lowercase=10 , _lowercase=[8, 16, 32, 64] , _lowercase=[1, 1, 2, 1] , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=3 , _lowercase=None , _lowercase=["stage2", "stage3", "stage4"] , _lowercase=[2, 3, 4] , _lowercase=1 , ) -> str: lowercase_ : List[Any] = parent lowercase_ : str = batch_size lowercase_ : Optional[int] = image_size lowercase_ : Union[str, Any] = num_channels lowercase_ : Any = embeddings_size lowercase_ : List[Any] = hidden_sizes lowercase_ : str = depths lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_labels lowercase_ : Tuple = hidden_act lowercase_ : Optional[Any] = num_labels lowercase_ : Union[str, Any] = scope lowercase_ : Union[str, Any] = len(_lowercase ) lowercase_ : str = out_features lowercase_ : Optional[Any] = out_indices lowercase_ : List[Any] = num_groups def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[str] = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ) -> Any: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : List[str] = BitModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = model(_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Any = self.num_labels lowercase_ : List[Any] = BitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: lowercase_ : int = BitBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase_ : int = None lowercase_ : int = BitBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[Any] = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : Optional[Any] = config_and_inputs lowercase_ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : str = False def lowerCamelCase__ ( self ) -> str: lowercase_ : List[Any] = BitModelTester(self ) lowercase_ : Optional[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def lowerCamelCase__ ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ) -> List[Any]: return @unittest.skip(reason='Bit does not output attentions' ) def lowerCamelCase__ ( self ) -> str: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> Any: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def lowerCamelCase__ ( self ) -> Any: pass def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(_lowercase ) lowercase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(config=_lowercase ) for name, module in model.named_modules(): if isinstance(_lowercase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def lowerCamelCase__ ( self ) -> str: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): lowercase_ : int = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): lowercase_ : Optional[Any] = model(**self._prepare_for_class(_lowercase , _lowercase ) ) lowercase_ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : Dict = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase_ : Dict = layer_type lowercase_ : Optional[int] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Union[str, Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def lowerCamelCase__ ( self ) -> Tuple: pass def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def lowerCamelCase__ ( self ) -> Dict: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[Any] = BitModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( ) -> str: """simple docstring""" lowercase_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ) -> Any: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowercase ) lowercase_ : Optional[int] = self.default_image_processor lowercase_ : List[Any] = prepare_img() lowercase_ : List[Any] = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : Union[str, Any] = model(**_lowercase ) # verify the logits lowercase_ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowercase ) lowercase_ : Dict = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) ) @require_torch class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = (BitBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = BitConfig SCREAMING_SNAKE_CASE_ : Optional[Any] = False def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : str = BitModelTester(self )
707
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor A: List[Any] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> None: warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
708
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = (KDPMaDiscreteScheduler,) SCREAMING_SNAKE_CASE_ : Dict = 1_0 def lowerCamelCase__ ( self , **_lowercase ) -> List[Any]: lowercase_ : str = { 'num_train_timesteps': 1100, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_lowercase ) return config def lowerCamelCase__ ( self ) -> Dict: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def lowerCamelCase__ ( self ) -> int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def lowerCamelCase__ ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = self.scheduler_classes[0] lowercase_ : int = self.get_scheduler_config(prediction_type='v_prediction' ) lowercase_ : Union[str, Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ : Optional[int] = self.dummy_model() lowercase_ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ : Union[str, Any] = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : Optional[int] = scheduler.scale_model_input(_lowercase , _lowercase ) lowercase_ : Tuple = model(_lowercase , _lowercase ) lowercase_ : Any = scheduler.step(_lowercase , _lowercase , _lowercase ) lowercase_ : str = output.prev_sample lowercase_ : Optional[Any] = torch.sum(torch.abs(_lowercase ) ) lowercase_ : List[Any] = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def lowerCamelCase__ ( self ) -> Optional[Any]: if torch_device == "mps": return lowercase_ : str = self.scheduler_classes[0] lowercase_ : Tuple = self.get_scheduler_config() lowercase_ : Tuple = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ : Optional[int] = self.dummy_model() lowercase_ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ : str = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : Dict = scheduler.scale_model_input(_lowercase , _lowercase ) lowercase_ : Union[str, Any] = model(_lowercase , _lowercase ) lowercase_ : List[Any] = scheduler.step(_lowercase , _lowercase , _lowercase ) lowercase_ : List[Any] = output.prev_sample lowercase_ : Union[str, Any] = torch.sum(torch.abs(_lowercase ) ) lowercase_ : str = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def lowerCamelCase__ ( self ) -> Dict: if torch_device == "mps": return lowercase_ : str = self.scheduler_classes[0] lowercase_ : Dict = self.get_scheduler_config() lowercase_ : Optional[int] = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) lowercase_ : Dict = self.dummy_model() lowercase_ : List[Any] = self.dummy_sample_deter.to(_lowercase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase_ : Tuple = scheduler.scale_model_input(_lowercase , _lowercase ) lowercase_ : Union[str, Any] = model(_lowercase , _lowercase ) lowercase_ : Dict = scheduler.step(_lowercase , _lowercase , _lowercase ) lowercase_ : Union[str, Any] = output.prev_sample lowercase_ : Any = torch.sum(torch.abs(_lowercase ) ) lowercase_ : Optional[Any] = torch.mean(torch.abs(_lowercase ) ) if str(_lowercase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
709
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __a: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A: int = pytest.mark.integration A: List[Any] = {"comet"} A: Dict = importlib.util.find_spec("fairseq") is not None A: Dict = {"code_eval"} A: str = os.name == "nt" A: Optional[int] = {"bertscore", "frugalscore", "perplexity"} A: Optional[Any] = importlib.util.find_spec("transformers") is not None def _UpperCAmelCase ( a : Tuple ) -> Tuple: """simple docstring""" @wraps(a ) def wrapper(self : Optional[Any] , a : Any ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , a ) return wrapper def _UpperCAmelCase ( a : int ) -> Dict: """simple docstring""" @wraps(a ) def wrapper(self : Dict , a : List[Any] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , a ) return wrapper def _UpperCAmelCase ( a : Any ) -> Tuple: """simple docstring""" @wraps(a ) def wrapper(self : Optional[int] , a : str ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , a ) return wrapper def _UpperCAmelCase ( ) -> List[str]: """simple docstring""" lowercase_ : Union[str, Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) @local class __magic_name__ ( parameterized.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : Tuple = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = '[...]' lowercase_ : int = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _lowercase ) ).module_path ) lowercase_ : int = datasets.load.import_main_class(metric_module.__name__ , dataset=_lowercase ) # check parameters lowercase_ : str = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_lowercase , metric_module.__name__ ): with self.use_local_metrics(): try: lowercase_ : Optional[Any] = doctest.testmod(_lowercase , verbose=_lowercase , raise_on_error=_lowercase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCamelCase__ ( self , _lowercase ) -> Any: lowercase_ : List[str] = '[...]' lowercase_ : Dict = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _lowercase ) ).module_path ) # run doctest with self.use_local_metrics(): lowercase_ : Optional[int] = doctest.testmod(_lowercase , verbose=_lowercase , raise_on_error=_lowercase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Tuple: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_lowercase ): yield else: yield @contextmanager def lowerCamelCase__ ( self ) -> int: def load_local_metric(_lowercase , *_lowercase , **_lowercase ): return load_metric(os.path.join('metrics' , _lowercase ) , *_lowercase , **_lowercase ) with patch('datasets.load_metric' ) as mock_load_metric: lowercase_ : Dict = load_local_metric yield @classmethod def lowerCamelCase__ ( cls , _lowercase ) -> Dict: def wrapper(_lowercase ): lowercase_ : Optional[int] = contextmanager(_lowercase ) lowercase_ : int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def _UpperCAmelCase ( a : Dict ) -> Any: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Dict: assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: lowercase_ : Dict = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def _UpperCAmelCase ( a : Union[str, Any] ) -> Tuple: """simple docstring""" import torch def bert_cos_score_idf(a : Any , a : List[str] , *a : Tuple , **a : int ): return torch.tensor([[1.0, 1.0, 1.0]] * len(a ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: lowercase_ : int = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def _UpperCAmelCase ( a : Dict ) -> Any: """simple docstring""" def load_from_checkpoint(a : Any ): class __magic_name__ : """simple docstring""" def lowerCamelCase__ ( self , _lowercase , *_lowercase , **_lowercase ) -> int: assert len(_lowercase ) == 2 lowercase_ : Dict = [0.19, 0.92] return scores, sum(_lowercase ) / len(_lowercase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: lowercase_ : List[Any] = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: lowercase_ : List[str] = load_from_checkpoint yield def _UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" lowercase_ : List[str] = load_metric(os.path.join('metrics' , 'seqeval' ) ) lowercase_ : List[str] = 'ERROR' lowercase_ : str = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(a , match=re.escape(a ) ): metric.compute(predictions=[] , references=[] , scheme=a )
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
0
def _UpperCAmelCase ( a : Optional[Any] , a : Any , a : List[str]=False ) -> str: """simple docstring""" if isinstance(a , a ) and isinstance(a , a ): lowercase_ : Dict = len(set_a.intersection(a ) ) if alternative_union: lowercase_ : Union[str, Any] = len(a ) + len(a ) else: lowercase_ : Optional[Any] = len(set_a.union(a ) ) return intersection / union if isinstance(a , (list, tuple) ) and isinstance(a , (list, tuple) ): lowercase_ : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: lowercase_ : Dict = len(a ) + len(a ) return len(a ) / union else: lowercase_ : int = set_a + [element for element in set_b if element not in set_a] return len(a ) / len(a ) return len(a ) / len(a ) return None if __name__ == "__main__": A: List[Any] = {"a", "b", "c", "d", "e"} A: Optional[Any] = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
712
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
0
class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _UpperCAmelCase ( a : float ) -> float: """simple docstring""" if num <= 0: raise ValueError('math domain error' ) return quad(a , 0 , a , args=(a) )[0] def _UpperCAmelCase ( a : float , a : float ) -> float: """simple docstring""" return math.pow(a , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask A: str = logging.getLogger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase=-1 ) -> Tuple: # in NER datasets, the last column is usually reserved for NER label lowercase_ : Optional[int] = label_idx def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[InputExample]: if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = mode.value lowercase_ : Tuple = os.path.join(_lowercase , f"{mode}.txt" ) lowercase_ : Any = 1 lowercase_ : str = [] with open(_lowercase , encoding='utf-8' ) as f: lowercase_ : List[str] = [] lowercase_ : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_lowercase , labels=_lowercase ) ) guid_index += 1 lowercase_ : Optional[Any] = [] lowercase_ : int = [] else: lowercase_ : Dict = line.split(' ' ) words.append(splits[0] ) if len(_lowercase ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_lowercase , labels=_lowercase ) ) return examples def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[str]: lowercase_ : Tuple = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(_lowercase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase_ : str = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(_lowercase ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def lowerCamelCase__ ( self , _lowercase ) -> List[str]: if path: with open(_lowercase , 'r' ) as f: lowercase_ : Union[str, Any] = f.read().splitlines() if "O" not in labels: lowercase_ : Tuple = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self ) -> Tuple: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def lowerCamelCase__ ( self , _lowercase ) -> List[str]: if path: with open(_lowercase , 'r' ) as f: lowercase_ : Tuple = f.read().splitlines() if "O" not in labels: lowercase_ : str = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[InputExample]: if isinstance(_lowercase , _lowercase ): lowercase_ : Optional[int] = mode.value lowercase_ : Any = os.path.join(_lowercase , f"{mode}.txt" ) lowercase_ : Dict = 1 lowercase_ : Dict = [] with open(_lowercase , encoding='utf-8' ) as f: for sentence in parse_incr(_lowercase ): lowercase_ : List[Any] = [] lowercase_ : Union[str, Any] = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(_lowercase ) == len(_lowercase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_lowercase , labels=_lowercase ) ) guid_index += 1 return examples def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : Optional[int] = 0 for sentence in parse_incr(_lowercase ): lowercase_ : Optional[int] = preds_list[example_id] lowercase_ : Tuple = '' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(_lowercase ) example_id += 1 def lowerCamelCase__ ( self , _lowercase ) -> List[str]: if path: with open(_lowercase , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
716
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
0
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : str = None lowercase_ : Dict = None lowercase_ : str = graph self._normalize_graph(_lowercase , _lowercase ) lowercase_ : List[str] = len(_lowercase ) lowercase_ : Optional[Any] = None def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[str]: if sources is int: lowercase_ : Tuple = [sources] if sinks is int: lowercase_ : Union[str, Any] = [sinks] if len(_lowercase ) == 0 or len(_lowercase ) == 0: return lowercase_ : Dict = sources[0] lowercase_ : Union[str, Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowercase ) > 1 or len(_lowercase ) > 1: lowercase_ : str = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase_ : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase_ : List[Any] = max_input_flow lowercase_ : List[Any] = 0 lowercase_ : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase_ : str = max_input_flow lowercase_ : str = size - 1 def lowerCamelCase__ ( self ) -> int: if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = algorithm(self ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Dict: lowercase_ : List[Any] = flow_network lowercase_ : Tuple = flow_network.verticesCount lowercase_ : str = flow_network.sourceIndex lowercase_ : Optional[int] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase_ : Dict = flow_network.graph lowercase_ : Optional[int] = False def lowerCamelCase__ ( self ) -> Optional[int]: if not self.executed: self._algorithm() lowercase_ : str = True def lowerCamelCase__ ( self ) -> Any: pass class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase ) -> int: super().__init__(_lowercase ) # use this to save your result lowercase_ : List[Any] = -1 def lowerCamelCase__ ( self ) -> Dict: if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase ) -> List[Any]: super().__init__(_lowercase ) lowercase_ : Union[str, Any] = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase_ : Any = [0] * self.verticies_count lowercase_ : List[Any] = [0] * self.verticies_count def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase_ : str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase_ : List[Any] = 0 while i < len(_lowercase ): lowercase_ : Any = vertices_list[i] lowercase_ : Optional[Any] = self.heights[vertex_index] self.process_vertex(_lowercase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowercase ) ) lowercase_ : Union[str, Any] = 0 else: i += 1 lowercase_ : str = sum(self.preflow[self.source_index] ) def lowerCamelCase__ ( self , _lowercase ) -> List[Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowercase , _lowercase ) self.relabel(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[Any]: lowercase_ : List[str] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : Union[str, Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase_ : Tuple = self.heights[to_index] if min_height is not None: lowercase_ : Union[str, Any] = min_height + 1 if __name__ == "__main__": A: str = [0] A: Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A: str = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A: Any = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A: Tuple = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
717
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
0
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _UpperCAmelCase ( a : Tuple , a : Union[str, Any]=1_0 ) -> List[str]: """simple docstring""" lowercase_ : int = [] for _ in range(a ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _UpperCAmelCase ( a : List[Any] , a : Union[str, Any]=1_0 ) -> Optional[int]: """simple docstring""" lowercase_ : Optional[Any] = [] for step in range(a ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Dict = os.path.join(a , 'schedule.bin' ) torch.save(scheduler.state_dict() , a ) lowercase_ : Tuple = torch.load(a ) scheduler.load_state_dict(a ) return lrs @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : int = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowercase ) lowercase_ : List[Any] = torch.tensor([0.4, 0.2, -0.5] ) lowercase_ : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase_ : int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): lowercase_ : Optional[Any] = criterion(_lowercase , _lowercase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowercase ) lowercase_ : Optional[Any] = torch.tensor([0.4, 0.2, -0.5] ) lowercase_ : Dict = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase_ : Optional[Any] = Adafactor( params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_lowercase , weight_decay=0.0 , relative_step=_lowercase , scale_parameter=_lowercase , warmup_init=_lowercase , ) for _ in range(1000 ): lowercase_ : str = criterion(_lowercase , _lowercase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Linear(5_0, 5_0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE_ : Optional[Any] = AdamW(m.parameters(), lr=10.0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE_ : Optional[Any] = 1_0 def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Union[str, Any]: self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase , msg=_lowercase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : int = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowercase_ : Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): lowercase_ : Union[str, Any] = data lowercase_ : Tuple = scheduler_func(self.optimizer , **_lowercase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowercase_ : Union[str, Any] = unwrap_schedule(_lowercase , self.num_steps ) self.assertListAlmostEqual( _lowercase , _lowercase , tol=1E-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) lowercase_ : int = scheduler_func(self.optimizer , **_lowercase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_lowercase ) # wrap to test picklability of the schedule lowercase_ : List[Any] = unwrap_and_save_reload_schedule(_lowercase , self.num_steps ) self.assertListEqual(_lowercase , _lowercase , msg=f"failed for {scheduler_func} in save and reload" ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> int: lowercase_ : Dict = fn def __call__( self , *_lowercase , **_lowercase ) -> List[str]: return self.fn(*_lowercase , **_lowercase ) @classmethod def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase__ ( self ) -> Any: lowercase_ : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowercase_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowercase_ : Optional[Any] = 'xvjiarui/stable-diffusion-2-inpainting' lowercase_ : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(_lowercase , safety_checker=_lowercase ) lowercase_ : Optional[int] = 'Face of a yellow cat, high resolution, sitting on a park bench' lowercase_ : List[Any] = jax.random.PRNGKey(0 ) lowercase_ : Union[str, Any] = 50 lowercase_ : Any = jax.device_count() lowercase_ : int = num_samples * [prompt] lowercase_ : Tuple = num_samples * [init_image] lowercase_ : Optional[Any] = num_samples * [mask_image] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(_lowercase , _lowercase , _lowercase ) # shard inputs and rng lowercase_ : Union[str, Any] = replicate(_lowercase ) lowercase_ : Dict = jax.random.split(_lowercase , jax.device_count() ) lowercase_ : Optional[int] = shard(_lowercase ) lowercase_ : Optional[Any] = shard(_lowercase ) lowercase_ : Any = shard(_lowercase ) lowercase_ : str = pipeline( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ) lowercase_ : Tuple = output.images.reshape(_lowercase , 512 , 512 , 3 ) lowercase_ : Dict = images[0, 253:256, 253:256, -1] lowercase_ : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase_ : Optional[Any] = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
0
'''simple docstring''' def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") A: List[Any] = int(input("Enter number: ").strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'speech_to_text' SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowercase=1_0000 , _lowercase=12 , _lowercase=2048 , _lowercase=4 , _lowercase=6 , _lowercase=2048 , _lowercase=4 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=256 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=2 , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=6000 , _lowercase=1024 , _lowercase=2 , _lowercase=(5, 5) , _lowercase=1024 , _lowercase=80 , _lowercase=1 , **_lowercase , ) -> List[str]: lowercase_ : List[Any] = vocab_size lowercase_ : str = d_model lowercase_ : Optional[Any] = encoder_ffn_dim lowercase_ : Tuple = encoder_layers lowercase_ : int = encoder_attention_heads lowercase_ : List[str] = decoder_ffn_dim lowercase_ : List[str] = decoder_layers lowercase_ : List[str] = decoder_attention_heads lowercase_ : List[Any] = dropout lowercase_ : List[Any] = attention_dropout lowercase_ : List[str] = activation_dropout lowercase_ : List[Any] = activation_function lowercase_ : Any = init_std lowercase_ : List[Any] = encoder_layerdrop lowercase_ : Dict = decoder_layerdrop lowercase_ : str = use_cache lowercase_ : List[Any] = encoder_layers lowercase_ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : Any = max_source_positions lowercase_ : str = max_target_positions lowercase_ : Dict = num_conv_layers lowercase_ : List[str] = list(_lowercase ) lowercase_ : Optional[int] = conv_channels lowercase_ : Optional[int] = input_feat_per_channel lowercase_ : int = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
721
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] SCREAMING_SNAKE_CASE_ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE_ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE_ : ClassVar[Any] = None SCREAMING_SNAKE_CASE_ : str = field(default='Translation', init=UpperCAmelCase_, repr=UpperCAmelCase_ ) def __call__( self ) -> str: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowerCamelCase__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[List] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE_ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE_ : ClassVar[Any] = None SCREAMING_SNAKE_CASE_ : str = field(default='TranslationVariableLanguages', init=UpperCAmelCase_, repr=UpperCAmelCase_ ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None lowercase_ : str = len(self.languages ) if self.languages else None def __call__( self ) -> Union[str, Any]: return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : Union[str, Any] = set(self.languages ) if self.languages and set(_lowercase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(_lowercase ) - lang_set ) )}) are not in valid set ({', '.join(_lowercase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase_ : List[Any] = [] for lang, text in translation_dict.items(): if isinstance(_lowercase , _lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase_ : int = zip(*sorted(_lowercase ) ) return {"language": languages, "translation": translations} def lowerCamelCase__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' A: Any = 8.314_462 # Unit - J mol-1 K-1 def _UpperCAmelCase ( a : float , a : float , a : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _UpperCAmelCase ( a : float , a : float , a : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A: Any = None A: Optional[int] = logging.get_logger(__name__) A: List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A: Dict = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } A: Tuple = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off A: Optional[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ : str = MBartTokenizer SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : List[int] = [] def __init__( self , _lowercase=None , _lowercase=None , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=None , _lowercase=None , _lowercase=None , **_lowercase , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Union[str, Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) lowercase_ : List[Any] = vocab_file lowercase_ : List[Any] = False if not self.vocab_file else True lowercase_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowercase_ : Tuple = { lang_code: self.convert_tokens_to_ids(_lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase_ : List[Any] = src_lang if src_lang is not None else 'en_XX' lowercase_ : int = self.convert_tokens_to_ids(self._src_lang ) lowercase_ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase__ ( self ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : Union[str, Any] = [self.sep_token_id] lowercase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase_ : int = src_lang lowercase_ : Any = self(_lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , **_lowercase ) lowercase_ : Optional[int] = self.convert_tokens_to_ids(_lowercase ) lowercase_ : Optional[int] = tgt_lang_id return inputs def lowerCamelCase__ ( self , _lowercase , _lowercase = "en_XX" , _lowercase = None , _lowercase = "ro_RO" , **_lowercase , ) -> BatchEncoding: lowercase_ : Optional[int] = src_lang lowercase_ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self ) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : str = self.convert_tokens_to_ids(_lowercase ) lowercase_ : Any = [] lowercase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] lowercase_ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : Union[str, Any] = self.convert_tokens_to_ids(_lowercase ) lowercase_ : List[str] = [] lowercase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] lowercase_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return lowercase_ : Tuple = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
703
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
0
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(a ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
704
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' def _UpperCAmelCase ( a : int = 1_0_0 ) -> int: """simple docstring""" lowercase_ : Dict = n * (n + 1) * (2 * n + 1) / 6 lowercase_ : Tuple = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
705
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. A: Optional[Any] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. A: int = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. A: int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def _UpperCAmelCase ( a : str , a : str ) -> tuple[str, float]: """simple docstring""" lowercase_ : List[str] = len([g for position, g in enumerate(a ) if g == main_target[position]] ) return (item, float(a )) def _UpperCAmelCase ( a : str , a : str ) -> tuple[str, str]: """simple docstring""" lowercase_ : Dict = random.randint(0 , len(a ) - 1 ) lowercase_ : List[Any] = parent_a[:random_slice] + parent_a[random_slice:] lowercase_ : List[str] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _UpperCAmelCase ( a : str , a : list[str] ) -> str: """simple docstring""" lowercase_ : int = list(a ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowercase_ : List[str] = random.choice(a ) return "".join(a ) def _UpperCAmelCase ( a : tuple[str, float] , a : list[tuple[str, float]] , a : list[str] , ) -> list[str]: """simple docstring""" lowercase_ : int = [] # Generate more children proportionally to the fitness score. lowercase_ : List[str] = int(parent_a[1] * 1_0_0 ) + 1 lowercase_ : Optional[Any] = 1_0 if child_n >= 1_0 else child_n for _ in range(a ): lowercase_ : List[str] = population_score[random.randint(0 , a )][0] lowercase_ : str = crossover(parent_a[0] , a ) # Append new string to the population list. pop.append(mutate(a , a ) ) pop.append(mutate(a , a ) ) return pop def _UpperCAmelCase ( a : str , a : list[str] , a : bool = True ) -> tuple[int, int, str]: """simple docstring""" # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowercase_ : str = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(a ) # Verify that the target contains no genes besides the ones inside genes variable. lowercase_ : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowercase_ : Any = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(a ) # Generate random starting population. lowercase_ : Tuple = [] for _ in range(a ): population.append(''.join([random.choice(a ) for i in range(len(a ) )] ) ) # Just some logs to know what the algorithms is doing. lowercase_ : Optional[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(a ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowercase_ : Optional[Any] = [evaluate(a , a ) for item in population] # Check if there is a matching evolution. lowercase_ : int = sorted(a , key=lambda a : x[1] , reverse=a ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowercase_ : int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(a ) # Normalize population score to be between 0 and 1. lowercase_ : Union[str, Any] = [ (item, score / len(a )) for item, score in population_score ] # This is selection for i in range(a ): population.extend(select(population_score[int(a )] , a , a ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(a ) > N_POPULATION: break if __name__ == "__main__": A: Dict = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) A: Any = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) A: Union[str, Any] = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
706
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging A: int = logging.get_logger(__name__) A: Optional[int] = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'trajectory_transformer' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=100 , _lowercase=5 , _lowercase=1 , _lowercase=1 , _lowercase=249 , _lowercase=6 , _lowercase=17 , _lowercase=25 , _lowercase=4 , _lowercase=4 , _lowercase=128 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.00_06 , _lowercase=512 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=1 , _lowercase=True , _lowercase=1 , _lowercase=5_0256 , _lowercase=5_0256 , **_lowercase , ) -> Tuple: lowercase_ : Optional[Any] = vocab_size lowercase_ : Union[str, Any] = action_weight lowercase_ : Any = reward_weight lowercase_ : str = value_weight lowercase_ : List[str] = max_position_embeddings lowercase_ : Dict = block_size lowercase_ : Union[str, Any] = action_dim lowercase_ : Tuple = observation_dim lowercase_ : Any = transition_dim lowercase_ : Optional[int] = learning_rate lowercase_ : Optional[int] = n_layer lowercase_ : Tuple = n_head lowercase_ : int = n_embd lowercase_ : List[str] = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : Tuple = resid_pdrop lowercase_ : List[str] = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : int = kaiming_initializer_range lowercase_ : int = use_cache super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
707
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = IFPipeline SCREAMING_SNAKE_CASE_ : Any = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} SCREAMING_SNAKE_CASE_ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : Dict = PipelineTesterMixin.required_optional_params - {'latents'} def snake_case__ ( self ) -> Any: return self._get_dummy_components() def snake_case__ ( self , _lowercase , _lowercase=0 ) -> Optional[int]: if str(_lowercase ).startswith('mps' ): lowercase_ : List[Any] = torch.manual_seed(_lowercase ) else: lowercase_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> str: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def snake_case__ ( self ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case__ ( self ) -> Union[str, Any]: self._test_save_load_local() def snake_case__ ( self ) -> Tuple: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> int: # if lowercase_ : List[Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) lowercase_ : Dict = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=_lowercase , tokenizer=_lowercase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) lowercase_ : Union[str, Any] = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase_ : str = None lowercase_ : Optional[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_lowercase , _lowercase , _lowercase , _lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase_ : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) lowercase_ : str = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_lowercase , _lowercase , _lowercase , _lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase_ : int = IFInpaintingPipeline(**pipe_a.components ) lowercase_ : Optional[int] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_lowercase , _lowercase , _lowercase , _lowercase ) def snake_case__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() lowercase_ : int = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : Any = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type='np' , ) lowercase_ : int = output.images[0] assert image.shape == (64, 64, 3) lowercase_ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowercase_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(_lowercase , _lowercase ) # pipeline 2 _start_torch_memory_measurement() lowercase_ : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) lowercase_ : Any = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='np' , ) lowercase_ : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) lowercase_ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_lowercase , _lowercase ) def snake_case__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: # pipeline 1 _start_torch_memory_measurement() lowercase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) lowercase_ : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : List[Any] = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type='np' , ) lowercase_ : Any = output.images[0] assert image.shape == (64, 64, 3) lowercase_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase_ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(_lowercase , _lowercase ) # pipeline 2 _start_torch_memory_measurement() lowercase_ : Any = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_lowercase ) lowercase_ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) lowercase_ : Any = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='np' , ) lowercase_ : Dict = output.images[0] assert image.shape == (256, 256, 3) lowercase_ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_lowercase , _lowercase ) def snake_case__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() lowercase_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) lowercase_ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_lowercase ) lowercase_ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : List[str] = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type='np' , ) lowercase_ : List[str] = output.images[0] assert image.shape == (64, 64, 3) lowercase_ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase_ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(_lowercase , _lowercase ) # pipeline 2 _start_torch_memory_measurement() lowercase_ : Any = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) lowercase_ : str = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_lowercase ) lowercase_ : Tuple = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_lowercase ) lowercase_ : str = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='np' , ) lowercase_ : Any = output.images[0] assert image.shape == (256, 256, 3) lowercase_ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_lowercase , _lowercase ) def _UpperCAmelCase ( ) -> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
708
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
0
'''simple docstring''' from manim import * class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = Rectangle(height=0.5 , width=0.5 ) lowercase_ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase_ : List[Any] = Rectangle(height=0.25 , width=0.25 ) lowercase_ : List[Any] = [mem.copy() for i in range(6 )] lowercase_ : Union[str, Any] = [mem.copy() for i in range(6 )] lowercase_ : int = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Optional[int] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Any = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : str = Text('CPU' , font_size=24 ) lowercase_ : Optional[Any] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) lowercase_ : Optional[Any] = [mem.copy() for i in range(4 )] lowercase_ : Dict = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : List[Any] = Text('GPU' , font_size=24 ) lowercase_ : Tuple = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.move_to([-1, -1, 0] ) self.add(_lowercase ) lowercase_ : Union[str, Any] = [mem.copy() for i in range(6 )] lowercase_ : Dict = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Dict = Text('Model' , font_size=24 ) lowercase_ : List[str] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.add(_lowercase ) lowercase_ : Optional[Any] = [] lowercase_ : Optional[int] = [] for i, rect in enumerate(_lowercase ): lowercase_ : List[Any] = fill.copy().set_fill(_lowercase , opacity=0.8 ) target.move_to(_lowercase ) model_arr.append(_lowercase ) lowercase_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowercase ) self.add(*_lowercase , *_lowercase ) lowercase_ : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowercase_ : str = [meta_mem.copy() for i in range(6 )] lowercase_ : int = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : List[str] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Optional[Any] = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Union[str, Any] = Text('Disk' , font_size=24 ) lowercase_ : Union[str, Any] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowercase , _lowercase ) lowercase_ : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase_ : str = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowercase , _lowercase ) lowercase_ : Tuple = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowercase ) lowercase_ : Optional[int] = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase ) ) lowercase_ : Union[str, Any] = Square(0.3 ) input.set_fill(_lowercase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowercase , buff=0.5 ) self.play(Write(_lowercase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowercase , buff=0.02 ) self.play(MoveToTarget(_lowercase ) ) self.play(FadeOut(_lowercase ) ) lowercase_ : int = Arrow(start=_lowercase , end=_lowercase , color=_lowercase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowercase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowercase_ : Any = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=3 ) ) lowercase_ : str = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_lowercase ) , Circumscribe(model_arr[0] , color=_lowercase , **_lowercase ) , Circumscribe(model_cpu_arr[0] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowercase_ : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowercase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowercase_ : Any = AnimationGroup( FadeOut(_lowercase , run_time=0.5 ) , MoveToTarget(_lowercase , run_time=0.5 ) , FadeIn(_lowercase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowercase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowercase_ : Optional[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **_lowercase ) , Circumscribe(cpu_left_col_base[i] , **_lowercase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , Circumscribe(model_arr[i + 1] , color=_lowercase , **_lowercase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowercase , **_lowercase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowercase_ : Any = a_c lowercase_ : Any = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowercase ) , FadeOut(_lowercase , run_time=0.5 ) , ) lowercase_ : Dict = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=3 ) , MoveToTarget(_lowercase ) ) self.wait()
709
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Tuple = logging.get_logger(__name__) __a: List[Any] = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 'vit_mae' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , _lowercase=512 , _lowercase=8 , _lowercase=2048 , _lowercase=0.75 , _lowercase=False , **_lowercase , ) -> Tuple: super().__init__(**_lowercase ) lowercase_ : str = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : int = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : Union[str, Any] = layer_norm_eps lowercase_ : Optional[int] = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : int = qkv_bias lowercase_ : Optional[Any] = decoder_num_attention_heads lowercase_ : Any = decoder_hidden_size lowercase_ : Optional[int] = decoder_num_hidden_layers lowercase_ : Optional[int] = decoder_intermediate_size lowercase_ : Optional[Any] = mask_ratio lowercase_ : Optional[int] = norm_pix_loss
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A: Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Tuple = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A: Tuple = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = ["ConvNextFeatureExtractor"] A: Dict = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A: Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
712
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: str = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A: List[Any] = logging.get_logger(__name__) A: Optional[int] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } A: int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } A: List[str] = {"facebook/blenderbot-3B": 1_2_8} class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ : Optional[Any] = BlenderbotTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , _lowercase=True , **_lowercase , ) -> Optional[Any]: super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase , **_lowercase , ) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _lowercase ) != add_prefix_space: lowercase_ : str = getattr(_lowercase , pre_tok_state.pop('type' ) ) lowercase_ : str = add_prefix_space lowercase_ : Any = pre_tok_class(**_lowercase ) lowercase_ : List[Any] = add_prefix_space lowercase_ : Optional[int] = 'post_processor' lowercase_ : Optional[int] = getattr(self.backend_tokenizer , _lowercase , _lowercase ) if tokenizer_component_instance: lowercase_ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : Dict = tuple(state['sep'] ) if "cls" in state: lowercase_ : Dict = tuple(state['cls'] ) lowercase_ : Optional[int] = False if state.get('add_prefix_space' , _lowercase ) != add_prefix_space: lowercase_ : int = add_prefix_space lowercase_ : str = True if state.get('trim_offsets' , _lowercase ) != trim_offsets: lowercase_ : Dict = trim_offsets lowercase_ : Any = True if changes_to_apply: lowercase_ : Optional[Any] = getattr(_lowercase , state.pop('type' ) ) lowercase_ : Tuple = component_class(**_lowercase ) setattr(self.backend_tokenizer , _lowercase , _lowercase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase__ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase__ ( self , _lowercase ) -> str: lowercase_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else value lowercase_ : Any = value def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> BatchEncoding: lowercase_ : Tuple = kwargs.get('is_split_into_words' , _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowercase , **_lowercase ) def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> BatchEncoding: lowercase_ : str = kwargs.get('is_split_into_words' , _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: lowercase_ : List[str] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : Tuple = [self.sep_token_id] lowercase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Dict: return token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self , _lowercase ) -> List[int]: lowercase_ : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_lowercase ) lowercase_ : Optional[Any] = ' '.join(_lowercase ) lowercase_ : Optional[int] = self.encode(_lowercase ) if len(_lowercase ) > self.model_max_length: lowercase_ : Dict = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
from collections.abc import Sequence def _UpperCAmelCase ( a : Sequence[float] , a : bool = False ) -> float: """simple docstring""" if not arr: return 0 lowercase_ : Dict = 0 if allow_empty_subarrays else float('-inf' ) lowercase_ : str = 0.0 for num in arr: lowercase_ : int = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ : Tuple = max(a , a ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A: int = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
716
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
0
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() A: Union[str, Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : str , a : str ) -> Union[str, Any]: """simple docstring""" lowercase_ : Dict = RobertaPreLayerNormConfig.from_pretrained( a , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict lowercase_ : Dict = torch.load(hf_hub_download(repo_id=a , filename='pytorch_model.bin' ) ) lowercase_ : Union[str, Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): lowercase_ : Optional[Any] = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue lowercase_ : int = tensor_value lowercase_ : str = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=a , config=a , state_dict=a ) model.save_pretrained(a ) # convert tokenizer lowercase_ : List[Any] = AutoTokenizer.from_pretrained(a ) tokenizer.save_pretrained(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A: str = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
717
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'bert-generation' def __init__( self , _lowercase=5_0358 , _lowercase=1024 , _lowercase=24 , _lowercase=16 , _lowercase=4096 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=0 , _lowercase=2 , _lowercase=1 , _lowercase="absolute" , _lowercase=True , **_lowercase , ) -> Optional[Any]: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ : Any = vocab_size lowercase_ : List[Any] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Dict = hidden_act lowercase_ : Union[str, Any] = intermediate_size lowercase_ : str = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : str = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Dict = position_embedding_type lowercase_ : int = use_cache
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A: Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING A: Tuple = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'upernet' def __init__( self , _lowercase=None , _lowercase=512 , _lowercase=0.02 , _lowercase=[1, 2, 3, 6] , _lowercase=True , _lowercase=0.4 , _lowercase=384 , _lowercase=256 , _lowercase=1 , _lowercase=False , _lowercase=255 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase_ : str = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(_lowercase , _lowercase ): lowercase_ : Any = backbone_config.get('model_type' ) lowercase_ : List[str] = CONFIG_MAPPING[backbone_model_type] lowercase_ : Tuple = config_class.from_dict(_lowercase ) lowercase_ : int = backbone_config lowercase_ : Union[str, Any] = hidden_size lowercase_ : str = initializer_range lowercase_ : Optional[Any] = pool_scales lowercase_ : Union[str, Any] = use_auxiliary_head lowercase_ : Dict = auxiliary_loss_weight lowercase_ : List[str] = auxiliary_in_channels lowercase_ : List[str] = auxiliary_channels lowercase_ : Optional[Any] = auxiliary_num_convs lowercase_ : Tuple = auxiliary_concat_input lowercase_ : Any = loss_ignore_index def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = copy.deepcopy(self.__dict__ ) lowercase_ : int = self.backbone_config.to_dict() lowercase_ : Union[str, Any] = self.__class__.model_type return output
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
'''simple docstring''' from collections import deque class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> None: lowercase_ : List[str] = process_name # process name lowercase_ : Dict = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase_ : int = arrival_time lowercase_ : List[str] = burst_time # remaining burst time lowercase_ : Union[str, Any] = 0 # total time of the process wait in ready queue lowercase_ : List[str] = 0 # time from arrival time to completion time class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , ) -> None: # total number of mlfq's queues lowercase_ : Any = number_of_queues # time slice of queues that round robin algorithm applied lowercase_ : Union[str, Any] = time_slices # unfinished process is in this ready_queue lowercase_ : int = queue # current time lowercase_ : int = current_time # finished process is in this sequence queue lowercase_ : deque[Process] = deque() def lowerCamelCase__ ( self ) -> list[str]: lowercase_ : List[Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase__ ( self , _lowercase ) -> list[int]: lowercase_ : Dict = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase__ ( self , _lowercase ) -> list[int]: lowercase_ : Optional[int] = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase__ ( self , _lowercase ) -> list[int]: lowercase_ : int = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase__ ( self , _lowercase ) -> list[int]: return [q.burst_time for q in queue] def lowerCamelCase__ ( self , _lowercase ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase__ ( self , _lowercase ) -> deque[Process]: lowercase_ : deque[Process] = deque() # sequence deque of finished process while len(_lowercase ) != 0: lowercase_ : Any = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase_ : Any = 0 # set the process's turnaround time because it is finished lowercase_ : Optional[Any] = self.current_time - cp.arrival_time # set the completion time lowercase_ : Dict = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> tuple[deque[Process], deque[Process]]: lowercase_ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): lowercase_ : Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase_ : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase_ : Optional[Any] = 0 # set the finish time lowercase_ : List[str] = self.current_time # update the process' turnaround time because it is finished lowercase_ : str = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase__ ( self ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowercase_ : int = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A: List[str] = Process("P1", 0, 5_3) A: List[str] = Process("P2", 0, 1_7) A: Dict = Process("P3", 0, 6_8) A: Union[str, Any] = Process("P4", 0, 2_4) A: Any = 3 A: Optional[Any] = [1_7, 2_5] A: List[str] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A: Optional[Any] = Process("P1", 0, 5_3) A: Tuple = Process("P2", 0, 1_7) A: Optional[int] = Process("P3", 0, 6_8) A: int = Process("P4", 0, 2_4) A: int = 3 A: Any = [1_7, 2_5] A: Any = deque([Pa, Pa, Pa, Pa]) A: Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A: List[str] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
721
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = (PNDMScheduler,) SCREAMING_SNAKE_CASE_ : Tuple = (('num_inference_steps', 5_0),) def lowerCamelCase__ ( self , **_lowercase ) -> Union[str, Any]: lowercase_ : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_lowercase ) return config def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> Dict: lowercase_ : Optional[int] = dict(self.forward_default_kwargs ) lowercase_ : Any = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : Any = self.dummy_sample lowercase_ : List[Any] = 0.1 * sample lowercase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase_ : Optional[int] = self.get_scheduler_config(**_lowercase ) lowercase_ : Union[str, Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : Optional[Any] = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : Dict = dummy_past_residuals[:] lowercase_ : List[Any] = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Optional[Any] = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase_ : Any = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Dict = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self ) -> Optional[int]: pass def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> Tuple: lowercase_ : Optional[Any] = dict(self.forward_default_kwargs ) lowercase_ : Union[str, Any] = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : Dict = self.dummy_sample lowercase_ : List[str] = 0.1 * sample lowercase_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase_ : int = self.get_scheduler_config() lowercase_ : List[Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) lowercase_ : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : Optional[Any] = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) lowercase_ : Optional[Any] = dummy_past_residuals[:] lowercase_ : List[Any] = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Optional[int] = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase_ : Any = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Any = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self , **_lowercase ) -> str: lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config(**_lowercase ) lowercase_ : Any = scheduler_class(**_lowercase ) lowercase_ : Optional[Any] = 10 lowercase_ : int = self.dummy_model() lowercase_ : str = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase_ : Optional[int] = model(_lowercase , _lowercase ) lowercase_ : Dict = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase_ : Tuple = model(_lowercase , _lowercase ) lowercase_ : Any = scheduler.step_plms(_lowercase , _lowercase , _lowercase ).prev_sample return sample def lowerCamelCase__ ( self ) -> str: lowercase_ : int = dict(self.forward_default_kwargs ) lowercase_ : Optional[Any] = kwargs.pop('num_inference_steps' , _lowercase ) for scheduler_class in self.scheduler_classes: lowercase_ : Dict = self.get_scheduler_config() lowercase_ : Any = scheduler_class(**_lowercase ) lowercase_ : int = self.dummy_sample lowercase_ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , 'set_timesteps' ): scheduler.set_timesteps(_lowercase ) elif num_inference_steps is not None and not hasattr(_lowercase , 'set_timesteps' ): lowercase_ : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase_ : Optional[int] = dummy_past_residuals[:] lowercase_ : Any = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample lowercase_ : Optional[int] = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase_ : Optional[int] = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample lowercase_ : Any = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase__ ( self ) -> Optional[Any]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase ) lowercase_ : Optional[int] = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config(steps_offset=1 ) lowercase_ : Optional[Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowerCamelCase__ ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def lowerCamelCase__ ( self ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def lowerCamelCase__ ( self ) -> Any: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_lowercase ) def lowerCamelCase__ ( self ) -> Optional[int]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowercase_ : Optional[int] = 27 for scheduler_class in self.scheduler_classes: lowercase_ : Any = self.dummy_sample lowercase_ : List[Any] = 0.1 * sample lowercase_ : Optional[Any] = self.get_scheduler_config() lowercase_ : Dict = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase_ : int = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample def lowerCamelCase__ ( self ) -> Optional[Any]: with self.assertRaises(_lowercase ): lowercase_ : Any = self.scheduler_classes[0] lowercase_ : Optional[int] = self.get_scheduler_config() lowercase_ : Optional[int] = scheduler_class(**_lowercase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = self.full_loop() lowercase_ : Tuple = torch.sum(torch.abs(_lowercase ) ) lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Dict = self.full_loop(prediction_type='v_prediction' ) lowercase_ : List[str] = torch.sum(torch.abs(_lowercase ) ) lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def lowerCamelCase__ ( self ) -> int: # We specify different beta, so that the first alpha is 0.99 lowercase_ : List[str] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) lowercase_ : Tuple = torch.sum(torch.abs(_lowercase ) ) lowercase_ : List[str] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def lowerCamelCase__ ( self ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 lowercase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) lowercase_ : Optional[int] = torch.sum(torch.abs(_lowercase ) ) lowercase_ : List[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' import unittest import numpy as np def _UpperCAmelCase ( a : np.ndarray , a : np.ndarray , a : np.ndarray , a : np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" lowercase_ : str = np.shape(a ) lowercase_ : int = np.shape(a ) lowercase_ : Optional[int] = np.shape(a ) if shape_a[0] != shape_b[0]: lowercase_ : Any = ( 'Expected the same number of rows for A and B. ' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(a ) if shape_b[1] != shape_c[1]: lowercase_ : Dict = ( 'Expected the same number of columns for B and C. ' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(a ) lowercase_ : Dict = pseudo_inv if a_inv is None: try: lowercase_ : Optional[int] = np.linalg.inv(a ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> None: lowercase_ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Dict = np.array([[2, 1], [6, 3]] ) lowercase_ : Any = schur_complement(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[int] = np.block([[a, b], [b.T, c]] ) lowercase_ : str = np.linalg.det(_lowercase ) lowercase_ : Optional[int] = np.linalg.det(_lowercase ) lowercase_ : Tuple = np.linalg.det(_lowercase ) self.assertAlmostEqual(_lowercase , det_a * det_s ) def lowerCamelCase__ ( self ) -> None: lowercase_ : List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Optional[Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowercase ): schur_complement(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> None: lowercase_ : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Optional[int] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowercase ): schur_complement(_lowercase , _lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0