code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def _UpperCAmelCase ( a : Optional[int] = 1_0_0_0 ) -> Any: """simple docstring""" lowercase_ : Optional[int] = 3 lowercase_ : List[Any] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) A: Dict = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def _UpperCAmelCase ( a : List[Any] , a : List[str] ) -> Any: """simple docstring""" inspect_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase_ : str = path + '.py' assert script_name in os.listdir(_SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def _UpperCAmelCase ( a : Optional[Any] , a : Optional[int] ) -> Optional[Any]: """simple docstring""" inspect_metric(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase_ : Dict = path + '.py' assert script_name in os.listdir(_SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _UpperCAmelCase ( a : Dict , a : List[str] , a : List[str] ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[Any] = get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _UpperCAmelCase ( a : Optional[Any] , a : Union[str, Any] , a : Optional[int] ) -> Dict: """simple docstring""" with pytest.raises(_SCREAMING_SNAKE_CASE ): get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _UpperCAmelCase ( a : List[str] , a : str ) -> Dict: """simple docstring""" lowercase_ : List[str] = get_dataset_config_names(_SCREAMING_SNAKE_CASE ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _UpperCAmelCase ( a : List[Any] , a : List[Any] , a : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase_ : int = get_dataset_infos(_SCREAMING_SNAKE_CASE ) assert list(infos.keys() ) == expected_configs lowercase_ : Dict = expected_configs[0] assert expected_config in infos lowercase_ : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _UpperCAmelCase ( a : Dict , a : List[str] , a : int ) -> Dict: """simple docstring""" lowercase_ : Optional[int] = get_dataset_infos(_SCREAMING_SNAKE_CASE ) assert expected_config in infos lowercase_ : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _UpperCAmelCase ( a : List[Any] , a : Union[str, Any] , a : Optional[int] ) -> List[Any]: """simple docstring""" with pytest.raises(_SCREAMING_SNAKE_CASE ): get_dataset_split_names(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
'''simple docstring''' import os import sys import unittest A: List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A: str = os.path.join(git_repo_path, "src", "transformers") A: Union[str, Any] = "\n{0} = None\n" A: List[Any] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" A: Optional[int] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Optional[Any] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(A_ ) lowercase_ : List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(A_ , 'tokenizers' ) lowercase_ : List[str] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(A_ , 'tensorflow_text' ) lowercase_ : Optional[Any] = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(A_ , 'sentencepiece_and_tokenizers' ) lowercase_ : Any = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(A_ , 'sentencepiece_and_tensorflow_text' ) lowercase_ : Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(A_ , 'sentencepiece_and_tokenizers_and_vision' ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , A_ ) self.assertIn('tensorflow_text' , A_ ) self.assertIn('sentencepiece_and_tokenizers' , A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Optional[Any] = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(A_ , '\nCONSTANT = None\n' ) lowercase_ : str = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( A_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) lowercase_ : Optional[Any] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' lowercase_ : Optional[Any] = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(A_ , A_ ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' lowercase_ : Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , A_ )
703
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
0
'''simple docstring''' from __future__ import annotations from cmath import sqrt def _UpperCAmelCase ( a : Any , a : Any , a : Tuple ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) lowercase_ : Tuple = b * b - 4 * a * c lowercase_ : List[Any] = (-b + sqrt(_lowercase )) / (2 * a) lowercase_ : Dict = (-b - sqrt(_lowercase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _UpperCAmelCase ( ) -> List[Any]: """simple docstring""" lowercase_ : Optional[Any] = quadratic_roots(a=5 , b=6 , c=1 ) print(f"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
704
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github A: Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def _UpperCAmelCase ( ) -> Dict: """simple docstring""" lowercase_ : Optional[int] = Github(os.environ['GITHUB_TOKEN'] ) lowercase_ : str = g.get_repo('huggingface/diffusers' ) lowercase_ : Optional[int] = repo.get_issues(state='open' ) for issue in open_issues: lowercase_ : str = sorted(issue.get_comments() , key=lambda a : i.created_at , reverse=_A ) lowercase_ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
705
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
0
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self , _lowercase , _lowercase=13 , _lowercase=3 , _lowercase=True , _lowercase=True , _lowercase=0.1 , _lowercase=0.1 , _lowercase=224 , _lowercase=1000 , _lowercase=[3, 3, 6, 4] , _lowercase=[48, 56, 112, 220] , ) -> Dict: lowercase_ : Optional[Any] = parent lowercase_ : Tuple = batch_size lowercase_ : Union[str, Any] = num_channels lowercase_ : List[str] = is_training lowercase_ : Optional[Any] = use_labels lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : Optional[Any] = num_labels lowercase_ : Tuple = image_size lowercase_ : str = layer_depths lowercase_ : str = embed_dims def lowerCamelCase__ ( self ) -> Any: lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : str = None if self.use_labels: lowercase_ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=UpperCAmelCase_ , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : Dict = SwiftFormerModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase_ : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[str]: lowercase_ : Dict = self.num_labels lowercase_ : Union[str, Any] = SwiftFormerForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase_ : str = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase_ : Union[str, Any] = SwiftFormerForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: (lowercase_) : Tuple = self.prepare_config_and_inputs() lowercase_ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __lowerCamelCase, __lowerCamelCase, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : str = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Dict = False def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Union[str, Any] = SwiftFormerModelTester(self ) lowercase_ : Optional[int] = ConfigTester( self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> Optional[Any]: pass def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(UpperCAmelCase_ ) lowercase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(UpperCAmelCase_ ) lowercase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Optional[int] = [*signature.parameters.keys()] lowercase_ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase__ ( self ) -> List[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Dict = SwiftFormerModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def lowerCamelCase__ ( self ) -> Tuple: pass def lowerCamelCase__ ( self ) -> Any: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): lowercase_ : Optional[int] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): lowercase_ : Any = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase_ : List[Any] = outputs.hidden_states lowercase_ : Any = 8 self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(UpperCAmelCase_ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Optional[Any] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase__ ( self ) -> str: def _config_zero_init(_lowercase ): lowercase_ : Optional[Any] = copy.deepcopy(UpperCAmelCase_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(UpperCAmelCase_ , UpperCAmelCase_ , 1E-1_0 ) if isinstance(getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ): lowercase_ : Optional[int] = _config_zero_init(getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return configs_no_init lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Dict = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__ ( self ) -> Any: pass def _UpperCAmelCase ( ) -> Dict: """simple docstring""" lowercase_ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Union[str, Any] = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(UpperCAmelCase_ ) lowercase_ : Any = self.default_image_processor lowercase_ : Tuple = prepare_img() lowercase_ : Dict = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowercase_ : Optional[Any] = model(**UpperCAmelCase_ ) # verify the logits lowercase_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowercase_ : Tuple = torch.tensor([[-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
706
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( __A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE_ : str = 'LayoutLMv2ImageProcessor' SCREAMING_SNAKE_CASE_ : Dict = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self , _lowercase=None , _lowercase=None , **_lowercase ) -> Optional[int]: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowercase , ) lowercase_ : Any = kwargs.pop('feature_extractor' ) lowercase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_lowercase , _lowercase ) def __call__( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = True , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = 0 , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = True , _lowercase = None , **_lowercase , ) -> BatchEncoding: if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor lowercase_ : Tuple = self.image_processor(images=_lowercase , return_tensors=_lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_lowercase , _lowercase ): lowercase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase_ : List[str] = features['''words'''] lowercase_ : Optional[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) # add pixel values lowercase_ : List[str] = features.pop('pixel_values' ) if return_overflowing_tokens is True: lowercase_ : str = self.get_overflowing_images(_lowercase , encoded_inputs['overflow_to_sample_mapping'] ) lowercase_ : Dict = images return encoded_inputs def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> str: lowercase_ : str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f" {len(_lowercase )} and {len(_lowercase )}" ) return images_with_overflow def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> int: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> str: return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def lowerCamelCase__ ( self ) -> List[str]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCamelCase__ ( self ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowercase , ) return self.image_processor_class @property def lowerCamelCase__ ( self ) -> List[str]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowercase , ) return self.image_processor
707
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _UpperCAmelCase ( a : List[str] ) -> str: """simple docstring""" lowercase_ : List[Any] = [] for line in lines: lowercase_ : Tuple = re.sub(R'#.*' , '' , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) lowercase_ : Optional[int] = '\n'.join(__lowerCAmelCase ) # Make a hash from all this code lowercase_ : str = full_str.encode('utf-8' ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching A: Optional[Any] = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions A: List[str] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) A: Dict = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name A: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
708
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> List[Any]: lowercase_ : List[str] = 3 lowercase_ : Tuple = 250 lowercase_ : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) lowercase_ : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = self._get_tensors(5 ) lowercase_ : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : int = MaxLengthCriteria(max_length=10 ) lowercase_ : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowercase_ : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[Any] = self._get_tensors(5 ) lowercase_ : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self ) -> Dict: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowercase_ : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
709
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __a: Union[str, Any] = True except (ImportError, AttributeError): __a: Optional[Any] = object def _UpperCAmelCase ( *a : List[str] , **a : Optional[int] ) -> str: """simple docstring""" pass __a: Optional[int] = False __a: Tuple = logging.get_logger("transformers-cli/serving") def _UpperCAmelCase ( a : Namespace ) -> Union[str, Any]: """simple docstring""" lowercase_ : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_lowerCAmelCase , args.host , args.port , args.workers ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 4_2 class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 4_2 SCREAMING_SNAKE_CASE_ : str = 4_2 class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 4_2 class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 4_2 class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" @staticmethod def lowerCamelCase__ ( _lowercase ) -> Union[str, Any]: lowercase_ : int = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=__A , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=__A , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=__A , default=8888 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=__A , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=__A , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=__A , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=__A , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=__A , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=__A ) def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: lowercase_ : Tuple = pipeline lowercase_ : str = host lowercase_ : List[str] = port lowercase_ : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install \"transformers[serving]\".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f"Serving model over {host}:{port}" ) lowercase_ : Optional[int] = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=__A , response_class=__A , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=__A , response_class=__A , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=__A , response_class=__A , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=__A , response_class=__A , methods=['POST'] , ), ] , timeout=600 , ) def lowerCamelCase__ ( self ) -> Union[str, Any]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowerCamelCase__ ( self ) -> str: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowerCamelCase__ ( self , _lowercase = Body(__A , embed=__A ) , _lowercase = Body(__A , embed=__A ) ) -> List[Any]: try: lowercase_ : Tuple = self._pipeline.tokenizer.tokenize(__A ) if return_ids: lowercase_ : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(__A ) return ServeTokenizeResult(tokens=__A , tokens_ids=__A ) else: return ServeTokenizeResult(tokens=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(__A )} ) def lowerCamelCase__ ( self , _lowercase = Body(__A , embed=__A ) , _lowercase = Body(__A , embed=__A ) , _lowercase = Body(__A , embed=__A ) , ) -> Tuple: try: lowercase_ : List[str] = self._pipeline.tokenizer.decode(__A , __A , __A ) return ServeDeTokenizeResult(model='' , text=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(__A )} ) async def lowerCamelCase__ ( self , _lowercase=Body(__A , embed=__A ) ) -> str: # Check we don't have empty string if len(__A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model lowercase_ : Tuple = self._pipeline(__A ) return ServeForwardResult(output=__A ) except Exception as e: raise HTTPException(500 , {'error': str(__A )} )
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _UpperCAmelCase ( a : List[str] , a : Optional[int] , a : List[str] , a : Optional[Any] , a : List[str] ) -> Dict: """simple docstring""" # load base model lowercase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase_ : Union[str, Any] = load_file(__lowerCAmelCase ) lowercase_ : Optional[int] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase_ : List[Any] = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowercase_ : Dict = pipeline.text_encoder else: lowercase_ : List[Any] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowercase_ : Any = pipeline.unet # find the target layer lowercase_ : Optional[Any] = layer_infos.pop(0 ) while len(__lowerCAmelCase ) > -1: try: lowercase_ : str = curr_layer.__getattr__(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowercase_ : List[Any] = layer_infos.pop(0 ) elif len(__lowerCAmelCase ) == 0: break except Exception: if len(__lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase_ : int = layer_infos.pop(0 ) lowercase_ : Union[str, Any] = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(__lowerCAmelCase ) else: pair_keys.append(__lowerCAmelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase_ : List[str] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase_ : Optional[Any] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase_ : Optional[int] = state_dict[pair_keys[0]].to(torch.floataa ) lowercase_ : Any = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(__lowerCAmelCase ) return pipeline if __name__ == "__main__": A: Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") A: int = parser.parse_args() A: List[Any] = args.base_model_path A: Dict = args.checkpoint_path A: List[str] = args.dump_path A: List[Any] = args.lora_prefix_unet A: Optional[Any] = args.lora_prefix_text_encoder A: Optional[Any] = args.alpha A: Optional[int] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A: Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
0
import argparse import os import re A: Optional[Any] = "src/diffusers" # Pattern that looks at the indentation in a line. A: Optional[Any] = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. A: Optional[int] = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A: str = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. A: Dict = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A: str = re.compile(r"\[([^\]]+)\]") def _UpperCAmelCase ( a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : List[Any] = _re_indent.search(__UpperCAmelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( a : Any , a : Any="" , a : Dict=None , a : Tuple=None ) -> Optional[int]: """simple docstring""" lowercase_ : Any = 0 lowercase_ : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__UpperCAmelCase ): index += 1 lowercase_ : Dict = ['\n'.join(lines[:index] )] else: lowercase_ : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase_ : Optional[Any] = [lines[index]] index += 1 while index < len(__UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(__UpperCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__UpperCAmelCase ) ) if index < len(__UpperCAmelCase ) - 1: lowercase_ : Union[str, Any] = [lines[index + 1]] index += 1 else: lowercase_ : Union[str, Any] = [] else: blocks.append('\n'.join(__UpperCAmelCase ) ) lowercase_ : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__UpperCAmelCase ) > 0: blocks.append('\n'.join(__UpperCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__UpperCAmelCase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _UpperCAmelCase ( a : Tuple ) -> Any: """simple docstring""" def _inner(a : int ): return key(__UpperCAmelCase ).lower().replace('_' , '' ) return _inner def _UpperCAmelCase ( a : Optional[Any] , a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" def noop(a : Union[str, Any] ): return x if key is None: lowercase_ : List[str] = noop # Constants are all uppercase, they go first. lowercase_ : int = [obj for obj in objects if key(__UpperCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase_ : Any = [obj for obj in objects if key(__UpperCAmelCase )[0].isupper() and not key(__UpperCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. lowercase_ : Dict = [obj for obj in objects if not key(__UpperCAmelCase )[0].isupper()] lowercase_ : Any = ignore_underscore(__UpperCAmelCase ) return sorted(__UpperCAmelCase , key=__UpperCAmelCase ) + sorted(__UpperCAmelCase , key=__UpperCAmelCase ) + sorted(__UpperCAmelCase , key=__UpperCAmelCase ) def _UpperCAmelCase ( a : List[Any] ) -> int: """simple docstring""" def _replace(a : Optional[int] ): lowercase_ : Optional[int] = match.groups()[0] if "," not in imports: return f"[{imports}]" lowercase_ : List[Any] = [part.strip().replace('\"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ : Optional[int] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(__UpperCAmelCase )] ) + "]" lowercase_ : Dict = import_statement.split('\n' ) if len(__UpperCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase_ : Optional[Any] = 2 if lines[1].strip() == '[' else 1 lowercase_ : Any = [(i, _re_strip_line.search(__UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase_ : Tuple = sort_objects(__UpperCAmelCase , key=lambda a : x[1] ) lowercase_ : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__UpperCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase_ : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase_ : Dict = [part.strip().replace('\"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ : Optional[int] = keys[:-1] lowercase_ : List[Any] = get_indent(lines[1] ) + ', '.join([f"\"{k}\"" for k in sort_objects(__UpperCAmelCase )] ) return "\n".join(__UpperCAmelCase ) else: # Finally we have to deal with imports fitting on one line lowercase_ : List[str] = _re_bracket_content.sub(_replace , __UpperCAmelCase ) return import_statement def _UpperCAmelCase ( a : Tuple , a : List[str]=True ) -> str: """simple docstring""" with open(__UpperCAmelCase , 'r' ) as f: lowercase_ : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase_ : Union[str, Any] = split_code_in_indented_blocks( __UpperCAmelCase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__UpperCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase_ : List[str] = main_blocks[block_idx] lowercase_ : List[str] = block.split('\n' ) # Get to the start of the imports. lowercase_ : Tuple = 0 while line_idx < len(__UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase_ : List[Any] = len(__UpperCAmelCase ) else: line_idx += 1 if line_idx >= len(__UpperCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. lowercase_ : Any = '\n'.join(block_lines[line_idx:-1] ) lowercase_ : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase_ : List[str] = split_code_in_indented_blocks(__UpperCAmelCase , indent_level=__UpperCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase_ : Tuple = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase_ : int = [(pattern.search(__UpperCAmelCase ).groups()[0] if pattern.search(__UpperCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase_ : List[str] = [(i, key) for i, key in enumerate(__UpperCAmelCase ) if key is not None] lowercase_ : Optional[Any] = [x[0] for x in sorted(__UpperCAmelCase , key=lambda a : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase_ : Any = 0 lowercase_ : Dict = [] for i in range(len(__UpperCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowercase_ : List[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__UpperCAmelCase ) count += 1 # And we put our main block back together with its first and last line. lowercase_ : Tuple = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__UpperCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(__UpperCAmelCase , 'w' ) as f: f.write('\n'.join(__UpperCAmelCase ) ) def _UpperCAmelCase ( a : int=True ) -> Union[str, Any]: """simple docstring""" lowercase_ : Tuple = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: lowercase_ : List[str] = sort_imports(os.path.join(__UpperCAmelCase , '__init__.py' ) , check_only=__UpperCAmelCase ) if result: lowercase_ : List[str] = [os.path.join(__UpperCAmelCase , '__init__.py' )] if len(__UpperCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(__UpperCAmelCase )} files, run `make style`." ) if __name__ == "__main__": A: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") A: int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
712
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
0
def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) lowercase_ : Tuple = '' while len(lowerCAmelCase__ ) % 3 != 0: lowercase_ : str = '0' + bin_string lowercase_ : int = [ bin_string[index : index + 3] for index in range(len(lowerCAmelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowercase_ : List[Any] = 0 for index, val in enumerate(lowerCAmelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCAmelCase__ ) ) oct_string += str(lowerCAmelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A: List[Any] = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( __lowerCAmelCase, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = GPTSwaTokenizer SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : str = False def lowerCamelCase__ ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Dict = GPTSwaTokenizer(_UpperCamelCase , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : Optional[int] = """This is a test""" lowercase_ : Any = """This is a test""" return input_text, output_text def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[str] = """<s>""" lowercase_ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCamelCase ) , 2000 ) def lowerCamelCase__ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = GPTSwaTokenizer(_UpperCamelCase ) lowercase_ : Optional[int] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [465, 287, 265, 631, 842] ) lowercase_ : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _UpperCamelCase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowercase_ : Any = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowercase_ : List[Any] = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) # fmt: off self.assertListEqual( _UpperCamelCase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowerCamelCase__ ( self ) -> str: lowercase_ : List[str] = GPTSwaTokenizer(_UpperCamelCase ) lowercase_ : Optional[int] = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowercase_ : Optional[Any] = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_UpperCamelCase , _UpperCamelCase ): self.assertListEqual(tokenizer.encode_fast(_UpperCamelCase ) , _UpperCamelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(tokenizer.decode_fast(_UpperCamelCase ) , _UpperCamelCase ) @slow def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Dict = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowercase_ : List[str] = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_UpperCamelCase , )
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
from random import randint from tempfile import TemporaryFile import numpy as np def _UpperCAmelCase ( a : Union[str, Any] , a : Union[str, Any] , a : List[str] ) -> List[Any]: """simple docstring""" lowercase_ : Optional[Any] = 0 if start < end: lowercase_ : Optional[Any] = randint(_lowerCamelCase , _lowerCamelCase ) lowercase_ : Dict = a[end] lowercase_ : int = a[pivot] lowercase_ : List[str] = temp lowercase_ : Any = _in_place_partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) count += _in_place_quick_sort(_lowerCamelCase , _lowerCamelCase , p - 1 ) count += _in_place_quick_sort(_lowerCamelCase , p + 1 , _lowerCamelCase ) return count def _UpperCAmelCase ( a : List[str] , a : str , a : str ) -> List[Any]: """simple docstring""" lowercase_ : Tuple = 0 lowercase_ : Union[str, Any] = randint(_lowerCamelCase , _lowerCamelCase ) lowercase_ : List[str] = a[end] lowercase_ : Tuple = a[pivot] lowercase_ : str = temp lowercase_ : Tuple = start - 1 for index in range(_lowerCamelCase , _lowerCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ : str = new_pivot_index + 1 lowercase_ : Tuple = a[new_pivot_index] lowercase_ : Optional[Any] = a[index] lowercase_ : int = temp lowercase_ : str = a[new_pivot_index + 1] lowercase_ : List[Any] = a[end] lowercase_ : Tuple = temp return new_pivot_index + 1, count A: Optional[Any] = TemporaryFile() A: Tuple = 1_0_0 # 1000 elements are to be sorted A , A: List[str] = 0, 1 # mean and standard deviation A: Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array A: str = np.load(outfile) A: List[str] = len(M) - 1 A: List[Any] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A: Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") A: int = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) A: List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( a : Optional[int] ) -> Optional[int]: """simple docstring""" with open(_lowerCamelCase , 'rb' ) as f: lowercase_ : str = Image.open(_lowerCamelCase ) return im.convert('RGB' ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = field( default=_A, metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' }, ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = field( default=_A, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = field(default=_A, metadata={'help': 'A folder containing the training data.'} ) SCREAMING_SNAKE_CASE_ : int = field(default=_A, metadata={'help': 'A folder containing the validation data.'} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = field( default=0.15, metadata={'help': 'Percent to split off of train for validation.'} ) SCREAMING_SNAKE_CASE_ : List[str] = field( default=_A, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) SCREAMING_SNAKE_CASE_ : List[Any] = field( default=_A, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) def lowerCamelCase__ ( self ) -> List[Any]: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = field( default='google/vit-base-patch16-224-in21k', metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}, ) SCREAMING_SNAKE_CASE_ : Tuple = field( default=_A, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_A )}, ) SCREAMING_SNAKE_CASE_ : List[Any] = field( default=_A, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE_ : Tuple = field( default=_A, metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) SCREAMING_SNAKE_CASE_ : str = field(default=_A, metadata={'help': 'Name or path of preprocessor config.'} ) SCREAMING_SNAKE_CASE_ : int = field( default=_A, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_A, metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'}, ) def _UpperCAmelCase ( a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase_ : Dict = torch.stack([example['pixel_values'] for example in examples] ) lowercase_ : Union[str, Any] = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ : int = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowercase_ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase_ : Union[str, Any] = {} if data_args.train_dir is not None: lowercase_ : Union[str, Any] = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: lowercase_ : Optional[Any] = os.path.join(data_args.validation_dir , '**' ) lowercase_ : Any = load_dataset( 'imagefolder' , data_files=_lowerCamelCase , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ : Union[str, Any] = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowerCamelCase ) and data_args.train_val_split > 0.0: lowercase_ : int = dataset["train"].train_test_split(data_args.train_val_split ) lowercase_ : Tuple = split["train"] lowercase_ : List[Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase_ : str = dataset["train"].features["labels"].names lowercase_ : int = {}, {} for i, label in enumerate(_lowerCamelCase ): lowercase_ : Union[str, Any] = str(_lowerCamelCase ) lowercase_ : Dict = label # Load the accuracy metric from the datasets package lowercase_ : Any = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase_ : str = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel=_lowerCamelCase , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase_ : str = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase_ : Union[str, Any] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase_ : Union[str, Any] = image_processor.size["shortest_edge"] else: lowercase_ : int = (image_processor.size["height"], image_processor.size["width"]) lowercase_ : int = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase_ : Optional[Any] = Compose( [ RandomResizedCrop(_lowerCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase_ : List[str] = Compose( [ Resize(_lowerCamelCase ), CenterCrop(_lowerCamelCase ), ToTensor(), normalize, ] ) def train_transforms(a : Tuple ): lowercase_ : Union[str, Any] = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(a : Optional[Any] ): lowercase_ : Tuple = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowercase_ : List[str] = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_lowerCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowercase_ : Tuple = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_lowerCamelCase ) # Initalize our trainer lowercase_ : Optional[int] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: lowercase_ : int = None if training_args.resume_from_checkpoint is not None: lowercase_ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ : int = last_checkpoint lowercase_ : int = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ : str = trainer.evaluate() trainer.log_metrics('eval' , _lowerCamelCase ) trainer.save_metrics('eval' , _lowerCamelCase ) # Write model card and (optionally) push to hub lowercase_ : Any = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) if __name__ == "__main__": main()
716
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
0
'''simple docstring''' import math def _UpperCAmelCase ( a : list , a : int ) -> int: """simple docstring""" lowercase_ : Optional[int] = len(a_ ) lowercase_ : Optional[Any] = int(math.floor(math.sqrt(a_ ) ) ) lowercase_ : List[str] = 0 while arr[min(a_ , a_ ) - 1] < x: lowercase_ : Optional[Any] = step step += int(math.floor(math.sqrt(a_ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowercase_ : Any = prev + 1 if prev == min(a_ , a_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: List[str] = [int(item) for item in user_input.split(",")] A: Dict = int(input("Enter the number to be searched:\n")) A: Tuple = jump_search(arr, x) if res == -1: print("Number not found!") else: print(f"""Number {x} is at index {res}""")
717
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device A: Any = False class __magic_name__ ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase_ : Optional[int] = torch.manual_seed(0 ) lowercase_ : Any = pipe( image=__UpperCamelCase , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images lowercase_ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Union[str, Any] = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
0
class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : int = name lowercase_ : int = val def __str__( self ) -> Any: return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self , _lowercase ) -> List[Any]: return self.val < other.val class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Optional[Any]: lowercase_ : List[Any] = {} lowercase_ : Union[str, Any] = {} lowercase_ : Optional[Any] = self.build_heap(snake_case_ ) def __getitem__( self , _lowercase ) -> Optional[Any]: return self.get_value(snake_case_ ) def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: return (idx - 1) // 2 def lowerCamelCase__ ( self , _lowercase ) -> str: return idx * 2 + 1 def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: return idx * 2 + 2 def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: return self.heap_dict[key] def lowerCamelCase__ ( self , _lowercase ) -> str: lowercase_ : Tuple = len(snake_case_ ) - 1 lowercase_ : Dict = self.get_parent_idx(snake_case_ ) for idx, i in enumerate(snake_case_ ): lowercase_ : Tuple = idx lowercase_ : Any = i.val for i in range(snake_case_ , -1 , -1 ): self.sift_down(snake_case_ , snake_case_ ) return array def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Any: while True: lowercase_ : Optional[int] = self.get_left_child_idx(snake_case_ ) # noqa: E741 lowercase_ : int = self.get_right_child_idx(snake_case_ ) lowercase_ : Optional[Any] = idx if l < len(snake_case_ ) and array[l] < array[idx]: lowercase_ : Optional[Any] = l if r < len(snake_case_ ) and array[r] < array[smallest]: lowercase_ : Tuple = r if smallest != idx: lowercase_ , lowercase_ : List[Any] = array[smallest], array[idx] ( ( lowercase_ ) , ( lowercase_ ) , ) : Union[str, Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Optional[Any] = smallest else: break def lowerCamelCase__ ( self , _lowercase ) -> str: lowercase_ : Optional[Any] = self.get_parent_idx(snake_case_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p] lowercase_ , lowercase_ : Optional[Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : List[Any] = p lowercase_ : List[str] = self.get_parent_idx(snake_case_ ) def lowerCamelCase__ ( self ) -> Dict: return self.heap[0] def lowerCamelCase__ ( self ) -> int: lowercase_ , lowercase_ : int = self.heap[-1], self.heap[0] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : List[Any] = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: self.heap.append(snake_case_ ) lowercase_ : Union[str, Any] = len(self.heap ) - 1 lowercase_ : Optional[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def lowerCamelCase__ ( self ) -> Union[str, Any]: return len(self.heap ) == 0 def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Tuple: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Union[str, Any] = new_value lowercase_ : int = new_value self.sift_up(self.idx_of_element[node] ) A: Any = Node("R", -1) A: Any = Node("B", 6) A: Optional[int] = Node("A", 3) A: List[str] = Node("X", 1) A: int = Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A: str = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def _UpperCAmelCase ( a : List[Any] ) -> Dict: """simple docstring""" lowercase_ : int = tf.convert_to_tensor(__UpperCamelCase ) lowercase_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _UpperCAmelCase ( a : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase_ : int = tf.convert_to_tensor(__UpperCamelCase ) lowercase_ : List[Any] = tf.cast(math.pi , x.dtype ) lowercase_ : int = tf.cast(0.04_47_15 , x.dtype ) lowercase_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def _UpperCAmelCase ( a : Any ) -> Union[str, Any]: """simple docstring""" lowercase_ : str = tf.convert_to_tensor(__UpperCamelCase ) lowercase_ : int = tf.cast(0.04_47_15 , x.dtype ) lowercase_ : Optional[int] = tf.cast(0.79_78_84_56_08 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _UpperCAmelCase ( a : List[str] ) -> Optional[Any]: """simple docstring""" lowercase_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) lowercase_ : str = tf.cast(1.7_02 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _UpperCAmelCase ( a : int ) -> Optional[int]: """simple docstring""" return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def _UpperCAmelCase ( a : Optional[int] , a : List[str]=-1 ) -> Any: """simple docstring""" lowercase_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def _UpperCAmelCase ( a : List[Any] ) -> Any: """simple docstring""" return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) A: int = tf.keras.activations.gelu A: Optional[Any] = approximate_gelu_wrap else: A: List[Any] = _gelu A: Any = _gelu_new A: Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def _UpperCAmelCase ( a : Any ) -> List[Any]: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A: str = 1_6 A: Optional[int] = 3_2 def _UpperCAmelCase ( a : Accelerator , a : DatasetDict , a : List[int] , a : List[int] , a : int = 1_6 ) -> int: """simple docstring""" lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase_ : str = DatasetDict( { 'train': dataset['train'].select(snake_case__ ), 'validation': dataset['train'].select(snake_case__ ), 'test': dataset['validation'], } ) def tokenize_function(a : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) lowercase_ : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase_ : List[Any] = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ : Optional[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase_ : Optional[int] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase_ : Union[str, Any] = 1_6 elif accelerator.mixed_precision != "no": lowercase_ : Any = 8 else: lowercase_ : Dict = None return tokenizer.pad( snake_case__ , padding='longest' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='pt' , ) # Instantiate dataloaders. lowercase_ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) lowercase_ : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) lowercase_ : List[Any] = DataLoader( tokenized_datasets['test'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader, test_dataloader def _UpperCAmelCase ( a : str , a : List[str] ) -> Union[str, Any]: """simple docstring""" # New Code # lowercase_ : Tuple = [] # Download the dataset lowercase_ : Dict = load_dataset('glue' , 'mrpc' ) # Create our splits lowercase_ : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowercase_ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ : Dict = config['lr'] lowercase_ : str = int(config['num_epochs'] ) lowercase_ : Union[str, Any] = int(config['seed'] ) lowercase_ : Optional[int] = int(config['batch_size'] ) lowercase_ : int = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowercase_ : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase_ : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE lowercase_ : Dict = MAX_GPU_BATCH_SIZE set_seed(snake_case__ ) # New Code # # Create our folds: lowercase_ : List[Any] = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowercase_ : Optional[int] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(snake_case__ ): lowercase_ , lowercase_ , lowercase_ : Tuple = get_fold_dataloaders( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ : List[str] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowercase_ : str = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler lowercase_ : str = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=1_0_0 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase_ : str = model(**snake_case__ ) lowercase_ : Union[str, Any] = outputs.loss lowercase_ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ : Optional[int] = model(**snake_case__ ) lowercase_ : int = outputs.logits.argmax(dim=-1 ) lowercase_ , lowercase_ : List[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) lowercase_ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case__ ) # New Code # # We also run predictions on the test set at the very end lowercase_ : str = [] for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ : Union[str, Any] = model(**snake_case__ ) lowercase_ : str = outputs.logits lowercase_ , lowercase_ : int = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(snake_case__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowercase_ : Union[str, Any] = torch.cat(snake_case__ , dim=0 ) lowercase_ : Optional[int] = torch.stack(snake_case__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowercase_ : List[Any] = metric.compute(predictions=snake_case__ , references=snake_case__ ) accelerator.print('Average test metrics from all folds:' , snake_case__ ) def _UpperCAmelCase ( ) -> Tuple: """simple docstring""" lowercase_ : Optional[int] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=snake_case__ , default=snake_case__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=snake_case__ , default=3 , help='The number of splits to perform across the dataset' ) lowercase_ : Optional[Any] = parser.parse_args() lowercase_ : str = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
721
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' from __future__ import annotations class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> List[Any]: lowercase_ , lowercase_ : Tuple = text, pattern lowercase_ , lowercase_ : Dict = len(_lowercase ), len(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Dict: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase__ ( self , _lowercase ) -> str: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase__ ( self ) -> Tuple: # searches pattern in text and returns index positions lowercase_ : Optional[Any] = [] for i in range(self.textLen - self.patLen + 1 ): lowercase_ : str = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: lowercase_ : List[Any] = self.match_in_pattern(self.text[mismatch_index] ) lowercase_ : str = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A: Union[str, Any] = "ABAABA" A: Tuple = "AB" A: int = BoyerMooreSearch(text, pattern) A: List[str] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Union[str, Any] = logging.get_logger(__name__) A: Dict = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'roberta' def __init__( self , _lowercase=5_0265 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ) -> Tuple: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : Tuple = num_attention_heads lowercase_ : List[Any] = hidden_act lowercase_ : Any = intermediate_size lowercase_ : Any = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[Any] = type_vocab_size lowercase_ : Any = initializer_range lowercase_ : Union[str, Any] = layer_norm_eps lowercase_ : Optional[int] = position_embedding_type lowercase_ : int = use_cache lowercase_ : List[str] = classifier_dropout class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase_ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase_ : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=10 , _lowercase=3 , _lowercase=2 , _lowercase=2 , _lowercase=True , _lowercase=True , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=10 , _lowercase=0.02 , _lowercase="divided_space_time" , _lowercase=None , ) -> Tuple: lowercase_ : List[str] = parent lowercase_ : str = batch_size lowercase_ : Optional[Any] = image_size lowercase_ : Dict = num_channels lowercase_ : List[str] = patch_size lowercase_ : int = num_frames lowercase_ : List[str] = is_training lowercase_ : Union[str, Any] = use_labels lowercase_ : int = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : List[str] = attention_type lowercase_ : int = initializer_range lowercase_ : List[str] = scope lowercase_ : Any = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowercase_ : List[Any] = (image_size // patch_size) ** 2 lowercase_ : str = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Any = None if self.use_labels: lowercase_ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Tuple = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowercase_ : List[Any] = self.num_labels return config def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[str]: lowercase_ : Any = TimesformerModel(config=__A ) model.to(__A ) model.eval() lowercase_ : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> str: lowercase_ : Any = TimesformerForVideoClassification(__A ) model.to(__A ) model.eval() lowercase_ : Dict = model(__A ) # verify the logits shape lowercase_ : Union[str, Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __A ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Dict = self.prepare_config_and_inputs() lowercase_ : List[str] = config_and_inputs lowercase_ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCamelCase_, UpperCamelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Dict = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Optional[int] = TimesformerModelTester(self ) lowercase_ : Tuple = ConfigTester( self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> Dict: lowercase_ : Optional[Any] = copy.deepcopy(__A ) if return_labels: if model_class in get_values(__A ): lowercase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def lowerCamelCase__ ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> List[Any]: pass def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = model_class(__A ) lowercase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__A ) @slow def lowerCamelCase__ ( self ) -> Union[str, Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = TimesformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase__ ( self ) -> List[Any]: if not self.has_attentions: pass else: lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Union[str, Any] = True for model_class in self.all_model_classes: lowercase_ : List[Any] = self.model_tester.seq_length lowercase_ : Optional[int] = self.model_tester.num_frames lowercase_ : int = True lowercase_ : Optional[Any] = False lowercase_ : Optional[int] = True lowercase_ : Optional[int] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): lowercase_ : str = model(**self._prepare_for_class(__A , __A ) ) lowercase_ : Dict = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ : List[Any] = True lowercase_ : List[str] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): lowercase_ : int = model(**self._prepare_for_class(__A , __A ) ) lowercase_ : Dict = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowercase_ : Dict = len(__A ) # Check attention is always last and order is fine lowercase_ : Union[str, Any] = True lowercase_ : List[str] = True lowercase_ : Optional[Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): lowercase_ : str = model(**self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + 1 , len(__A ) ) lowercase_ : str = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase__ ( self ) -> Optional[Any]: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): lowercase_ : Optional[int] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): lowercase_ : str = model(**self._prepare_for_class(__A , __A ) ) lowercase_ : Dict = outputs.hidden_states lowercase_ : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__A ) , __A ) lowercase_ : Tuple = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : int = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : str = True check_hidden_states_output(__A , __A , __A ) def _UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" lowercase_ : List[Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase_ : List[Any] = np.load(snake_case_ ) return list(snake_case_ ) @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ) -> List[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( __A ) lowercase_ : Tuple = self.default_image_processor lowercase_ : str = prepare_video() lowercase_ : str = image_processor(video[:8] , return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): lowercase_ : Optional[Any] = model(**__A ) # verify the logits lowercase_ : Optional[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __A ) lowercase_ : Tuple = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1E-4 ) )
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="resnet50" , _lowercase=3 , _lowercase=32 , _lowercase=3 , _lowercase=True , _lowercase=True , ) -> List[str]: lowercase_ : int = parent lowercase_ : List[Any] = out_indices if out_indices is not None else [4] lowercase_ : List[Any] = stage_names lowercase_ : Any = out_features lowercase_ : Optional[int] = backbone lowercase_ : Optional[int] = batch_size lowercase_ : Any = image_size lowercase_ : Any = num_channels lowercase_ : Optional[int] = use_pretrained_backbone lowercase_ : Optional[int] = is_training def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Union[str, Any] = self.get_config() return config, pixel_values def lowerCamelCase__ ( self ) -> str: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Any: lowercase_ : int = TimmBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): lowercase_ : Dict = model(_lowercase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : int = config_and_inputs lowercase_ : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class __magic_name__ ( lowercase__, lowercase__, lowercase__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = False def lowerCamelCase__ ( self ) -> Any: lowercase_ : int = TimmBackboneModelTester(self ) lowercase_ : Optional[int] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def lowerCamelCase__ ( self ) -> Optional[int]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : List[Any] = "resnet18" lowercase_ : Optional[int] = "microsoft/resnet-18" lowercase_ : Tuple = AutoBackbone.from_pretrained(_lowercase , use_timm_backbone=_lowercase ) lowercase_ : Dict = AutoBackbone.from_pretrained(_lowercase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowercase_ : str = AutoBackbone.from_pretrained(_lowercase , use_timm_backbone=_lowercase , out_indices=[1, 2, 3] ) lowercase_ : Any = AutoBackbone.from_pretrained(_lowercase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowerCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowerCamelCase__ ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowerCamelCase__ ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowerCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowerCamelCase__ ( self ) -> str: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowerCamelCase__ ( self ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowerCamelCase__ ( self ) -> int: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowerCamelCase__ ( self ) -> List[str]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowerCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowerCamelCase__ ( self ) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowerCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowerCamelCase__ ( self ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowerCamelCase__ ( self ) -> Tuple: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowerCamelCase__ ( self ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__ ( self ) -> Tuple: pass def lowerCamelCase__ ( self ) -> Any: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(_lowercase ) lowercase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Optional[int] = [*signature.parameters.keys()] lowercase_ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Any = True lowercase_ : Optional[int] = self.has_attentions # no need to test all models as different heads yield the same functionality lowercase_ : str = self.all_model_classes[0] lowercase_ : str = model_class(_lowercase ) model.to(_lowercase ) lowercase_ : Any = self._prepare_for_class(_lowercase , _lowercase ) lowercase_ : int = model(**_lowercase ) lowercase_ : int = outputs[0][-1] # Encoder-/Decoder-only models lowercase_ : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowercase_ : List[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_lowercase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : int = model(**_lowercase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowercase_ : Optional[int] = copy.deepcopy(_lowercase ) lowercase_ : str = None lowercase_ : Tuple = model_class(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Union[str, Any] = model(**_lowercase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowercase_ : Optional[Any] = copy.deepcopy(_lowercase ) lowercase_ : Optional[Any] = False lowercase_ : Any = model_class(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = model(**_lowercase )
703
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
0
'''simple docstring''' def _UpperCAmelCase ( a : int = 4_0_0_0_0_0_0 ) -> Any: """simple docstring""" lowercase_ : Dict = [0, 1] lowercase_ : str = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowercase_ : Optional[int] = 0 for j in range(len(a ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
704
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A: int = logging.get_logger(__name__) A: str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A: List[Any] = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } A: Tuple = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } A: List[Any] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class __magic_name__ ( __a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : Optional[int] = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ : List[Any] = DistilBertTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase="[UNK]" , _lowercase="[SEP]" , _lowercase="[PAD]" , _lowercase="[CLS]" , _lowercase="[MASK]" , _lowercase=True , _lowercase=None , **_lowercase , ) -> Union[str, Any]: super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , tokenize_chinese_chars=a_ , strip_accents=a_ , **a_ , ) lowercase_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a_ ) != do_lower_case or normalizer_state.get('strip_accents' , a_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a_ ) != tokenize_chinese_chars ): lowercase_ : Optional[Any] = getattr(a_ , normalizer_state.pop('type' ) ) lowercase_ : List[Any] = do_lower_case lowercase_ : Optional[Any] = strip_accents lowercase_ : Optional[int] = tokenize_chinese_chars lowercase_ : Dict = normalizer_class(**a_ ) lowercase_ : int = do_lower_case def lowerCamelCase__ ( self , _lowercase , _lowercase=None ) -> List[Any]: lowercase_ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[str]: lowercase_ : List[Any] = [self.sep_token_id] lowercase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Optional[int]: lowercase_ : Optional[Any] = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
705
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _UpperCAmelCase ( a : Any , a : Optional[Any] , a : Optional[Any] , a : List[str] , a : Optional[int] = None , a : Optional[Any] = None , a : Dict = None , ) -> Tuple: """simple docstring""" if config_name_or_path is None: lowercase_ : Dict = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: lowercase_ : Optional[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowercase_ : Any = question_encoder_name_or_path lowercase_ : Tuple = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. lowercase_ : str = RagConfig.from_pretrained(__snake_case ) lowercase_ : Union[str, Any] = AutoConfig.from_pretrained(__snake_case ) lowercase_ : Any = AutoConfig.from_pretrained(__snake_case ) lowercase_ : Optional[Any] = gen_config lowercase_ : List[Any] = question_encoder_config lowercase_ : Tuple = model_class.from_pretrained_question_encoder_generator( __snake_case , __snake_case , config=__snake_case ) rag_model.save_pretrained(__snake_case ) # Sanity check. model_class.from_pretrained(__snake_case ) # Save tokenizers. lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained(__snake_case ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) lowercase_ : Tuple = AutoTokenizer.from_pretrained(__snake_case ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) A: int = parser.parse_args() A: Tuple = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
706
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: Tuple = logging.get_logger(__name__) A: Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __magic_name__ ( _UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'megatron-bert' def __init__( self , _lowercase=2_9056 , _lowercase=1024 , _lowercase=24 , _lowercase=16 , _lowercase=4096 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=0 , _lowercase="absolute" , _lowercase=True , **_lowercase , ) -> List[str]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowercase_ : int = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Tuple = hidden_act lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : Tuple = type_vocab_size lowercase_ : Union[str, Any] = initializer_range lowercase_ : str = layer_norm_eps lowercase_ : List[Any] = position_embedding_type lowercase_ : List[Any] = use_cache
707
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( a__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = CLIPTokenizer SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : int = {} SCREAMING_SNAKE_CASE_ : int = False def snake_case__ ( self ) -> Any: super().setUp() # fmt: off lowercase_ : Dict = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowercase_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowercase_ : Optional[int] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] lowercase_ : List[str] = {"unk_token": "<unk>"} lowercase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def snake_case__ ( self , **_lowercase ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def snake_case__ ( self , **_lowercase ) -> int: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def snake_case__ ( self , _lowercase ) -> Optional[int]: lowercase_ : List[Any] = "lower newer" lowercase_ : int = "lower newer" return input_text, output_text def snake_case__ ( self ) -> str: lowercase_ : Optional[Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ : List[Any] = "lower newer" lowercase_ : Optional[int] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] lowercase_ : List[str] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ : List[Any] = tokens + [tokenizer.unk_token] lowercase_ : List[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) @require_ftfy def snake_case__ ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase_ : List[str] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase_ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase_ : Any = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." lowercase_ : str = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase_ : Union[str, Any] = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase_ : List[Any] = "xa\u0303y" + " " + "x\xe3y" lowercase_ : str = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase_ : Optional[int] = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of space type lowercase_ : Any = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase_ : Any = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase_ : Dict = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of line break type lowercase_ : Any = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase_ : List[str] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase_ : Tuple = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self ) -> List[str]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase_ : Tuple = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowercase_ : Tuple = f"{text_of_1_token} {text_of_1_token}" lowercase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase_ : str = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) lowercase_ : Optional[Any] = f" {text}" lowercase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase_ : Any = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) def snake_case__ ( self ) -> Union[str, Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case__ ( self ) -> Union[str, Any]: super().test_tokenization_python_rust_equals() def snake_case__ ( self ) -> List[str]: # CLIP always lower cases letters pass
708
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
0
'''simple docstring''' A: str = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 1_0: '''a''', 1_1: '''b''', 1_2: '''c''', 1_3: '''d''', 1_4: '''e''', 1_5: '''f''', } def _UpperCAmelCase ( a : float ) -> int: """simple docstring""" assert type(UpperCAmelCase__ ) in (int, float) and decimal == int(UpperCAmelCase__ ) lowercase_ : Dict = int(UpperCAmelCase__ ) lowercase_ : List[Any] = '' lowercase_ : List[Any] = False if decimal < 0: lowercase_ : int = True decimal *= -1 while decimal > 0: lowercase_ , lowercase_ : Optional[int] = divmod(UpperCAmelCase__ , 1_6 ) lowercase_ : List[str] = values[remainder] + hexadecimal lowercase_ : List[Any] = '0x' + hexadecimal if negative: lowercase_ : Union[str, Any] = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = MBartConfig SCREAMING_SNAKE_CASE_ : List[Any] = {} SCREAMING_SNAKE_CASE_ : str = """gelu""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=20 , _lowercase=2 , _lowercase=1 , _lowercase=0 , ) -> Optional[Any]: lowercase_ : Union[str, Any] = parent lowercase_ : List[str] = batch_size lowercase_ : Union[str, Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : int = use_labels lowercase_ : Dict = vocab_size lowercase_ : Optional[Any] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : List[str] = intermediate_size lowercase_ : int = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : Tuple = eos_token_id lowercase_ : int = pad_token_id lowercase_ : List[str] = bos_token_id def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ : int = prepare_mbart_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Any: lowercase_ : Any = TFMBartModel(config=UpperCAmelCase_ ).get_decoder() lowercase_ : Optional[int] = inputs_dict['input_ids'] lowercase_ : Dict = input_ids[:1, :] lowercase_ : Union[str, Any] = inputs_dict['attention_mask'][:1, :] lowercase_ : Optional[Any] = inputs_dict['head_mask'] lowercase_ : int = 1 # first forward pass lowercase_ : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) lowercase_ , lowercase_ : Dict = outputs.to_tuple() lowercase_ : List[str] = past_key_values[1] def _UpperCAmelCase ( a : Tuple , a : Dict , a : Optional[Any] , a : Optional[int]=None , a : Any=None , a : List[str]=None , a : int=None , a : Tuple=None , ) -> List[str]: """simple docstring""" if attention_mask is None: lowercase_ : Optional[Any] = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase_ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase_ : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCamelCase__ ( self ) -> int: lowercase_ : Dict = TFMBartModelTester(self ) lowercase_ : List[str] = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowerCamelCase__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [ """ UN Chief Says There Is No Military Solution in Syria""", ] SCREAMING_SNAKE_CASE_ : Any = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] SCREAMING_SNAKE_CASE_ : Optional[Any] = """facebook/mbart-large-en-ro""" @cached_property def lowerCamelCase__ ( self ) -> Optional[int]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase__ ( self ) -> str: lowercase_ : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase__ ( self , **_lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = self.translate_src_text(**UpperCAmelCase_ ) self.assertListEqual(self.expected_text , UpperCAmelCase_ ) def lowerCamelCase__ ( self , **_lowercase ) -> List[Any]: lowercase_ : Tuple = self.tokenizer(self.src_text , **UpperCAmelCase_ , return_tensors='tf' ) lowercase_ : Union[str, Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowercase_ : Dict = self.tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) return generated_words @slow def lowerCamelCase__ ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __magic_name__ ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 4_2 SCREAMING_SNAKE_CASE_ : Tuple = 4_2 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
0
def _UpperCAmelCase ( a : int , a : Optional[Any] ) -> str: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) lowercase_ : List[str] = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
0
from __future__ import annotations def _UpperCAmelCase ( a : int ) -> Dict: """simple docstring""" lowercase_ : List[Any] = len(a ) # We need to create solution object to save path. lowercase_ : Optional[Any] = [[0 for _ in range(a )] for _ in range(a )] lowercase_ : List[str] = run_maze(a , 0 , 0 , a ) if solved: print('\n'.join(str(a ) for row in solutions ) ) else: print('No solution exists!' ) return solved def _UpperCAmelCase ( a : List[Any] , a : Optional[int] , a : Optional[int] , a : Dict ) -> Union[str, Any]: """simple docstring""" lowercase_ : Any = len(a ) # Final check point. if i == j == (size - 1): lowercase_ : Optional[int] = 1 return True lowercase_ : int = (not i < 0) and (not j < 0) # Check lower bounds lowercase_ : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowercase_ : List[str] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowercase_ : str = 1 # check for directions if ( run_maze(a , i + 1 , a , a ) or run_maze(a , a , j + 1 , a ) or run_maze(a , i - 1 , a , a ) or run_maze(a , a , j - 1 , a ) ): return True lowercase_ : str = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A: str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
import random def _UpperCAmelCase ( a : List[Any] ) -> bool: """simple docstring""" lowercase_ : List[Any] = num - 1 lowercase_ : Union[str, Any] = 0 while s % 2 == 0: lowercase_ : List[Any] = s // 2 t += 1 for _ in range(5 ): lowercase_ : List[str] = random.randrange(2 , num - 1 ) lowercase_ : Optional[int] = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if v != 1: lowercase_ : str = 0 while v != (num - 1): if i == t - 1: return False else: lowercase_ : Any = i + 1 lowercase_ : List[str] = (v**2) % num return True def _UpperCAmelCase ( a : List[Any] ) -> bool: """simple docstring""" if num < 2: return False lowercase_ : str = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_lowerCAmelCase ) def _UpperCAmelCase ( a : str = 1_0_2_4 ) -> int: """simple docstring""" while True: lowercase_ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_lowerCAmelCase ): return num if __name__ == "__main__": A: List[Any] = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A: Dict = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Tuple = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: str = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
717
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __magic_name__ ( __a ): """simple docstring""" def __init__( self ) -> List[Any]: lowercase_ : Tuple = [] def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> int: self.events.append('on_init_end' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[str]: self.events.append('on_train_begin' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Dict: self.events.append('on_train_end' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Tuple: self.events.append('on_epoch_begin' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[Any]: self.events.append('on_epoch_end' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Optional[int]: self.events.append('on_step_begin' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Any: self.events.append('on_step_end' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[Any]: self.events.append('on_evaluate' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Tuple: self.events.append('on_predict' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> str: self.events.append('on_save' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Optional[Any]: self.events.append('on_log' ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[Any]: self.events.append('on_prediction_step' ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Union[str, Any] = tempfile.mkdtemp() def lowerCamelCase__ ( self ) -> Any: shutil.rmtree(self.output_dir ) def lowerCamelCase__ ( self , _lowercase=0 , _lowercase=0 , _lowercase=64 , _lowercase=64 , _lowercase=None , _lowercase=False , **_lowercase ) -> Union[str, Any]: lowercase_ : Any = RegressionDataset(length=lowerCAmelCase_ ) lowercase_ : Optional[int] = RegressionDataset(length=lowerCAmelCase_ ) lowercase_ : Any = RegressionModelConfig(a=lowerCAmelCase_ , b=lowerCAmelCase_ ) lowercase_ : Optional[int] = RegressionPreTrainedModel(lowerCAmelCase_ ) lowercase_ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=lowerCAmelCase_ , report_to=[] , **lowerCAmelCase_ ) return Trainer( lowerCAmelCase_ , lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , callbacks=lowerCAmelCase_ , ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[Any]: self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) # Order doesn't matter lowercase_ : Optional[int] = sorted(lowerCAmelCase_ , key=lambda _lowercase : cb.__name__ if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cb.__class__.__name__ ) lowercase_ : List[str] = sorted(lowerCAmelCase_ , key=lambda _lowercase : cb.__name__ if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cb.__class__.__name__ ) for cba, cba in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(lowerCAmelCase_ , cba.__class__ ) elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(cba.__class__ , lowerCAmelCase_ ) else: self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: lowercase_ : Tuple = ['on_init_end', 'on_train_begin'] lowercase_ : int = 0 lowercase_ : List[str] = len(trainer.get_eval_dataloader() ) lowercase_ : Optional[Any] = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(lowerCAmelCase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = self.get_trainer() lowercase_ : Tuple = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_ ) # Callbacks passed at init are added to the default callbacks lowercase_ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowerCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase_ : Tuple = self.get_trainer(disable_tqdm=lowerCAmelCase_ ) lowercase_ : List[str] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_ ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase_ : str = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowerCAmelCase_ ) expected_callbacks.remove(lowerCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_ ) lowercase_ : Tuple = self.get_trainer() lowercase_ : Optional[Any] = trainer.pop_callback(lowerCAmelCase_ ) self.assertEqual(cb.__class__ , lowerCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_ ) trainer.add_callback(lowerCAmelCase_ ) expected_callbacks.insert(0 , lowerCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_ ) # We can also add, pop, or remove by instance lowercase_ : List[Any] = self.get_trainer() lowercase_ : Union[str, Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowerCAmelCase_ ) expected_callbacks.remove(lowerCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_ ) lowercase_ : int = self.get_trainer() lowercase_ : Tuple = trainer.callback_handler.callbacks[0] lowercase_ : Optional[Any] = trainer.pop_callback(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_ ) trainer.add_callback(lowerCAmelCase_ ) expected_callbacks.insert(0 , lowerCAmelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_ ) def lowerCamelCase__ ( self ) -> Optional[int]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=lowerCAmelCase_ ) lowercase_ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase_ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_ ) ) # Independent log/save/eval lowercase_ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase_ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_ ) ) lowercase_ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_ ) ) lowercase_ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_ ) ) lowercase_ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase_ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_ ) ) # A bit of everything lowercase_ : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase_ : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase_ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(lowerCAmelCase_ ) in warn_mock.call_args[0][0]
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A: Optional[Any] = logging.get_logger(__name__) A: Any = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __magic_name__ ( __lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = '''trocr''' SCREAMING_SNAKE_CASE_ : int = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _lowercase=5_0265 , _lowercase=1024 , _lowercase=12 , _lowercase=16 , _lowercase=4096 , _lowercase="gelu" , _lowercase=512 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=2 , _lowercase=0.02 , _lowercase=0.0 , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , **_lowercase , ) -> Any: lowercase_ : Optional[int] = vocab_size lowercase_ : int = d_model lowercase_ : Tuple = decoder_layers lowercase_ : Optional[int] = decoder_attention_heads lowercase_ : Tuple = decoder_ffn_dim lowercase_ : List[str] = activation_function lowercase_ : List[str] = max_position_embeddings lowercase_ : Optional[Any] = dropout lowercase_ : Dict = attention_dropout lowercase_ : Dict = activation_dropout lowercase_ : Any = init_std lowercase_ : List[Any] = decoder_layerdrop lowercase_ : Optional[int] = use_cache lowercase_ : Tuple = scale_embedding lowercase_ : int = use_learned_position_embeddings lowercase_ : str = layernorm_embedding super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[int] = tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowercase_ : Optional[Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowercase_ : List[Any] = tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above lowercase_ : Union[str, Any] = tf_top_k_top_p_filtering(UpperCAmelCase__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowercase_ : int = output[output != -float('inf' )] lowercase_ : Dict = tf.cast( tf.where(tf.not_equal(UpperCAmelCase__ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1E-1_2 ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @require_tf class __magic_name__ ( unittest.TestCase, UpperCAmelCase_ ): """simple docstring""" if is_tf_available(): SCREAMING_SNAKE_CASE_ : int = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def lowerCamelCase__ ( self ) -> Optional[Any]: # TF-only test: tf.saved_model export lowercase_ : Tuple = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase_ : Union[str, Any] = 2 lowercase_ : List[Any] = 2 class __magic_name__ ( tf.Module ): """simple docstring""" def __init__( self , _lowercase ) -> Dict: super(UpperCAmelCase__ , self ).__init__() lowercase_ : Any = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=UpperCAmelCase__ , ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> int: lowercase_ : Dict = self.model.generate( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , ) return {"sequences": outputs["sequences"]} lowercase_ : Optional[int] = [[2, 0], [102, 103]] lowercase_ : Dict = [[1, 0], [1, 1]] lowercase_ : Tuple = DummyModel(model=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={'serving_default': dummy_model.serving} ) lowercase_ : Dict = tf.saved_model.load(UpperCAmelCase__ ).signatures['serving_default'] for batch_size in range(1 , len(UpperCAmelCase__ ) + 1 ): lowercase_ : Optional[int] = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } lowercase_ : Tuple = serving_func(**UpperCAmelCase__ )['sequences'] lowercase_ : Dict = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: # TF-only test: tf.saved_model export lowercase_ : str = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase_ : List[Any] = 1 lowercase_ : Any = 2 class __magic_name__ ( tf.Module ): """simple docstring""" def __init__( self , _lowercase ) -> List[str]: super(UpperCAmelCase__ , self ).__init__() lowercase_ : Dict = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=UpperCAmelCase__ , ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> int: lowercase_ : Optional[Any] = self.model.generate( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , ) return {"sequences": outputs["sequences"]} lowercase_ : Tuple = [[2], [102, 103]] lowercase_ : Dict = [[1], [1, 1]] lowercase_ : List[str] = DummyModel(model=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={'serving_default': dummy_model.serving} ) lowercase_ : List[str] = tf.saved_model.load(UpperCAmelCase__ ).signatures['serving_default'] for input_row in range(len(UpperCAmelCase__ ) ): lowercase_ : Optional[int] = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } lowercase_ : Optional[Any] = serving_func(**UpperCAmelCase__ )['sequences'] lowercase_ : int = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @slow @require_tensorflow_text def lowerCamelCase__ ( self ) -> int: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=UpperCAmelCase__ ) class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self ) -> Any: super().__init__() lowercase_ : Optional[Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase__ , 'spiece.model' ) , 'rb' ).read() ) lowercase_ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def lowerCamelCase__ ( self , _lowercase , *_lowercase , **_lowercase ) -> List[str]: lowercase_ : int = self.tokenizer.tokenize(UpperCAmelCase__ ) lowercase_ , lowercase_ : List[str] = text.pad_model_inputs( UpperCAmelCase__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowercase_ : Dict = self.model.generate(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) return self.tokenizer.detokenize(UpperCAmelCase__ ) lowercase_ : Any = CompleteSentenceTransformer() lowercase_ : Any = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) lowercase_ : str = complete_model(UpperCAmelCase__ ) lowercase_ : Tuple = tf.keras.Model(UpperCAmelCase__ , UpperCAmelCase__ ) keras_model.save(UpperCAmelCase__ ) def lowerCamelCase__ ( self ) -> Tuple: # Has PT equivalent: this test relies on random sampling lowercase_ : Any = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } lowercase_ : int = 14 lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase_ : Tuple = 'Hello, my dog is cute and' lowercase_ : Tuple = tokenizer(UpperCAmelCase__ , return_tensors='tf' ) lowercase_ : Tuple = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase_ : Tuple = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowercase_ : List[Any] = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowercase_ : Optional[Any] = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowercase_ : Any = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCamelCase__ ( self ) -> List[str]: # Has PT equivalent: ample use of framework-specific code lowercase_ : str = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowercase_ : Optional[Any] = 'Hugging Face is a technology company based in New York and Paris.' lowercase_ : List[str] = bart_tokenizer(UpperCAmelCase__ , return_tensors='tf' ).input_ids lowercase_ : Tuple = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowercase_ : Optional[int] = bart_model.generate(UpperCAmelCase__ ).numpy() class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase , _lowercase=None , **_lowercase ) -> List[str]: return super().call(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ : Tuple = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowercase_ : Optional[int] = bart_model.generate(UpperCAmelCase__ , foo='bar' ).numpy() self.assertTrue(np.array_equal(UpperCAmelCase__ , UpperCAmelCase__ ) ) class __magic_name__ ( bart_model.model.encoder.__class__ ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Any: return super().call(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ : Tuple = FakeEncoder(bart_model.config , bart_model.model.shared ) lowercase_ : List[Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowercase_ : List[str] = bart_model.generate(UpperCAmelCase__ ).numpy() with self.assertRaises(UpperCAmelCase__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCAmelCase__ , foo='bar' )
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
'''simple docstring''' from manim import * class __magic_name__ ( __a ): """simple docstring""" def lowerCamelCase__ ( self ) -> str: lowercase_ : Any = Rectangle(height=0.5 , width=0.5 ) lowercase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase_ : Union[str, Any] = [mem.copy() for i in range(6 )] lowercase_ : Any = [mem.copy() for i in range(6 )] lowercase_ : Optional[Any] = VGroup(*A__ ).arrange(A__ , buff=0 ) lowercase_ : Tuple = VGroup(*A__ ).arrange(A__ , buff=0 ) lowercase_ : Union[str, Any] = VGroup(A__ , A__ ).arrange(A__ , buff=0 ) lowercase_ : Dict = Text('CPU' , font_size=24 ) lowercase_ : str = Group(A__ , A__ ).arrange(A__ , buff=0.5 , aligned_edge=A__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A__ ) lowercase_ : int = [mem.copy() for i in range(1 )] lowercase_ : Dict = VGroup(*A__ ).arrange(A__ , buff=0 ) lowercase_ : str = Text('GPU' , font_size=24 ) lowercase_ : Union[str, Any] = Group(A__ , A__ ).arrange(A__ , buff=0.5 , aligned_edge=A__ ) gpu.align_to(A__ , A__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(A__ ) lowercase_ : Optional[Any] = [mem.copy() for i in range(6 )] lowercase_ : int = VGroup(*A__ ).arrange(A__ , buff=0 ) lowercase_ : Any = Text('Model' , font_size=24 ) lowercase_ : Optional[int] = Group(A__ , A__ ).arrange(A__ , buff=0.5 , aligned_edge=A__ ) model.move_to([3, -1.0, 0] ) self.play( Create(A__ , run_time=1 ) , Create(A__ , run_time=1 ) , Create(A__ , run_time=1 ) , ) lowercase_ : List[str] = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=24 , ) lowercase_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase_ : List[Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(A__ , run_time=2.5 ) , Write(A__ ) , Write(A__ ) ) self.add(A__ ) lowercase_ : int = [] lowercase_ : str = [] lowercase_ : Union[str, Any] = [] for i, rect in enumerate(A__ ): lowercase_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A__ , opacity=0.7 ) cpu_target.move_to(A__ ) cpu_target.generate_target() lowercase_ : Tuple = 0.46 / 4 lowercase_ : Any = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=A__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=A__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=A__ , buff=0.0 ) cpu_targs.append(A__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(A__ ) ) second_animations.append(MoveToTarget(A__ , run_time=1.5 ) ) self.play(*A__ ) self.play(*A__ ) self.wait()
721
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' import random from typing import Any def _UpperCAmelCase ( a : Optional[int] ) -> list[Any]: """simple docstring""" for _ in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase_ : Union[str, Any] = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) lowercase_ : List[Any] = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) lowercase_ , lowercase_ : Optional[int] = data[b], data[a] return data if __name__ == "__main__": A: Tuple = [0, 1, 2, 3, 4, 5, 6, 7] A: List[str] = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase_ : Optional[Any] = LxmertConfig.from_json_file(lowercase__ ) print(f"Building PyTorch model from configuration: {config}" ) lowercase_ : Union[str, Any] = LxmertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": A: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A: Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset A: Union[str, Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __magic_name__ ( nn.Module ): """simple docstring""" def __init__( self , _lowercase ) -> str: super().__init__() lowercase_ : Dict = torchvision.models.resnetaaa(pretrained=lowercase__ ) lowercase_ : Optional[Any] = list(model.children() )[:-2] lowercase_ : Union[str, Any] = nn.Sequential(*lowercase__ ) lowercase_ : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self , _lowercase ) -> str: lowercase_ : Tuple = self.pool(self.model(lowercase__ ) ) lowercase_ : Union[str, Any] = torch.flatten(lowercase__ , start_dim=2 ) lowercase_ : List[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class __magic_name__ ( a__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : List[Any] = [json.loads(lowercase__ ) for l in open(lowercase__ )] lowercase_ : Optional[Any] = os.path.dirname(lowercase__ ) lowercase_ : Dict = tokenizer lowercase_ : Any = labels lowercase_ : Tuple = len(lowercase__ ) lowercase_ : Tuple = max_seq_length lowercase_ : Optional[Any] = transforms def __len__( self ) -> Optional[int]: return len(self.data ) def __getitem__( self , _lowercase ) -> Optional[int]: lowercase_ : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=lowercase__ ) ) lowercase_ : Dict = sentence[0], sentence[1:-1], sentence[-1] lowercase_ : int = sentence[: self.max_seq_length] lowercase_ : Union[str, Any] = torch.zeros(self.n_classes ) lowercase_ : Any = 1 lowercase_ : List[str] = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) lowercase_ : Optional[Any] = self.transforms(lowercase__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Optional[Any] = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def _UpperCAmelCase ( a : Any ) -> List[str]: """simple docstring""" lowercase_ : Optional[Any] = [len(row['sentence'] ) for row in batch] lowercase_ : List[str] = len(lowerCAmelCase_ ), max(lowerCAmelCase_ ) lowercase_ : Dict = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.long ) lowercase_ : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ): lowercase_ : Dict = input_row['''sentence'''] lowercase_ : str = 1 lowercase_ : Optional[int] = torch.stack([row['image'] for row in batch] ) lowercase_ : str = torch.stack([row['label'] for row in batch] ) lowercase_ : Dict = torch.stack([row['image_start_token'] for row in batch] ) lowercase_ : Union[str, Any] = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _UpperCAmelCase ( ) -> Tuple: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class __magic_name__ ( _UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""image_processor""", """feature_extractor"""] SCREAMING_SNAKE_CASE_ : List[str] = """TvltImageProcessor""" SCREAMING_SNAKE_CASE_ : Optional[Any] = """TvltFeatureExtractor""" def __init__( self , _lowercase , _lowercase ) -> Tuple: super().__init__(image_processor=lowercase__ , feature_extractor=lowercase__ ) lowercase_ : str = image_processor lowercase_ : Dict = feature_extractor def __call__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=False , *_lowercase , **_lowercase , ) -> Optional[Any]: if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) lowercase_ : Optional[Any] = None if images is not None: lowercase_ : str = self.image_processor(lowercase__ , mask_pixel=lowercase__ , *lowercase__ , **lowercase__ ) if images_mixed is not None: lowercase_ : Union[str, Any] = self.image_processor(lowercase__ , is_mixed=lowercase__ , *lowercase__ , **lowercase__ ) if audio is not None: lowercase_ : Tuple = self.feature_extractor( lowercase__ , *lowercase__ , sampling_rate=lowercase__ , mask_audio=lowercase__ , **lowercase__ ) lowercase_ : int = {} if audio is not None: output_dict.update(lowercase__ ) if images is not None: output_dict.update(lowercase__ ) if images_mixed_dict is not None: output_dict.update(lowercase__ ) return output_dict @property def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = self.image_processor.model_input_names lowercase_ : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
703
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
0
'''simple docstring''' def _UpperCAmelCase ( a : int ) -> Tuple: # noqa: E741 """simple docstring""" lowercase_ : List[Any] = len(a_ ) lowercase_ : List[str] = 0 lowercase_ : Union[str, Any] = [0] * n lowercase_ : Optional[int] = [False] * n lowercase_ : Optional[int] = [False] * n def dfs(a : List[str] , a : Dict , a : Union[str, Any] , a : List[str] ): if parent == root: out_edge_count += 1 lowercase_ : List[Any] = True lowercase_ : Optional[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase_ : str = dfs(a_ , a_ , a_ , a_ ) lowercase_ : List[Any] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase_ : Optional[int] = True # AP found via cycle if at == low[to]: lowercase_ : str = True else: lowercase_ : Any = min(low[at] , a_ ) return out_edge_count for i in range(a_ ): if not visited[i]: lowercase_ : Any = 0 lowercase_ : Dict = dfs(a_ , a_ , -1 , a_ ) lowercase_ : List[str] = out_edge_count > 1 for x in range(len(a_ ) ): if is_art[x] is True: print(a_ ) # Adjacency list of graph A: int = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
704
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType A: Dict = get_logger(__name__) def _UpperCAmelCase ( a : List[Any] , a : str , a : Dict , a : int , a : List[Any]=0 ) -> int: """simple docstring""" os.makedirs(a , exist_ok=a ) with FSDP.state_dict_type( a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ : Optional[int] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ : List[Any] = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin" lowercase_ : Dict = os.path.join(a , a ) if accelerator.process_index == 0: logger.info(f"Saving model to {output_model_file}" ) torch.save(a , a ) logger.info(f"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ : Any = ( f"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) lowercase_ : str = os.path.join(a , a ) logger.info(f"Saving model to {output_model_file}" ) torch.save(a , a ) logger.info(f"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ : Union[str, Any] = os.path.join(a , f"{MODEL_NAME}_{model_index}" ) os.makedirs(a , exist_ok=a ) logger.info(f"Saving model to {ckpt_dir}" ) lowercase_ : Optional[Any] = {'model': state_dict} dist_cp.save_state_dict( state_dict=a , storage_writer=dist_cp.FileSystemWriter(a ) , planner=DefaultSavePlanner() , ) logger.info(f"Model saved to {ckpt_dir}" ) def _UpperCAmelCase ( a : Optional[int] , a : List[str] , a : Union[str, Any] , a : Dict , a : List[Any]=0 ) -> List[Any]: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return lowercase_ : str = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin" lowercase_ : List[Any] = os.path.join(a , a ) logger.info(f"Loading model from {input_model_file}" ) lowercase_ : Any = torch.load(a ) logger.info(f"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ : Any = ( f"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) lowercase_ : int = os.path.join(a , a ) logger.info(f"Loading model from {input_model_file}" ) lowercase_ : Any = torch.load(a ) logger.info(f"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ : List[str] = ( os.path.join(a , f"{MODEL_NAME}_{model_index}" ) if f"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(f"Loading model from {ckpt_dir}" ) lowercase_ : str = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=a , storage_reader=dist_cp.FileSystemReader(a ) , planner=DefaultLoadPlanner() , ) lowercase_ : Tuple = state_dict['model'] logger.info(f"Model loaded from {ckpt_dir}" ) model.load_state_dict(a ) def _UpperCAmelCase ( a : str , a : Any , a : List[Any] , a : Dict , a : int , a : Optional[Any]=0 ) -> Optional[Any]: """simple docstring""" os.makedirs(a , exist_ok=a ) with FSDP.state_dict_type( a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ : Any = FSDP.optim_state_dict(a , a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase_ : List[Any] = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) lowercase_ : Optional[Any] = os.path.join(a , a ) logger.info(f"Saving Optimizer state to {output_optimizer_file}" ) torch.save(a , a ) logger.info(f"Optimizer state saved in {output_optimizer_file}" ) else: lowercase_ : str = os.path.join(a , f"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(a , exist_ok=a ) logger.info(f"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(a ) , planner=DefaultSavePlanner() , ) logger.info(f"Optimizer state saved in {ckpt_dir}" ) def _UpperCAmelCase ( a : Union[str, Any] , a : Dict , a : Union[str, Any] , a : Any , a : Tuple , a : int=0 ) -> Optional[int]: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ : List[str] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase_ : int = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) lowercase_ : Union[str, Any] = os.path.join(a , a ) logger.info(f"Loading Optimizer state from {input_optimizer_file}" ) lowercase_ : Tuple = torch.load(a ) logger.info(f"Optimizer state loaded from {input_optimizer_file}" ) else: lowercase_ : int = ( os.path.join(a , f"{OPTIMIZER_NAME}_{optimizer_index}" ) if f"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(f"Loading Optimizer from {ckpt_dir}" ) lowercase_ : List[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(a ) , ) lowercase_ : Optional[int] = optim_state['optimizer'] logger.info(f"Optimizer loaded from {ckpt_dir}" ) lowercase_ : Tuple = FSDP.optim_state_dict_to_load(a , a , a ) optimizer.load_state_dict(a )
705
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
0
'''simple docstring''' from math import loga def _UpperCAmelCase ( a : Optional[Any] ) -> int: """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(lowercase_ , lowercase_ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A: Optional[int] = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Any = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = ["LayoutLMv2FeatureExtractor"] A: Dict = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A: List[Any] = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase, R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ', ) class __magic_name__ ( _lowerCAmelCase ): """simple docstring""" def snake_case__ ( self , _lowercase ) -> np.ndarray: if self.framework == "tf": lowercase_ : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase_ : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ) else: raise ValueError('Unsupported framework' ) return masked_index def snake_case__ ( self , _lowercase ) -> np.ndarray: lowercase_ : List[str] = self.get_masked_index(_lowerCAmelCase ) lowercase_ : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case__ ( self , _lowercase ) -> str: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowerCAmelCase ) def snake_case__ ( self , _lowercase , _lowercase=None , **_lowercase ) -> Dict[str, GenericTensor]: if return_tensors is None: lowercase_ : List[str] = self.framework lowercase_ : List[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.ensure_exactly_one_mask_token(_lowerCAmelCase ) return model_inputs def snake_case__ ( self , _lowercase ) -> Any: lowercase_ : Dict = self.model(**_lowerCAmelCase ) lowercase_ : int = model_inputs['input_ids'] return model_outputs def snake_case__ ( self , _lowercase , _lowercase=5 , _lowercase=None ) -> Tuple: if target_ids is not None and target_ids.shape[0] < top_k: lowercase_ : Any = target_ids.shape[0] lowercase_ : List[str] = model_outputs['input_ids'][0] lowercase_ : Tuple = model_outputs['logits'] if self.framework == "tf": lowercase_ : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase_ : List[Any] = outputs.numpy() lowercase_ : Optional[Any] = outputs[0, masked_index, :] lowercase_ : Union[str, Any] = stable_softmax(_lowerCAmelCase , axis=-1 ) if target_ids is not None: lowercase_ : Dict = tf.gather_nd(tf.squeeze(_lowerCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) lowercase_ : Optional[int] = tf.expand_dims(_lowerCAmelCase , 0 ) lowercase_ : List[Any] = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) lowercase_ , lowercase_ : str = topk.values.numpy(), topk.indices.numpy() else: lowercase_ : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase_ : Optional[Any] = outputs[0, masked_index, :] lowercase_ : Dict = logits.softmax(dim=-1 ) if target_ids is not None: lowercase_ : str = probs[..., target_ids] lowercase_ , lowercase_ : Optional[int] = probs.topk(_lowerCAmelCase ) lowercase_ : Tuple = [] lowercase_ : Tuple = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowercase_ : int = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowercase_ : Union[str, Any] = input_ids.numpy().copy() if target_ids is not None: lowercase_ : Tuple = target_ids[p].tolist() lowercase_ : Optional[int] = p # Filter padding out: lowercase_ : str = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase_ : Tuple = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) lowercase_ : List[Any] = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(_lowerCAmelCase ) result.append(_lowerCAmelCase ) if single_mask: return result[0] return result def snake_case__ ( self , _lowercase , _lowercase=None ) -> Union[str, Any]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase_ : Tuple = [targets] try: lowercase_ : Optional[Any] = self.tokenizer.get_vocab() except Exception: lowercase_ : List[Any] = {} lowercase_ : int = [] for target in targets: lowercase_ : List[str] = vocab.get(_lowerCAmelCase , _lowerCAmelCase ) if id_ is None: lowercase_ : str = self.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , max_length=1 , truncation=_lowerCAmelCase , )['input_ids'] if len(_lowerCAmelCase ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " 'We cannot replace it with anything meaningful, ignoring it' ) continue lowercase_ : List[Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase_ : List[str] = list(set(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) == 0: raise ValueError('At least one target must be provided when passed.' ) lowercase_ : Optional[int] = np.array(_lowerCAmelCase ) return target_ids def snake_case__ ( self , _lowercase=None , _lowercase=None ) -> Tuple: lowercase_ : Optional[int] = {} if targets is not None: lowercase_ : str = self.get_target_ids(_lowerCAmelCase , _lowerCAmelCase ) lowercase_ : Any = target_ids if top_k is not None: lowercase_ : Any = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , _lowercase , *_lowercase , **_lowercase ) -> Any: lowercase_ : List[Any] = super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1: return outputs[0] return outputs
708
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=18 , _lowercase=30 , _lowercase=400 , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=None , ) -> Dict: lowercase_ : List[Any] = size if size is not None else {"""shortest_edge""": 20} lowercase_ : List[Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[Any] = parent lowercase_ : Optional[int] = batch_size lowercase_ : Union[str, Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : int = max_resolution lowercase_ : List[str] = do_resize lowercase_ : Optional[Any] = size lowercase_ : List[str] = do_center_crop lowercase_ : Tuple = crop_size def lowerCamelCase__ ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __magic_name__ ( UpperCamelCase__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = MobileNetVaImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Dict = MobileNetVaImageProcessingTester(self ) @property def lowerCamelCase__ ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self ) -> str: lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , 'do_resize' ) ) self.assertTrue(hasattr(_a , 'size' ) ) self.assertTrue(hasattr(_a , 'do_center_crop' ) ) self.assertTrue(hasattr(_a , 'crop_size' ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowercase_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCamelCase__ ( self ) -> List[str]: pass def lowerCamelCase__ ( self ) -> str: # Initialize image_processing lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input lowercase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase_ : Union[str, Any] = image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase__ ( self ) -> Union[str, Any]: # Initialize image_processing lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input lowercase_ : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase_ : Any = image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase__ ( self ) -> int: # Initialize image_processing lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input lowercase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase_ : Union[str, Any] = image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
709
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __a: Any = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = PegasusTokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = PegasusTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Dict = True def lowerCamelCase__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing lowercase_ : List[str] = PegasusTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self ) -> str: return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowerCamelCase__ ( self , **_lowercase ) -> Dict: return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase__ ( self , _lowercase ) -> Any: return ("This is a test", "This is a test") def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : List[Any] = '''</s>''' lowercase_ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(UpperCamelCase__ ) , 1103 ) def lowerCamelCase__ ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase_ : List[Any] = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowercase_ : str = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] lowercase_ : List[str] = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase_ : List[str] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowercase_ : List[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase_ : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Any = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase_ : List[Any] = '''To ensure a smooth flow of bank resolutions.''' lowercase_ : Union[str, Any] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase_ : List[str] = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Union[str, Any] = ['''This is going to be way too long.''' * 150, '''short example'''] lowercase_ : Tuple = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase_ : Tuple = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='pt' ) lowercase_ : Any = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ ( self ) -> Optional[Any]: # fmt: off lowercase_ : Optional[Any] = {'''input_ids''': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class __magic_name__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = PegasusTokenizer SCREAMING_SNAKE_CASE_ : Tuple = PegasusTokenizerFast SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True def lowerCamelCase__ ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Optional[int] = PegasusTokenizer(UpperCamelCase__ , offset=0 , mask_token_sent=UpperCamelCase__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self ) -> List[Any]: return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowerCamelCase__ ( self , **_lowercase ) -> List[str]: return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return ("This is a test", "This is a test") def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase_ : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowercase_ : List[str] = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] lowercase_ : str = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_torch def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = ['''This is going to be way too long.''' * 1000, '''short example'''] lowercase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase_ : List[Any] = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='pt' ) lowercase_ : Dict = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Tuple = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowercase_ : List[str] = self._large_tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual( UpperCamelCase__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self ) -> Optional[int]: lowercase_ : Any = '' lowercase_ : Union[str, Any] = '' lowercase_ : Any = [] def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase_ : List[str] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowercase_ : str = self.__min_dist_top_down_dp(_lowerCamelCase , n - 1 ) lowercase_ : List[Any] = self.__min_dist_top_down_dp(m - 1 , _lowerCamelCase ) lowercase_ : str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowercase_ : Any = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self.dp[m][n] def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> int: lowercase_ : int = worda lowercase_ : Optional[int] = worda lowercase_ : Dict = [[-1 for _ in range(len(_lowerCamelCase ) )] for _ in range(len(_lowerCamelCase ) )] return self.__min_dist_top_down_dp(len(_lowerCamelCase ) - 1 , len(_lowerCamelCase ) - 1 ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> int: lowercase_ : str = worda lowercase_ : Any = worda lowercase_ : str = len(_lowerCamelCase ) lowercase_ : int = len(_lowerCamelCase ) lowercase_ : Union[str, Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase_ : Optional[int] = j elif j == 0: # second string is empty lowercase_ : Optional[int] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase_ : Tuple = self.dp[i - 1][j - 1] else: lowercase_ : Union[str, Any] = self.dp[i][j - 1] lowercase_ : List[str] = self.dp[i - 1][j] lowercase_ : List[Any] = self.dp[i - 1][j - 1] lowercase_ : Tuple = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self.dp[m][n] if __name__ == "__main__": A: List[Any] = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() A: Optional[Any] = input("Enter the first string: ").strip() A: List[str] = input("Enter the second string: ").strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=32 , _lowercase=2 , _lowercase=3 , _lowercase=16 , _lowercase=[32, 64, 128] , _lowercase=[1, 2, 1] , _lowercase=[2, 2, 4] , _lowercase=2 , _lowercase=2.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=True , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=10 , _lowercase=8 , _lowercase=["stage1", "stage2"] , _lowercase=[1, 2] , ) -> Optional[Any]: lowercase_ : int = parent lowercase_ : Tuple = batch_size lowercase_ : int = image_size lowercase_ : Any = patch_size lowercase_ : Any = num_channels lowercase_ : Union[str, Any] = embed_dim lowercase_ : Any = hidden_sizes lowercase_ : Dict = depths lowercase_ : int = num_heads lowercase_ : int = window_size lowercase_ : Optional[int] = mlp_ratio lowercase_ : List[str] = qkv_bias lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Optional[Any] = drop_path_rate lowercase_ : Optional[int] = hidden_act lowercase_ : str = use_absolute_embeddings lowercase_ : Any = patch_norm lowercase_ : int = layer_norm_eps lowercase_ : str = initializer_range lowercase_ : Tuple = is_training lowercase_ : Any = scope lowercase_ : Any = use_labels lowercase_ : List[Any] = type_sequence_label_size lowercase_ : List[str] = encoder_stride lowercase_ : str = out_features lowercase_ : List[str] = out_indices def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Dict = None if self.use_labels: lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ) -> Union[str, Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: lowercase_ : List[Any] = FocalNetModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Any = model(_lowercase ) lowercase_ : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[str]: lowercase_ : List[Any] = FocalNetBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ : Optional[int] = None lowercase_ : Union[str, Any] = FocalNetBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : Any = FocalNetForMaskedImageModeling(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = model(_lowercase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ : Union[str, Any] = 1 lowercase_ : str = FocalNetForMaskedImageModeling(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Optional[int] = model(_lowercase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : List[Any] = self.type_sequence_label_size lowercase_ : int = FocalNetForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : List[str] = 1 lowercase_ : Union[str, Any] = FocalNetForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : List[str] = self.prepare_config_and_inputs() lowercase_ : str = config_and_inputs lowercase_ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _A, _A, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[str] = False def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Any = FocalNetModelTester(self ) lowercase_ : Any = ConfigTester(self , config_class=_lowercase , embed_dim=37 , has_text_modality=_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ) -> str: return def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> Dict: pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def lowerCamelCase__ ( self ) -> List[Any]: pass def lowerCamelCase__ ( self ) -> Dict: lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ : List[Any] = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ : Union[str, Any] = model_class(_lowercase ) lowercase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Tuple = [*signature.parameters.keys()] lowercase_ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : List[str] = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): lowercase_ : Any = model(**self._prepare_for_class(_lowercase , _lowercase ) ) lowercase_ : Optional[int] = outputs.hidden_states lowercase_ : Union[str, Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # FocalNet has a different seq_length lowercase_ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_lowercase ) , _lowercase ) lowercase_ : Dict = reshaped_hidden_states[0].shape lowercase_ : Any = ( reshaped_hidden_states[0].view(_lowercase , _lowercase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase__ ( self ) -> str: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ : List[Any] = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Any = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[Any] = 3 lowercase_ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ : Tuple = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : int = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @slow def lowerCamelCase__ ( self ) -> str: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = FocalNetModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : int = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: lowercase_ : Dict = model_class(config=_lowercase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ) -> Union[str, Any]: # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowercase ) lowercase_ : Optional[int] = self.default_image_processor lowercase_ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowercase_ : int = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : Union[str, Any] = model(**_lowercase ) # verify the logits lowercase_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowercase ) lowercase_ : Union[str, Any] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __magic_name__ ( _A, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = (FocalNetBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : int = FocalNetConfig SCREAMING_SNAKE_CASE_ : Optional[Any] = False def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Any = FocalNetModelTester(self )
712
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A: List[Any] = logging.get_logger(__name__) A: Optional[Any] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class __magic_name__ ( __lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 'conditional_detr' SCREAMING_SNAKE_CASE_ : Dict = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowercase=True , _lowercase=None , _lowercase=3 , _lowercase=300 , _lowercase=6 , _lowercase=2048 , _lowercase=8 , _lowercase=6 , _lowercase=2048 , _lowercase=8 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=True , _lowercase="relu" , _lowercase=256 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1.0 , _lowercase=False , _lowercase="sine" , _lowercase="resnet50" , _lowercase=True , _lowercase=False , _lowercase=2 , _lowercase=5 , _lowercase=2 , _lowercase=1 , _lowercase=1 , _lowercase=2 , _lowercase=5 , _lowercase=2 , _lowercase=0.25 , **_lowercase , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase_ : Union[str, Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__A , __A ): lowercase_ : List[Any] = backbone_config.get('model_type' ) lowercase_ : int = CONFIG_MAPPING[backbone_model_type] lowercase_ : Dict = config_class.from_dict(__A ) lowercase_ : Tuple = use_timm_backbone lowercase_ : Tuple = backbone_config lowercase_ : Optional[int] = num_channels lowercase_ : Optional[Any] = num_queries lowercase_ : Dict = d_model lowercase_ : List[Any] = encoder_ffn_dim lowercase_ : Optional[Any] = encoder_layers lowercase_ : Any = encoder_attention_heads lowercase_ : Union[str, Any] = decoder_ffn_dim lowercase_ : Optional[Any] = decoder_layers lowercase_ : Dict = decoder_attention_heads lowercase_ : str = dropout lowercase_ : Union[str, Any] = attention_dropout lowercase_ : Union[str, Any] = activation_dropout lowercase_ : Tuple = activation_function lowercase_ : int = init_std lowercase_ : Any = init_xavier_std lowercase_ : Optional[Any] = encoder_layerdrop lowercase_ : Tuple = decoder_layerdrop lowercase_ : int = encoder_layers lowercase_ : Tuple = auxiliary_loss lowercase_ : Optional[int] = position_embedding_type lowercase_ : List[str] = backbone lowercase_ : List[str] = use_pretrained_backbone lowercase_ : str = dilation # Hungarian matcher lowercase_ : Optional[Any] = class_cost lowercase_ : Optional[Any] = bbox_cost lowercase_ : Optional[int] = giou_cost # Loss coefficients lowercase_ : List[Any] = mask_loss_coefficient lowercase_ : List[Any] = dice_loss_coefficient lowercase_ : str = cls_loss_coefficient lowercase_ : int = bbox_loss_coefficient lowercase_ : Any = giou_loss_coefficient lowercase_ : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__A , **__A ) @property def lowerCamelCase__ ( self ) -> int: return self.encoder_attention_heads @property def lowerCamelCase__ ( self ) -> int: return self.d_model def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase_ : List[Any] = self.backbone_config.to_dict() lowercase_ : Any = self.__class__.model_type return output class __magic_name__ ( __lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-5 @property def lowerCamelCase__ ( self ) -> int: return 12
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A: Dict = "▁" A: Any = {"vocab_file": "spiece.model"} A: List[Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } A: Tuple = { "google/pegasus-xsum": 5_1_2, } A: Optional[int] = logging.get_logger(__name__) class __magic_name__ ( UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[Any] = ['input_ids', 'attention_mask'] def __init__( self , _lowercase , _lowercase="<pad>" , _lowercase="</s>" , _lowercase="<unk>" , _lowercase="<mask_2>" , _lowercase="<mask_1>" , _lowercase=None , _lowercase=103 , _lowercase = None , **_lowercase , ) -> None: lowercase_ : Any = offset if additional_special_tokens is not None: if not isinstance(__A , __A ): raise TypeError( f"additional_special_tokens should be of type {type(__A )}, but is" f" {type(__A )}" ) lowercase_ : List[str] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(__A ) , self.offset - 1 ) ] if len(set(__A ) ) != len(__A ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) lowercase_ : Optional[int] = additional_special_tokens_extended else: lowercase_ : Optional[int] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] lowercase_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__A , unk_token=__A , mask_token=__A , pad_token=__A , mask_token_sent=__A , offset=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) lowercase_ : Optional[Any] = mask_token_sent lowercase_ : str = vocab_file lowercase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # add special tokens to encoder dict lowercase_ : List[Any] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowercase_ : Any = {v: k for k, v in self.encoder.items()} @property def lowerCamelCase__ ( self ) -> int: return len(self.sp_model ) + self.offset def lowerCamelCase__ ( self ) -> Dict[str, int]: lowercase_ : Tuple = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: lowercase_ : str = self.__dict__.copy() lowercase_ : int = None return state def __setstate__( self , _lowercase ) -> str: lowercase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase_ : Any = {} lowercase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self , _lowercase ) -> List[str]: return self.sp_model.encode(__A , out_type=__A ) def lowerCamelCase__ ( self , _lowercase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowercase_ : str = self.sp_model.piece_to_id(__A ) return sp_id + self.offset def lowerCamelCase__ ( self , _lowercase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowercase_ : str = self.sp_model.IdToPiece(index - self.offset ) return token def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: lowercase_ : List[str] = [] lowercase_ : str = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__A ) + token lowercase_ : int = [] else: current_sub_tokens.append(__A ) out_string += self.sp_model.decode(__A ) return out_string.strip() def lowerCamelCase__ ( self , _lowercase=False ) -> Any: return 1 def lowerCamelCase__ ( self , _lowercase ) -> List[Any]: lowercase_ : Optional[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(__A ) elif token_ids_a is None: return self._special_token_mask(__A ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ ( self , _lowercase , _lowercase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : Tuple = os.path.join( __A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , 'wb' ) as fi: lowercase_ : Any = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A: Optional[Any] = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class __magic_name__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase=None , _lowercase=1 ) -> List[Any]: lowercase_ : List[Any] = tokenizer lowercase_ : int = dataset lowercase_ : str = len(__SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks lowercase_ : int = n_copies def __iter__( self ) -> str: lowercase_ : List[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowercase_ : str = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __magic_name__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> Tuple: lowercase_ : List[str] = start_length lowercase_ : List[Any] = eof_strings lowercase_ : str = tokenizer def __call__( self , _lowercase , _lowercase , **_lowercase ) -> str: lowercase_ : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowercase_ : List[str] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[Any] = re.split('(%s)' % '|'.join(_UpperCAmelCase ) , _UpperCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def _UpperCAmelCase ( a : List[str] , a : Optional[int] , a : int , a : Union[str, Any] , a : Tuple , a : List[Any]=2_0 , **a : str ) -> List[Any]: """simple docstring""" lowercase_ : Optional[int] = defaultdict(_UpperCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_UpperCAmelCase ) ): with torch.no_grad(): lowercase_ : int = batch['ids'].shape[-1] lowercase_ : Tuple = accelerator.unwrap_model(_UpperCAmelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_UpperCAmelCase , **_UpperCAmelCase ) # each task is generated batch_size times lowercase_ : Union[str, Any] = batch['task_id'].repeat(_UpperCAmelCase ) lowercase_ : Any = accelerator.pad_across_processes( _UpperCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowercase_ , lowercase_ : List[str] = accelerator.gather((generated_tokens, generated_tasks) ) lowercase_ : Any = generated_tokens.cpu().numpy() lowercase_ : Optional[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_UpperCAmelCase , _UpperCAmelCase ): gen_token_dict[task].append(_UpperCAmelCase ) lowercase_ : Optional[Any] = [[] for _ in range(_UpperCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowercase_ : Dict = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) code_gens[task].append(remove_last_block(_UpperCAmelCase ) ) return code_gens def _UpperCAmelCase ( ) -> Tuple: """simple docstring""" # Setup configuration lowercase_ : Tuple = HfArgumentParser(_UpperCAmelCase ) lowercase_ : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowercase_ : Tuple = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowercase_ : Tuple = 'false' if args.num_workers is None: lowercase_ : Optional[int] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowercase_ : Tuple = Accelerator() set_seed(args.seed , device_specific=_UpperCAmelCase ) # Load model and tokenizer lowercase_ : str = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase_ : List[Any] = tokenizer.eos_token lowercase_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowercase_ : int = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _UpperCAmelCase , _UpperCAmelCase )] ), } # Load evaluation dataset and metric lowercase_ : Tuple = load_dataset('openai_humaneval' ) lowercase_ : str = load_metric('code_eval' ) lowercase_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowercase_ : Union[str, Any] = args.n_samples // args.batch_size lowercase_ : List[Any] = TokenizedDataset(_UpperCAmelCase , human_eval['test'] , n_copies=_UpperCAmelCase , n_tasks=_UpperCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowercase_ : str = DataLoader(_UpperCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowercase_ : Union[str, Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowercase_ , lowercase_ : str = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) lowercase_ : List[Any] = complete_code( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , n_tasks=_UpperCAmelCase , batch_size=args.batch_size , **_UpperCAmelCase , ) if accelerator.is_main_process: lowercase_ : Dict = [] for task in tqdm(range(_UpperCAmelCase ) ): lowercase_ : int = human_eval['test'][task]['test'] lowercase_ : Optional[Any] = f"check({human_eval['test'][task]['entry_point']})" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowercase_ , lowercase_ : Dict = code_eval_metric.compute( references=_UpperCAmelCase , predictions=_UpperCAmelCase , num_workers=args.num_workers ) print(f"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase, UpperCamelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : List[str] = load_tool('text-to-speech' ) self.tool.setup() def lowerCamelCase__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowercase_ : Dict = self.tool('hey' ) lowercase_ : List[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def lowerCamelCase__ ( self ) -> List[Any]: torch.manual_seed(0 ) lowercase_ : Any = self.tool('hey' ) lowercase_ : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
716
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
0
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging A: Optional[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( ) -> str: """simple docstring""" lowercase_ : Union[str, Any] = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowercase_ : int = json.loads(_lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowercase_ : Optional[Any] = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowercase_ : Dict = json.loads(_lowercase ) if not mpi_options.get('sagemaker_mpi_enabled' , _lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( default='', metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'}, ) def lowerCamelCase__ ( self ) -> Tuple: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , __A , ) @cached_property def lowerCamelCase__ ( self ) -> "torch.device": logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: lowercase_ : List[Any] = torch.device('cpu' ) lowercase_ : str = 0 elif is_sagemaker_model_parallel_available(): lowercase_ : Tuple = smp.local_rank() lowercase_ : List[Any] = torch.device('cuda' , __A ) lowercase_ : Union[str, Any] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) lowercase_ : int = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) lowercase_ : Tuple = torch.device('cuda' , self.local_rank ) lowercase_ : Optional[int] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowercase_ : Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowercase_ : Dict = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) lowercase_ : Dict = torch.device('cuda' , self.local_rank ) lowercase_ : int = 1 if device.type == "cuda": torch.cuda.set_device(__A ) return device @property def lowerCamelCase__ ( self ) -> Tuple: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowerCamelCase__ ( self ) -> Any: return not is_sagemaker_model_parallel_available() @property def lowerCamelCase__ ( self ) -> Optional[Any]: return False
717
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=128 , _lowercase=32 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> Union[str, Any]: lowercase_ : List[Any] = parent lowercase_ : int = batch_size lowercase_ : Union[str, Any] = seq_length lowercase_ : List[str] = is_training lowercase_ : Optional[Any] = use_input_mask lowercase_ : str = use_token_type_ids lowercase_ : Union[str, Any] = use_labels lowercase_ : Optional[int] = vocab_size lowercase_ : Optional[int] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : List[str] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Dict = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : List[str] = type_vocab_size lowercase_ : Dict = type_sequence_label_size lowercase_ : Optional[int] = initializer_range lowercase_ : str = num_labels lowercase_ : Any = num_choices lowercase_ : Union[str, Any] = scope def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Optional[int] = None if self.use_input_mask: lowercase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : str = None if self.use_token_type_ids: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Tuple = None lowercase_ : int = None lowercase_ : str = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ) -> str: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self ) -> Dict: ( lowercase_ ) : List[Any] = self.prepare_config_and_inputs() lowercase_ : Union[str, Any] = True lowercase_ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: lowercase_ : List[Any] = NezhaModel(config=A__ ) model.to(A__ ) model.eval() lowercase_ : Union[str, Any] = model(A__ , attention_mask=A__ , token_type_ids=A__ ) lowercase_ : str = model(A__ , token_type_ids=A__ ) lowercase_ : Optional[int] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> List[str]: lowercase_ : List[str] = True lowercase_ : List[Any] = NezhaModel(A__ ) model.to(A__ ) model.eval() lowercase_ : Tuple = model( A__ , attention_mask=A__ , token_type_ids=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) lowercase_ : Optional[Any] = model( A__ , attention_mask=A__ , token_type_ids=A__ , encoder_hidden_states=A__ , ) lowercase_ : Dict = model(A__ , attention_mask=A__ , token_type_ids=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : Any = NezhaForMaskedLM(config=A__ ) model.to(A__ ) model.eval() lowercase_ : int = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: lowercase_ : Optional[Any] = NezhaForNextSentencePrediction(config=A__ ) model.to(A__ ) model.eval() lowercase_ : int = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: lowercase_ : str = NezhaForPreTraining(config=A__ ) model.to(A__ ) model.eval() lowercase_ : Union[str, Any] = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , next_sentence_label=A__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: lowercase_ : str = NezhaForQuestionAnswering(config=A__ ) model.to(A__ ) model.eval() lowercase_ : str = model( A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Optional[int] = self.num_labels lowercase_ : Optional[int] = NezhaForSequenceClassification(A__ ) model.to(A__ ) model.eval() lowercase_ : List[Any] = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = self.num_labels lowercase_ : List[Any] = NezhaForTokenClassification(config=A__ ) model.to(A__ ) model.eval() lowercase_ : List[str] = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: lowercase_ : int = self.num_choices lowercase_ : Optional[int] = NezhaForMultipleChoice(config=A__ ) model.to(A__ ) model.eval() lowercase_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : int = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Any = self.prepare_config_and_inputs() ( lowercase_ ) : List[str] = config_and_inputs lowercase_ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : List[Any] = ( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : List[Any] = True def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> int: lowercase_ : Tuple = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class in get_values(A__ ): lowercase_ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A__ ) lowercase_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) return inputs_dict def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Optional[int] = NezhaModelTester(self ) lowercase_ : List[Any] = ConfigTester(self , config_class=A__ , hidden_size=37 ) def lowerCamelCase__ ( self ) -> Tuple: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A__ ) def lowerCamelCase__ ( self ) -> List[Any]: # This regression test was failing with PyTorch < 1.3 ( lowercase_ ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*A__ ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__ ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def lowerCamelCase__ ( self ) -> Tuple: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Union[str, Any] = NezhaModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @slow @require_torch_gpu def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase_ : Optional[Any] = True lowercase_ : Dict = model_class(config=A__ ) lowercase_ : Optional[Any] = self._prepare_for_class(A__ , A__ ) lowercase_ : List[Any] = torch.jit.trace( A__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A__ , os.path.join(A__ , 'bert.pt' ) ) lowercase_ : Optional[Any] = torch.jit.load(os.path.join(A__ , 'bert.pt' ) , map_location=A__ ) loaded(inputs_dict['input_ids'].to(A__ ) , inputs_dict['attention_mask'].to(A__ ) ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[int] = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowercase_ : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : Any = model(A__ , attention_mask=A__ )[0] lowercase_ : str = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , A__ ) lowercase_ : Optional[Any] = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self ) -> str: lowercase_ : List[Any] = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowercase_ : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : List[Any] = model(A__ , attention_mask=A__ )[0] lowercase_ : Union[str, Any] = torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , A__ ) lowercase_ : Optional[int] = torch.tensor( [[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1E-4 ) )
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
0
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _UpperCAmelCase ( ) -> int: """simple docstring""" lowercase_ : Optional[Any] = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase_ : Union[str, Any] = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase__ ) # Let's go lowercase_ : Optional[Any] = parser.parse_args() if not hasattr(lowerCAmelCase__ , 'func' ): parser.print_help() exit(1 ) # Run lowercase_ : Any = args.func(lowerCAmelCase__ ) service.run() if __name__ == "__main__": main()
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = LongformerTokenizer SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[int] = LongformerTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[int] = True def lowerCamelCase__ ( self ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowercase_ : str = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowercase_ : Optional[int] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase_ : Optional[int] = {'unk_token': '<unk>'} lowercase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) def lowerCamelCase__ ( self , **_lowercase ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase__ ( self , **_lowercase ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase__ ( self , _lowercase ) -> int: lowercase_ : List[str] = 'lower newer' lowercase_ : str = 'lower newer' return input_text, output_text def lowerCamelCase__ ( self ) -> str: lowercase_ : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ : List[Any] = 'lower newer' lowercase_ : List[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowercase_ : Any = tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowercase_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[int] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=UpperCamelCase__ ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=UpperCamelCase__ ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Dict = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) lowercase_ : List[str] = tokenizer.encode('sequence builders' , add_special_tokens=UpperCamelCase__ ) lowercase_ : Tuple = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCamelCase__ ) lowercase_ : List[Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) lowercase_ : List[str] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) lowercase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCamelCase__ ( self ) -> Any: lowercase_ : Union[str, Any] = self.get_tokenizer() lowercase_ : Tuple = 'Encode this sequence.' lowercase_ : Tuple = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments lowercase_ : Union[str, Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) lowercase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ : List[str] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) lowercase_ : str = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens lowercase_ : str = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space lowercase_ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) lowercase_ : List[Any] = 'Encode <mask> sequence' lowercase_ : Union[str, Any] = 'Encode <mask>sequence' lowercase_ : Union[str, Any] = tokenizer.encode(UpperCamelCase__ ) lowercase_ : List[str] = encoded.index(UpperCamelCase__ ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ : List[Any] = tokenizer.encode(UpperCamelCase__ ) lowercase_ : Dict = encoded.index(UpperCamelCase__ ) lowercase_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( self ) -> List[str]: pass def lowerCamelCase__ ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ : str = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ : str = 'A, <mask> AllenNLP sentence.' lowercase_ : Optional[int] = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) lowercase_ : Any = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowercase_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowercase_ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( UpperCamelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowerCamelCase__ ( self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) lowercase_ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , UpperCamelCase__ ) self.assertEqual(post_processor_state['add_prefix_space'] , UpperCamelCase__ ) self.assertEqual(post_processor_state['trim_offsets'] , UpperCamelCase__ ) def lowerCamelCase__ ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase_ : List[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowercase_ : Dict = f"{text_of_1_token} {text_of_1_token}" lowercase_ : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) lowercase_ : List[str] = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) lowercase_ : Dict = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) lowercase_ : Any = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) lowercase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) lowercase_ : int = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) lowercase_ : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) lowercase_ : Optional[Any] = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) lowercase_ : Any = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase_ : int = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) lowercase_ : List[Any] = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) lowercase_ : Optional[int] = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) lowercase_ : Tuple = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) lowercase_ : Optional[Any] = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
721
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' def _UpperCAmelCase ( ) -> Tuple: """simple docstring""" lowercase_ : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] lowercase_ : int = 6 lowercase_ : Tuple = 1 lowercase_ : Tuple = 1_9_0_1 lowercase_ : str = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase_ : Tuple = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 lowercase_ : Tuple = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 lowercase_ : Any = day - days_per_month[month - 2] if month > 1_2: year += 1 lowercase_ : Any = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() A: str = logging.get_logger(__name__) def _UpperCAmelCase ( a : str ) -> YolosConfig: """simple docstring""" lowercase_ : str = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase_ : str = 1_9_2 lowercase_ : Optional[Any] = 7_6_8 lowercase_ : Optional[Any] = 1_2 lowercase_ : Any = 3 lowercase_ : int = [8_0_0, 1_3_3_3] lowercase_ : Tuple = False elif yolos_name == "yolos_s_dWr": lowercase_ : Dict = 3_3_0 lowercase_ : List[Any] = 1_4 lowercase_ : int = 6 lowercase_ : str = 1_3_2_0 elif "yolos_s" in yolos_name: lowercase_ : Union[str, Any] = 3_8_4 lowercase_ : str = 1_5_3_6 lowercase_ : List[str] = 1_2 lowercase_ : Optional[Any] = 6 elif "yolos_b" in yolos_name: lowercase_ : Union[str, Any] = [8_0_0, 1_3_4_4] lowercase_ : List[Any] = 9_1 lowercase_ : Dict = "huggingface/label-files" lowercase_ : str = "coco-detection-id2label.json" lowercase_ : Any = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) lowercase_ : int = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase_ : Optional[Any] = idalabel lowercase_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( a : dict , a : YolosConfig , a : bool = False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : Any = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) lowercase_ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Any = in_proj_weight[: config.hidden_size, :] lowercase_ : Union[str, Any] = in_proj_bias[: config.hidden_size] lowercase_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : int = in_proj_weight[-config.hidden_size :, :] lowercase_ : List[Any] = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" if "backbone" in name: lowercase_ : Optional[int] = name.replace('backbone' , 'vit' ) if "cls_token" in name: lowercase_ : str = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: lowercase_ : str = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: lowercase_ : List[str] = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: lowercase_ : str = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowercase_ : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: lowercase_ : Dict = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowercase_ : Tuple = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase_ : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase_ : Any = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase_ : Optional[int] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase_ : str = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase_ : Dict = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: lowercase_ : int = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: lowercase_ : Any = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: lowercase_ : Any = name.replace('vit.norm' , 'vit.layernorm' ) return name def _UpperCAmelCase ( a : dict , a : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase_ : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: lowercase_ : str = key.split('.' ) lowercase_ : str = int(key_split[2] ) lowercase_ : Dict = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase_ : Dict = val[:dim, :] lowercase_ : Optional[int] = val[ dim : dim * 2, : ] lowercase_ : List[Any] = val[-dim:, :] else: lowercase_ : str = val[:dim] lowercase_ : Optional[Any] = val[dim : dim * 2] lowercase_ : int = val[-dim:] else: lowercase_ : Dict = val return orig_state_dict def _UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" lowercase_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( a : str , a : str , a : str , a : bool = False ) -> List[Any]: """simple docstring""" lowercase_ : str = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict lowercase_ : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )["model"] # load 🤗 model lowercase_ : List[Any] = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ : int = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor lowercase_ : int = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowercase_ : Dict = YolosImageProcessor(format='coco_detection' , size=SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase_ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) lowercase_ : List[str] = outputs.logits, outputs.pred_boxes lowercase_ : Optional[int] = None, None if yolos_name == "yolos_ti": lowercase_ : Union[str, Any] = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowercase_ : Optional[Any] = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowercase_ : List[Any] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowercase_ : str = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowercase_ : List[Any] = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowercase_ : Optional[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowercase_ : List[Any] = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowercase_ : Tuple = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowercase_ : List[str] = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowercase_ : List[Any] = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: lowercase_ : List[str] = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print('Pushing to the hub...' ) lowercase_ : Union[str, Any] = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='hustvl' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='hustvl' ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\'," " \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A: Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' import math def _UpperCAmelCase ( a : Dict , a : Any ) -> Optional[int]: """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. A: str = "Enter the base and the power separated by a comma: " A , A: int = map(int, input(prompt).split(",")) A , A: Tuple = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. A: str = res(xa, ya) A: Optional[Any] = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
'''simple docstring''' from math import sqrt def _UpperCAmelCase ( a : int = 1_0_0_0_0_0_0 ) -> Dict: """simple docstring""" lowercase_ : int = 0 lowercase_ : int = 0 lowercase_ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
703
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
0
'''simple docstring''' A: Tuple = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def _UpperCAmelCase ( a : str , a : Dict , a : Any ) -> Any: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowercase_ : Dict = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(__snake_case )}" ) raise ValueError(__snake_case ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A: int = logging.get_logger(__name__) A: int = {'''vocab_file''': '''sentencepiece.bpe.model'''} A: Optional[Any] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } A: Optional[int] = { '''moussaKam/mbarthez''': 1_0_2_4, '''moussaKam/barthez''': 1_0_2_4, '''moussaKam/barthez-orangesum-title''': 1_0_2_4, } A: Dict = '''▁''' class __magic_name__ ( __a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase = None , **_lowercase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token lowercase_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowercase_ : int = vocab_file lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) lowercase_ : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} lowercase_ : List[str] = len(self.sp_model ) - 1 lowercase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Any: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : str = [self.cls_token_id] lowercase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> Dict: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[str]: lowercase_ : Optional[Any] = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ) -> Union[str, Any]: return len(self.sp_model ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Any = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self , _lowercase ) -> List[Any]: return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : str = self.sp_model.PieceToId(snake_case__ ) return spm_id if spm_id else self.unk_token_id def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(snake_case__ ) def lowerCamelCase__ ( self , _lowercase ) -> int: lowercase_ : Dict = [] lowercase_ : str = '' lowercase_ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token lowercase_ : List[str] = True lowercase_ : List[str] = [] else: current_sub_tokens.append(snake_case__ ) lowercase_ : Dict = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def __getstate__( self ) -> Any: lowercase_ : Dict = self.__dict__.copy() lowercase_ : Dict = None return state def __setstate__( self , _lowercase ) -> List[Any]: lowercase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple: if not os.path.isdir(snake_case__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : Tuple = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , 'wb' ) as fi: lowercase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
705
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A: Union[str, Any] = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[Any] = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys A: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __magic_name__ : """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: raise NotImplementedError() def lowerCamelCase__ ( self ) -> str: raise NotImplementedError() class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase = False , **_lowercase ) -> Dict: lowercase_ : Tuple = tokenizer lowercase_ : Union[str, Any] = skip_prompt lowercase_ : int = decode_kwargs # variables used in the streaming process lowercase_ : Tuple = [] lowercase_ : Tuple = 0 lowercase_ : List[str] = True def lowerCamelCase__ ( self , _lowercase ) -> List[str]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: lowercase_ : List[Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase_ : Any = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase_ : List[Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): lowercase_ : Any = text[self.print_len :] lowercase_ : Optional[Any] = [] lowercase_ : Dict = 0 # If the last token is a CJK character, we print the characters. elif len(_lowercase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase_ : List[Any] = text[self.print_len :] self.print_len += len(_lowercase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase_ : Tuple = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(_lowercase ) self.on_finalized_text(_lowercase ) def lowerCamelCase__ ( self ) -> Any: # Flush the cache, if it exists if len(self.token_cache ) > 0: lowercase_ : List[str] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowercase_ : Optional[int] = text[self.print_len :] lowercase_ : Optional[Any] = [] lowercase_ : int = 0 else: lowercase_ : int = '' lowercase_ : Any = True self.on_finalized_text(_lowercase , stream_end=_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = False ) -> Any: print(_lowercase , flush=_lowercase , end='' if not stream_end else None ) def lowerCamelCase__ ( self , _lowercase ) -> Any: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase = False , _lowercase = None , **_lowercase ) -> Optional[Any]: super().__init__(_lowercase , _lowercase , **_lowercase ) lowercase_ : str = Queue() lowercase_ : Tuple = None lowercase_ : Any = timeout def lowerCamelCase__ ( self , _lowercase , _lowercase = False ) -> Optional[int]: self.text_queue.put(_lowercase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Tuple: return self def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Union[str, Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
707
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig A: Dict = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring A: int = 'UperNetConfig' class __magic_name__ ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase = 0 , _lowercase = False , _lowercase = 1 , ) -> None: super().__init__() lowercase_ : Union[str, Any] = nn.Convad( in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[Any] = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = nn.ReLU() def snake_case__ ( self , _lowercase ) -> torch.Tensor: lowercase_ : Optional[Any] = self.conv(_SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = self.batch_norm(_SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = self.activation(_SCREAMING_SNAKE_CASE ) return output class __magic_name__ ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> None: super().__init__() lowercase_ : Any = [ nn.AdaptiveAvgPoolad(_SCREAMING_SNAKE_CASE ), UperNetConvModule(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self , _lowercase ) -> torch.Tensor: lowercase_ : Any = input for layer in self.layers: lowercase_ : int = layer(_SCREAMING_SNAKE_CASE ) return hidden_state class __magic_name__ ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> None: super().__init__() lowercase_ : Dict = pool_scales lowercase_ : Tuple = align_corners lowercase_ : List[Any] = in_channels lowercase_ : Tuple = channels lowercase_ : Dict = [] for i, pool_scale in enumerate(_SCREAMING_SNAKE_CASE ): lowercase_ : Any = UperNetPyramidPoolingBlock(pool_scale=_SCREAMING_SNAKE_CASE , in_channels=_SCREAMING_SNAKE_CASE , channels=_SCREAMING_SNAKE_CASE ) self.blocks.append(_SCREAMING_SNAKE_CASE ) self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self , _lowercase ) -> List[torch.Tensor]: lowercase_ : Any = [] for ppm in self.blocks: lowercase_ : Optional[Any] = ppm(_SCREAMING_SNAKE_CASE ) lowercase_ : int = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(_SCREAMING_SNAKE_CASE ) return ppm_outs class __magic_name__ ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> Dict: super().__init__() lowercase_ : List[Any] = config lowercase_ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase_ : Dict = in_channels lowercase_ : str = config.hidden_size lowercase_ : int = False lowercase_ : Optional[int] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowercase_ : Tuple = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowercase_ : List[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowercase_ : List[Any] = nn.ModuleList() lowercase_ : List[str] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase_ : Dict = UperNetConvModule(_SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) lowercase_ : str = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_SCREAMING_SNAKE_CASE ) self.fpn_convs.append(_SCREAMING_SNAKE_CASE ) lowercase_ : str = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def snake_case__ ( self ) -> List[str]: self.apply(self._init_weights ) def snake_case__ ( self , _lowercase ) -> Dict: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case__ ( self , _lowercase ) -> List[str]: lowercase_ : Optional[Any] = inputs[-1] lowercase_ : List[str] = [x] psp_outs.extend(self.psp_modules(_SCREAMING_SNAKE_CASE ) ) lowercase_ : Union[str, Any] = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) lowercase_ : Union[str, Any] = self.bottleneck(_SCREAMING_SNAKE_CASE ) return output def snake_case__ ( self , _lowercase ) -> torch.Tensor: # build laterals lowercase_ : List[Any] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_SCREAMING_SNAKE_CASE ) ) # build top-down path lowercase_ : Any = len(_SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase_ : int = laterals[i - 1].shape[2:] lowercase_ : Dict = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_SCREAMING_SNAKE_CASE , mode='bilinear' , align_corners=self.align_corners ) # build outputs lowercase_ : Optional[int] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase_ : List[str] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) lowercase_ : Optional[int] = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) lowercase_ : int = self.fpn_bottleneck(_SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = self.classifier(_SCREAMING_SNAKE_CASE ) return output class __magic_name__ ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase = 2 , _lowercase = 3 , _lowercase = 1 ) -> None: super().__init__() lowercase_ : str = config lowercase_ : Optional[Any] = config.auxiliary_in_channels lowercase_ : Tuple = config.auxiliary_channels lowercase_ : List[str] = config.auxiliary_num_convs lowercase_ : str = config.auxiliary_concat_input lowercase_ : Any = in_index lowercase_ : Any = (kernel_size // 2) * dilation lowercase_ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: lowercase_ : Optional[int] = nn.Identity() else: lowercase_ : List[Any] = nn.Sequential(*_SCREAMING_SNAKE_CASE ) if self.concat_input: lowercase_ : List[str] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) lowercase_ : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def snake_case__ ( self ) -> str: self.apply(self._init_weights ) def snake_case__ ( self , _lowercase ) -> Optional[Any]: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case__ ( self , _lowercase ) -> torch.Tensor: # just take the relevant feature maps lowercase_ : Optional[Any] = encoder_hidden_states[self.in_index] lowercase_ : List[str] = self.convs(_SCREAMING_SNAKE_CASE ) if self.concat_input: lowercase_ : Union[str, Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowercase_ : List[Any] = self.classifier(_SCREAMING_SNAKE_CASE ) return output class __magic_name__ ( lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = UperNetConfig SCREAMING_SNAKE_CASE_ : Tuple = "pixel_values" SCREAMING_SNAKE_CASE_ : Tuple = True def snake_case__ ( self , _lowercase ) -> Tuple: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def snake_case__ ( self ) -> Union[str, Any]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def snake_case__ ( self , _lowercase , _lowercase=False ) -> Optional[int]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase_ : int = value A: List[str] = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' A: List[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.', lowerCAmelCase__, ) class __magic_name__ ( lowerCAmelCase__ ): """simple docstring""" def __init__( self , _lowercase ) -> Dict: super().__init__(_SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase_ : Union[str, Any] = UperNetHead(_SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) lowercase_ : Dict = UperNetFCNHead(_SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , ) -> Union[tuple, SemanticSegmenterOutput]: lowercase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : str = output_attentions if output_attentions is not None else self.config.output_attentions lowercase_ : str = self.backbone.forward_with_filtered_kwargs( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) lowercase_ : Dict = outputs.feature_maps lowercase_ : Tuple = self.decode_head(_SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = nn.functional.interpolate(_SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=_SCREAMING_SNAKE_CASE ) lowercase_ : Dict = None if self.auxiliary_head is not None: lowercase_ : Dict = self.auxiliary_head(_SCREAMING_SNAKE_CASE ) lowercase_ : Dict = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=_SCREAMING_SNAKE_CASE ) lowercase_ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss lowercase_ : Optional[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase_ : Optional[int] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase_ : Union[str, Any] = (logits,) + outputs[1:] else: lowercase_ : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
708
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
0
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ ( _A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE_ : Any = 'AutoImageProcessor' SCREAMING_SNAKE_CASE_ : Optional[int] = 'AutoTokenizer' def __init__( self , _lowercase=None , _lowercase=None , **_lowercase ) -> Union[str, Any]: lowercase_ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase__ , ) lowercase_ : Dict = kwargs.pop('feature_extractor' ) lowercase_ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ : Any = self.image_processor lowercase_ : Optional[int] = False def __call__( self , *_lowercase , **_lowercase ) -> Any: if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ : Tuple = kwargs.pop('images' , UpperCamelCase__ ) lowercase_ : str = kwargs.pop('text' , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: lowercase_ : Dict = args[0] lowercase_ : int = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowercase_ : Any = self.image_processor(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if text is not None: lowercase_ : Optional[int] = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if text is None: return inputs elif images is None: return encodings else: lowercase_ : Optional[Any] = encodings['input_ids'] return inputs def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> Any: return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @contextmanager def lowerCamelCase__ ( self ) -> Dict: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) lowercase_ : Dict = True lowercase_ : List[str] = self.tokenizer yield lowercase_ : Any = self.image_processor lowercase_ : List[str] = False def lowerCamelCase__ ( self , _lowercase , _lowercase=False , _lowercase=None ) -> Optional[Any]: if added_vocab is None: lowercase_ : Any = self.tokenizer.get_added_vocab() lowercase_ : Dict = {} while tokens: lowercase_ : Dict = re.search(r'<s_(.*?)>' , UpperCamelCase__ , re.IGNORECASE ) if start_token is None: break lowercase_ : str = start_token.group(1 ) lowercase_ : List[Any] = re.search(rf"</s_{key}>" , UpperCamelCase__ , re.IGNORECASE ) lowercase_ : Any = start_token.group() if end_token is None: lowercase_ : Tuple = tokens.replace(UpperCamelCase__ , '' ) else: lowercase_ : str = end_token.group() lowercase_ : Optional[Any] = re.escape(UpperCamelCase__ ) lowercase_ : Dict = re.escape(UpperCamelCase__ ) lowercase_ : Any = re.search(f"{start_token_escaped}(.*?){end_token_escaped}" , UpperCamelCase__ , re.IGNORECASE ) if content is not None: lowercase_ : int = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase_ : Union[str, Any] = self.tokenajson(UpperCamelCase__ , is_inner_value=UpperCamelCase__ , added_vocab=UpperCamelCase__ ) if value: if len(UpperCamelCase__ ) == 1: lowercase_ : int = value[0] lowercase_ : str = value else: # leaf nodes lowercase_ : Any = [] for leaf in content.split(r'<sep/>' ): lowercase_ : Optional[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase_ : Optional[int] = leaf[1:-2] # for categorical special tokens output[key].append(UpperCamelCase__ ) if len(output[key] ) == 1: lowercase_ : Union[str, Any] = output[key][0] lowercase_ : str = tokens[tokens.find(UpperCamelCase__ ) + len(UpperCamelCase__ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCamelCase__ , added_vocab=UpperCamelCase__ ) if len(UpperCamelCase__ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowerCamelCase__ ( self ) -> Tuple: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase__ , ) return self.image_processor_class @property def lowerCamelCase__ ( self ) -> Tuple: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase__ , ) return self.image_processor
709
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _UpperCAmelCase ( a : Dict = 8 ) -> str: """simple docstring""" lowercase_ : Union[str, Any] = ascii_letters + digits + punctuation return "".join(secrets.choice(a ) for _ in range(a ) ) def _UpperCAmelCase ( a : List[Any] , a : Dict ) -> str: """simple docstring""" # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(a ) lowercase_ : Union[str, Any] = i // 3 lowercase_ : Optional[int] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowercase_ : Tuple = ( chars_incl + random(a , quotient + remainder ) + random(a , a ) + random(a , a ) ) lowercase_ : Dict = list(a ) shuffle(a ) return "".join(a ) # random is a generalised function for letters, characters and numbers def _UpperCAmelCase ( a : Dict , a : Dict ) -> str: """simple docstring""" return "".join(secrets.choice(a ) for _ in range(a ) ) def _UpperCAmelCase ( a : Tuple , a : Tuple ) -> Tuple: """simple docstring""" pass # Put your code here... def _UpperCAmelCase ( a : List[Any] , a : List[str] ) -> Tuple: """simple docstring""" pass # Put your code here... def _UpperCAmelCase ( a : Union[str, Any] , a : Optional[int] ) -> List[str]: """simple docstring""" pass # Put your code here... def _UpperCAmelCase ( a : Dict , a : List[str] = 8 ) -> bool: """simple docstring""" if len(a ) < min_length: # Your Password must be at least 8 characters long return False lowercase_ : Optional[Any] = any(char in ascii_uppercase for char in password ) lowercase_ : Optional[Any] = any(char in ascii_lowercase for char in password ) lowercase_ : List[Any] = any(char in digits for char in password ) lowercase_ : List[Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _UpperCAmelCase ( ) -> Dict: """simple docstring""" lowercase_ : Optional[Any] = int(input('Please indicate the max length of your password: ' ).strip() ) lowercase_ : str = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(a ) ) print( 'Alternative Password generated:' , alternative_password_generator(a , a ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) A: Dict = logging.getLogger() def _UpperCAmelCase ( a : str , a : Optional[int] ) -> List[str]: """simple docstring""" lowercase_ : Tuple = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) A: Any = "patrickvonplaten/t5-tiny-random" A: Tuple = "sshleifer/bart-tiny-random" A: Dict = "sshleifer/tiny-mbart" A: str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : Optional[int] = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' lowercase_ : Union[str, Any] = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() lowercase_ : Dict = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(__a , __a ) lowercase_ : Union[str, Any] = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) lowercase_ : str = 'translation_en_to_de' if model == T5_TINY else 'summarization' lowercase_ : Any = f"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(__a , 'argv' , __a ): run_generate() assert Path(__a ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase__ ( self ) -> List[str]: self.run_eval_tester(__a ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: self.run_eval_tester(__a ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase__ ( self , _lowercase ) -> List[str]: lowercase_ : Dict = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' lowercase_ : Optional[int] = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() lowercase_ : int = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } lowercase_ : Any = Path(self.get_auto_remove_tmp_dir() ) lowercase_ : List[str] = str(tmp_dir / 'scores.json' ) lowercase_ : List[Any] = str(tmp_dir / 'val.target' ) _dump_articles(__a , text['en'] ) _dump_articles(__a , text['de'] ) lowercase_ : Any = 'translation_en_to_de' if model == T5_TINY else 'summarization' lowercase_ : Tuple = f"\n run_eval_search.py\n {model}\n {str(__a )}\n {str(__a )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(__a , 'argv' , __a ): with CaptureStdout() as cs: run_search() lowercase_ : Union[str, Any] = [' num_beams | length_penalty', model, 'Best score args'] lowercase_ : Any = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(__a ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__a ).exists() os.remove(Path(__a ) )
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME A: List[Any] = ["small", "medium", "large"] A: int = "lm_head.decoder.weight" A: Optional[Any] = "lm_head.weight" def _UpperCAmelCase ( a : Union[str, Any] , a : int ) -> Tuple: """simple docstring""" lowercase_ : List[str] = torch.load(lowerCamelCase_ ) lowercase_ : Tuple = d.pop(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) A: Optional[Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: A: List[Any] = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A: List[str] = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
712
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
0
def _UpperCAmelCase ( a : str ) -> Optional[int]: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowercase_ : int = sorted(string.lower() ) return len(A__ ) == len(set(A__ ) ) if __name__ == "__main__": A: Dict = input("Enter a string ").strip() A: Tuple = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self ) -> Dict: lowercase_ : int = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) lowercase_ : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowercase_ : str = model(_lowercase )["last_hidden_state"] lowercase_ : List[Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. lowercase_ : Optional[Any] = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
714
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(lowercase_ , 'depth_multiplier' ) ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=3 , _lowercase=32 , _lowercase=0.25 , _lowercase=8 , _lowercase=8 , _lowercase=6 , _lowercase=32 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase="relu6" , _lowercase=1280 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=10 , _lowercase=None , ) -> int: lowercase_ : Optional[Any] = parent lowercase_ : Tuple = batch_size lowercase_ : List[str] = num_channels lowercase_ : Tuple = image_size lowercase_ : List[Any] = depth_multiplier lowercase_ : Optional[int] = depth_divisible_by lowercase_ : str = min_depth lowercase_ : Optional[int] = expand_ratio lowercase_ : Optional[int] = tf_padding lowercase_ : Tuple = output_stride lowercase_ : Any = first_layer_is_expansion lowercase_ : List[Any] = finegrained_output lowercase_ : Any = hidden_act lowercase_ : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowercase_ : Optional[int] = classifier_dropout_prob lowercase_ : Dict = use_labels lowercase_ : Tuple = is_training lowercase_ : Any = num_labels lowercase_ : List[str] = initializer_range lowercase_ : int = scope def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : str = None lowercase_ : Optional[int] = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase_ : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase__ ( self ) -> int: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: lowercase_ : Tuple = MobileNetVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Any = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : Union[str, Any] = self.num_labels lowercase_ : int = MobileNetVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : str = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : List[str] = self.num_labels lowercase_ : Optional[int] = MobileNetVaForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[int] = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase_ : Tuple = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Any = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = config_and_inputs lowercase_ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : List[Any] = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Any = False def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = MobileNetVaModelTester(self ) lowercase_ : Optional[int] = MobileNetVaConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def lowerCamelCase__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> Dict: pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def lowerCamelCase__ ( self ) -> Optional[Any]: pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def lowerCamelCase__ ( self ) -> List[str]: pass def lowerCamelCase__ ( self ) -> int: lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(lowercase_ ) lowercase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Dict = [*signature.parameters.keys()] lowercase_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowerCamelCase__ ( self ) -> List[Any]: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): lowercase_ : List[str] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase_ : int = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ : List[str] = outputs.hidden_states lowercase_ : int = 16 self.assertEqual(len(lowercase_ ) , lowercase_ ) lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : List[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @slow def lowerCamelCase__ ( self ) -> Dict: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = MobileNetVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _UpperCAmelCase ( ) -> List[str]: """simple docstring""" lowercase_ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ) -> Optional[int]: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[str] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(lowercase_ ) lowercase_ : Dict = self.default_image_processor lowercase_ : Optional[int] = prepare_img() lowercase_ : Any = image_processor(images=lowercase_ , return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Any = model(**lowercase_ ) # verify the logits lowercase_ : str = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ : str = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : int = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) lowercase_ : Any = model.to(lowercase_ ) lowercase_ : int = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) lowercase_ : str = prepare_img() lowercase_ : Dict = image_processor(images=lowercase_ , return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Optional[int] = model(**lowercase_ ) lowercase_ : Optional[Any] = outputs.logits # verify the logits lowercase_ : List[Any] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , lowercase_ ) lowercase_ : Optional[int] = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=lowercase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) )
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(snake_case__ , '_dynamo' ): return False return isinstance(snake_case__ , torch._dynamo.eval_frame.OptimizedModule ) def _UpperCAmelCase ( a : Union[str, Any] , a : bool = True ) -> List[str]: """simple docstring""" lowercase_ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase_ : int = is_compiled_module(snake_case__ ) if is_compiled: lowercase_ : str = model lowercase_ : Optional[int] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(snake_case__ , snake_case__ ): lowercase_ : Optional[Any] = model.module if not keep_fpaa_wrapper: lowercase_ : int = getattr(snake_case__ , 'forward' ) lowercase_ : int = model.__dict__.pop('_original_forward' , snake_case__ ) if original_forward is not None: while hasattr(snake_case__ , '__wrapped__' ): lowercase_ : List[str] = forward.__wrapped__ if forward == original_forward: break lowercase_ : Optional[int] = forward if getattr(snake_case__ , '_converted_to_transformer_engine' , snake_case__ ): convert_model(snake_case__ , to_transformer_engine=snake_case__ ) if is_compiled: lowercase_ : Dict = model lowercase_ : Optional[int] = compiled_model return model def _UpperCAmelCase ( ) -> List[Any]: """simple docstring""" PartialState().wait_for_everyone() def _UpperCAmelCase ( a : Optional[int] , a : Optional[int] ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(snake_case__ , snake_case__ ) elif PartialState().local_process_index == 0: torch.save(snake_case__ , snake_case__ ) @contextmanager def _UpperCAmelCase ( **a : Tuple ) -> str: """simple docstring""" for key, value in kwargs.items(): lowercase_ : List[Any] = str(snake_case__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _UpperCAmelCase ( a : Any ) -> List[str]: """simple docstring""" if not hasattr(snake_case__ , '__qualname__' ) and not hasattr(snake_case__ , '__name__' ): lowercase_ : Any = getattr(snake_case__ , '__class__' , snake_case__ ) if hasattr(snake_case__ , '__qualname__' ): return obj.__qualname__ if hasattr(snake_case__ , '__name__' ): return obj.__name__ return str(snake_case__ ) def _UpperCAmelCase ( a : List[str] , a : Optional[int] ) -> List[Any]: """simple docstring""" for key, value in source.items(): if isinstance(snake_case__ , snake_case__ ): lowercase_ : str = destination.setdefault(snake_case__ , {} ) merge_dicts(snake_case__ , snake_case__ ) else: lowercase_ : int = value return destination def _UpperCAmelCase ( a : int = None ) -> bool: """simple docstring""" if port is None: lowercase_ : Optional[Any] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
716
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
0
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A: Optional[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( a : Union[str, Any] , a : int ) -> List[Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase_ : Dict = XLMProphetNetForConditionalGenerationOld.from_pretrained(a ) lowercase_ : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) else: lowercase_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(a ) lowercase_ : List[str] = ProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) lowercase_ : Tuple = ['''key_proj''', '''value_proj''', '''query_proj'''] lowercase_ : List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: lowercase_ : Optional[int] = key.split('.' ) if attributes[0] == "lm_head": lowercase_ : Optional[Any] = prophet lowercase_ : int = prophet_old else: lowercase_ : List[str] = prophet.prophetnet lowercase_ : str = prophet_old.model lowercase_ : Any = False for attribute in attributes: if attribute in mapping: lowercase_ : Optional[Any] = mapping[attribute] if not hasattr(a , a ) and len(a ) > 0: lowercase_ : Union[str, Any] = attribute elif hasattr(a , a ): lowercase_ : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase_ : str = old_model.weight logger.info(f"{attribute} is initialized." ) lowercase_ : List[Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase_ : Union[str, Any] = old_model.bias logger.info(f"{attribute} is initialized" ) lowercase_ : Dict = True break elif attribute in special_keys and hasattr(a , 'in_proj_weight' ): lowercase_ : List[Any] = old_model.in_proj_weight.shape[0] // 3 lowercase_ : Optional[int] = getattr(a , a ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase_ : str = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase_ : Any = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase_ : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase_ : List[str] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase_ : Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase_ : List[Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." lowercase_ : Dict = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] ) lowercase_ : Union[str, Any] = True break if attribute.isdigit(): lowercase_ : Dict = model[int(a )] lowercase_ : Optional[int] = old_model[int(a )] else: lowercase_ : Any = getattr(a , a ) if old_attribute == "": lowercase_ : Tuple = old_model else: if not hasattr(a , a ): raise ValueError(f"{old_model} does not have {old_attribute}" ) lowercase_ : str = getattr(a , a ) if not is_key_init: raise ValueError(f"{key} was not correctly initialized!" ) print(f"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(a ) if __name__ == "__main__": A: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A: Optional[Any] = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
717
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
0
'''simple docstring''' import os def _UpperCAmelCase ( a : Optional[int] = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(a ) , a ) ) as input_file: lowercase_ : Optional[Any] = [ [int(a ) for element in line.split(',' )] for line in input_file.readlines() ] lowercase_ : Optional[Any] = len(a ) lowercase_ : Dict = len(matrix[0] ) lowercase_ : Any = [[-1 for _ in range(a )] for _ in range(a )] for i in range(a ): lowercase_ : Any = matrix[i][0] for j in range(1 , a ): for i in range(a ): lowercase_ : List[str] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a ): lowercase_ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase_ : int = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
0
def _UpperCAmelCase ( a : int = 1_0_0_0 ) -> List[Any]: """simple docstring""" lowercase_ : Union[str, Any] = 2**power lowercase_ : List[str] = str(__a ) lowercase_ : Any = list(__a ) lowercase_ : Optional[Any] = 0 for i in list_num: sum_of_num += int(__a ) return sum_of_num if __name__ == "__main__": A: Tuple = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) A: Any = solution(power) print("Sum of the digits is: ", result)
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __magic_name__ ( _snake_case, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ShapEPipeline SCREAMING_SNAKE_CASE_ : int = ["""prompt"""] SCREAMING_SNAKE_CASE_ : Optional[int] = ["""prompt"""] SCREAMING_SNAKE_CASE_ : Optional[Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : Optional[Any] = False @property def lowerCamelCase__ ( self ) -> str: return 32 @property def lowerCamelCase__ ( self ) -> List[Any]: return 32 @property def lowerCamelCase__ ( self ) -> List[Any]: return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ) -> Dict: return 8 @property def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowerCamelCase__ ( self ) -> str: torch.manual_seed(0 ) lowercase_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(snake_case_ ) @property def lowerCamelCase__ ( self ) -> str: torch.manual_seed(0 ) lowercase_ : Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowercase_ : Dict = PriorTransformer(**snake_case_ ) return model @property def lowerCamelCase__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowercase_ : Dict = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowercase_ : Union[str, Any] = ShapERenderer(**snake_case_ ) return model def lowerCamelCase__ ( self ) -> Any: lowercase_ : int = self.dummy_prior lowercase_ : str = self.dummy_text_encoder lowercase_ : Optional[int] = self.dummy_tokenizer lowercase_ : Tuple = self.dummy_renderer lowercase_ : Dict = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=snake_case_ , clip_sample=snake_case_ , clip_sample_range=1.0 , ) lowercase_ : List[str] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def lowerCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Dict: if str(snake_case_ ).startswith('mps' ): lowercase_ : Any = torch.manual_seed(snake_case_ ) else: lowercase_ : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Any = "cpu" lowercase_ : int = self.get_dummy_components() lowercase_ : Tuple = self.pipeline_class(**snake_case_ ) lowercase_ : Any = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Optional[int] = pipe(**self.get_dummy_inputs(snake_case_ ) ) lowercase_ : List[str] = output.images[0] lowercase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase_ : List[str] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : List[Any] = torch_device == "cpu" lowercase_ : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case_ , relax_max_difference=snake_case_ , ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = self.get_dummy_components() lowercase_ : str = self.pipeline_class(**snake_case_ ) lowercase_ : Optional[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : int = 1 lowercase_ : Dict = 2 lowercase_ : Union[str, Any] = self.get_dummy_inputs(snake_case_ ) for key in inputs.keys(): if key in self.batch_params: lowercase_ : Tuple = batch_size * [inputs[key]] lowercase_ : Optional[Any] = pipe(**snake_case_ , num_images_per_prompt=snake_case_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ) -> Any: lowercase_ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) lowercase_ : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) lowercase_ : List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : str = torch.Generator(device=snake_case_ ).manual_seed(0 ) lowercase_ : Dict = pipe( 'a shark' , generator=snake_case_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def _UpperCAmelCase ( a : Callable[[int | float], int | float] , a : int | float , a : int | float , a : int = 1_0_0 , ) -> float: """simple docstring""" lowercase_ : List[Any] = x_start lowercase_ : str = fnc(a ) lowercase_ : Optional[Any] = 0.0 for _ in range(a ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowercase_ : Tuple = (x_end - x_start) / steps + xa lowercase_ : Tuple = fnc(a ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowercase_ : List[str] = xa lowercase_ : Union[str, Any] = fxa return area if __name__ == "__main__": def _UpperCAmelCase ( a : Any ) -> int: """simple docstring""" return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") A: int = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
721
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A: str = None A: Optional[Any] = logging.get_logger(__name__) A: Optional[int] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A: int = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } A: Dict = { "moussaKam/mbarthez": 1_0_2_4, "moussaKam/barthez": 1_0_2_4, "moussaKam/barthez-orangesum-title": 1_0_2_4, } A: List[str] = "▁" class __magic_name__ ( __UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : int = BarthezTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , **_lowercase , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) lowercase_ : Union[str, Any] = vocab_file lowercase_ : List[str] = False if not self.vocab_file else True def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Optional[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : Optional[Any] = [self.cls_token_id] lowercase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Union[str, Any]: lowercase_ : Optional[int] = [self.sep_token_id] lowercase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Optional[int]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : str = os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=3 , _lowercase=True , _lowercase=True , _lowercase=0.1 , _lowercase=0.1 , _lowercase=224 , _lowercase=1000 , _lowercase=[3, 3, 6, 4] , _lowercase=[48, 56, 112, 220] , ) -> str: lowercase_ : Tuple = parent lowercase_ : List[Any] = batch_size lowercase_ : List[str] = num_channels lowercase_ : int = is_training lowercase_ : str = use_labels lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Union[str, Any] = attention_probs_dropout_prob lowercase_ : Optional[Any] = num_labels lowercase_ : str = image_size lowercase_ : Dict = layer_depths lowercase_ : Optional[int] = embed_dims def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : str = None if self.use_labels: lowercase_ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ) -> Tuple: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Any: lowercase_ : List[Any] = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase_ : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : List[str] = self.num_labels lowercase_ : Optional[Any] = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase_ : Dict = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase_ : Dict = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self ) -> Any: (lowercase_) : Optional[Any] = self.prepare_config_and_inputs() lowercase_ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__, lowerCamelCase__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Any = False def lowerCamelCase__ ( self ) -> Any: lowercase_ : int = SwiftFormerModelTester(self ) lowercase_ : List[str] = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> List[Any]: pass def lowerCamelCase__ ( self ) -> int: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(__lowerCamelCase ) lowercase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(__lowerCamelCase ) lowercase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Tuple = [*signature.parameters.keys()] lowercase_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def lowerCamelCase__ ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : str = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def lowerCamelCase__ ( self ) -> Union[str, Any]: pass def lowerCamelCase__ ( self ) -> Tuple: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): lowercase_ : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowercase_ : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowercase_ : Dict = outputs.hidden_states lowercase_ : Dict = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( self ) -> List[str]: def _config_zero_init(_lowercase ): lowercase_ : List[Any] = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1E-1_0 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): lowercase_ : List[str] = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Union[str, Any] = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__ ( self ) -> Tuple: pass def _UpperCAmelCase ( ) -> Dict: """simple docstring""" lowercase_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ) -> List[Any]: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Optional[int] = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(__lowerCamelCase ) lowercase_ : int = self.default_image_processor lowercase_ : int = prepare_img() lowercase_ : Optional[int] = image_processor(images=__lowerCamelCase , return_tensors='pt' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): lowercase_ : Optional[int] = model(**__lowerCamelCase ) # verify the logits lowercase_ : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) lowercase_ : int = torch.tensor([[-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) )
701
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
0
'''simple docstring''' import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A: str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _UpperCAmelCase ( ) -> Any: """simple docstring""" lowercase_ : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowercase_ : Any = get_sagemaker_input() else: lowercase_ : List[Any] = get_cluster_input() return config def _UpperCAmelCase ( a : int=None ) -> Optional[Any]: """simple docstring""" if subparsers is not None: lowercase_ : Tuple = subparsers.add_parser('config' , description=UpperCamelCase__ ) else: lowercase_ : Dict = argparse.ArgumentParser('Accelerate config command' , description=UpperCamelCase__ ) parser.add_argument( '--config_file' , default=UpperCamelCase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def _UpperCAmelCase ( a : List[Any] ) -> str: """simple docstring""" lowercase_ : Union[str, Any] = get_user_input() if args.config_file is not None: lowercase_ : Any = args.config_file else: if not os.path.isdir(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) lowercase_ : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(UpperCamelCase__ ) else: config.to_yaml_file(UpperCamelCase__ ) print(f"accelerate configuration saved at {config_file}" ) def _UpperCAmelCase ( ) -> int: """simple docstring""" lowercase_ : Any = config_command_parser() lowercase_ : str = parser.parse_args() config_command(UpperCamelCase__ ) if __name__ == "__main__": main()
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A: int = logging.get_logger(__name__) def _UpperCAmelCase ( a : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase_ : List[Any] = "huggingface/label-files" lowercase_ : Optional[Any] = "imagenet-1k-id2label.json" lowercase_ : List[Any] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : List[Any] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : List[str] = {v: k for k, v in idalabel.items()} lowercase_ : Optional[Any] = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase_ : Optional[int] = BitConfig( conv_layer=__SCREAMING_SNAKE_CASE , num_labels=1_0_0_0 , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE , ) return config def _UpperCAmelCase ( a : str ) -> Optional[int]: """simple docstring""" if "stem.conv" in name: lowercase_ : List[str] = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: lowercase_ : Dict = name.replace('blocks' , 'layers' ) if "head.fc" in name: lowercase_ : str = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): lowercase_ : Union[str, Any] = "bit." + name if "bit" not in name and "classifier" not in name: lowercase_ : Optional[Any] = "bit.encoder." + name return name def _UpperCAmelCase ( ) -> str: """simple docstring""" lowercase_ : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ : str = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any]=False ) -> Dict: """simple docstring""" lowercase_ : Any = get_config(__SCREAMING_SNAKE_CASE ) # load original model from timm lowercase_ : str = create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model lowercase_ : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase_ : Union[str, Any] = state_dict.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = val.squeeze() if "head" in key else val # load HuggingFace model lowercase_ : Union[str, Any] = BitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # create image processor lowercase_ : Optional[int] = create_transform(**resolve_data_config({} , model=__SCREAMING_SNAKE_CASE ) ) lowercase_ : str = transform.transforms lowercase_ : str = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowercase_ : str = BitImageProcessor( do_resize=__SCREAMING_SNAKE_CASE , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__SCREAMING_SNAKE_CASE , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=__SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase_ : str = prepare_img() lowercase_ : Any = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) lowercase_ : List[Any] = processor(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # verify logits with torch.no_grad(): lowercase_ : List[Any] = model(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase_ : Tuple = timm_model(__SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(f"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(f"ybelkada/{model_name}" ) processor.push_to_hub(f"ybelkada/{model_name}" ) if __name__ == "__main__": A: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) A: Optional[Any] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
703
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
0
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint A: int = { "169M": 1_2, "430M": 2_4, "1B5": 2_4, "3B": 3_2, "7B": 3_2, "14B": 4_0, } A: Dict = { "169M": 7_6_8, "430M": 1_0_2_4, "1B5": 2_0_4_8, "3B": 2_5_6_0, "7B": 4_0_9_6, "14B": 5_1_2_0, } def _UpperCAmelCase ( a : Optional[Any] ) -> Tuple: """simple docstring""" lowercase_ : List[str] = list(state_dict.keys() ) for name in state_dict_keys: lowercase_ : str = state_dict.pop(a ) # emb -> embedding if name.startswith('emb.' ): lowercase_ : Optional[int] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): lowercase_ : List[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention lowercase_ : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , a ) # ffn -> feed_forward lowercase_ : Optional[Any] = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): lowercase_ : Dict = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): lowercase_ : Union[str, Any] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): lowercase_ : Optional[Any] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": lowercase_ : Dict = 'rwkv.' + name lowercase_ : Any = weight return state_dict def _UpperCAmelCase ( a : Tuple , a : Any , a : List[str] , a : Dict=None , a : Tuple=None , a : int=False , a : Any=None ) -> Dict: """simple docstring""" # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) lowercase_ : int = 5_0_2_7_7 lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: lowercase_ : Dict = PreTrainedTokenizerFast(tokenizer_file=a ) lowercase_ : Tuple = len(a ) tokenizer.save_pretrained(a ) # 2. Build the config lowercase_ : Dict = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowercase_ : Union[str, Any] = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) lowercase_ : List[Any] = RwkvConfig( vocab_size=a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(a ) # 3. Download model file then convert state_dict lowercase_ : Union[str, Any] = hf_hub_download(a , a ) lowercase_ : Optional[int] = torch.load(a , map_location='cpu' ) lowercase_ : Tuple = convert_state_dict(a ) # 4. Split in shards and save lowercase_ , lowercase_ : str = shard_checkpoint(a ) for shard_file, shard in shards.items(): torch.save(a , os.path.join(a , a ) ) if index is not None: lowercase_ : List[Any] = os.path.join(a , a ) # Save the index as well with open(a , 'w' , encoding='utf-8' ) as f: lowercase_ : int = json.dumps(a , indent=2 , sort_keys=a ) + '\n' f.write(a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) lowercase_ : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowercase_ : Any = torch.load(os.path.join(a , a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(a , a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) lowercase_ : List[str] = AutoModelForCausalLM.from_pretrained(a ) model.push_to_hub(a , max_shard_size='2GB' ) tokenizer.push_to_hub(a ) if __name__ == "__main__": A: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) A: Union[str, Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
704
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home A: List[str] = HUGGINGFACE_HUB_CACHE A: Union[str, Any] = 'config.json' A: List[Any] = 'diffusion_pytorch_model.bin' A: Dict = 'diffusion_flax_model.msgpack' A: Union[str, Any] = 'model.onnx' A: Optional[Any] = 'diffusion_pytorch_model.safetensors' A: Optional[int] = 'weights.pb' A: Tuple = 'https://huggingface.co' A: Any = default_cache_path A: str = 'diffusers_modules' A: int = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) A: str = ['fp16', 'non-ema'] A: int = '.self_attn'
705
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
0
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A: Any = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __magic_name__ : SCREAMING_SNAKE_CASE_ : int = PegasusConfig SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : int = 'gelu' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=20 , _lowercase=2 , _lowercase=1 , _lowercase=0 , ) -> Union[str, Any]: lowercase_ : Optional[Any] = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Tuple = is_training lowercase_ : Tuple = use_labels lowercase_ : str = vocab_size lowercase_ : int = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : Any = eos_token_id lowercase_ : Optional[Any] = pad_token_id lowercase_ : Optional[Any] = bos_token_id def lowerCamelCase__ ( self ) -> Dict: lowercase_ : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowercase_ : Optional[int] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowercase_ : Tuple = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ : Optional[Any] = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: lowercase_ : str = 20 lowercase_ : Optional[Any] = model_class_name(__UpperCamelCase ) lowercase_ : Any = model.encode(inputs_dict['input_ids'] ) lowercase_ , lowercase_ : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowercase_ : List[str] = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) lowercase_ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowercase_ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ : Dict = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) lowercase_ : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowercase_ : Optional[int] = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , ) lowercase_ : Optional[int] = model.decode(__UpperCamelCase , __UpperCamelCase ) lowercase_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Any: lowercase_ : int = 20 lowercase_ : List[str] = model_class_name(__UpperCamelCase ) lowercase_ : int = model.encode(inputs_dict['input_ids'] ) lowercase_ , lowercase_ : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowercase_ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase_ : int = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) lowercase_ : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) lowercase_ : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowercase_ : int = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) lowercase_ : Union[str, Any] = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase ) lowercase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _UpperCAmelCase ( a : Optional[int] , a : int , a : Tuple , a : Any=None , a : Dict=None , ) -> str: """simple docstring""" if attention_mask is None: lowercase_ : Tuple = np.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ : List[Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ : str = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Tuple = FlaxPegasusModelTester(self ) lowercase_ : Dict = ConfigTester(self , config_class=__UpperCamelCase ) def lowerCamelCase__ ( self ) -> int: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ : List[Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) lowercase_ : int = model_class(__UpperCamelCase ) @jax.jit def encode_jitted(_lowercase , _lowercase=None , **_lowercase ): return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ) with self.subTest('JIT Enabled' ): lowercase_ : Tuple = encode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase_ : List[Any] = encode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ : Any = model_class(__UpperCamelCase ) lowercase_ : List[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) lowercase_ : int = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowercase , _lowercase , _lowercase ): return model.decode( decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , ) with self.subTest('JIT Enabled' ): lowercase_ : List[str] = decode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase_ : Tuple = decode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: lowercase_ : Dict = model_class_name.from_pretrained('google/pegasus-large' , from_pt=__UpperCamelCase ) lowercase_ : Tuple = np.ones((1, 1) ) lowercase_ : int = model(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) lowercase_ : Any = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) lowercase_ : Any = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowercase_ : Dict = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] lowercase_ : Union[str, Any] = tokenizer(__UpperCamelCase , return_tensors='np' , truncation=__UpperCamelCase , max_length=512 , padding=__UpperCamelCase ) lowercase_ : List[str] = model.generate(**__UpperCamelCase , num_beams=2 ).sequences lowercase_ : str = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) assert tgt_text == decoded
706
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self ) -> Optional[Any]: lowercase_ : Any = """""" lowercase_ : List[str] = """""" lowercase_ : List[Any] = [] def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Any: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase_ : int = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowercase_ : Tuple = self.__min_dist_top_down_dp(_lowercase , n - 1 ) lowercase_ : str = self.__min_dist_top_down_dp(m - 1 , _lowercase ) lowercase_ : List[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowercase_ : Optional[int] = 1 + min(_lowercase , _lowercase , _lowercase ) return self.dp[m][n] def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Any: lowercase_ : List[Any] = worda lowercase_ : int = worda lowercase_ : str = [[-1 for _ in range(len(_lowercase ) )] for _ in range(len(_lowercase ) )] return self.__min_dist_top_down_dp(len(_lowercase ) - 1 , len(_lowercase ) - 1 ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Dict: lowercase_ : str = worda lowercase_ : Any = worda lowercase_ : str = len(_lowercase ) lowercase_ : Tuple = len(_lowercase ) lowercase_ : Union[str, Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase_ : List[Any] = j elif j == 0: # second string is empty lowercase_ : List[Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase_ : List[Any] = self.dp[i - 1][j - 1] else: lowercase_ : int = self.dp[i][j - 1] lowercase_ : List[Any] = self.dp[i - 1][j] lowercase_ : Union[str, Any] = self.dp[i - 1][j - 1] lowercase_ : List[Any] = 1 + min(_lowercase , _lowercase , _lowercase ) return self.dp[m][n] if __name__ == "__main__": A: Any = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() A: Dict = input("Enter the first string: ").strip() A: List[Any] = input("Enter the second string: ").strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
707
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration A: Optional[Any] = 5_0_0_0_0 A: Dict = 5_0_0_0 A , A: List[str] = os.path.split(__file__) A: List[str] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _UpperCAmelCase ( a : datasets.Dataset , a : Optional[int] ) -> List[str]: """simple docstring""" for i in range(lowerCAmelCase__ ): lowercase_ : Optional[int] = dataset[i] @get_duration def _UpperCAmelCase ( a : datasets.Dataset , a : Tuple , a : str ) -> Optional[Any]: """simple docstring""" for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): lowercase_ : str = dataset[i : i + batch_size] @get_duration def _UpperCAmelCase ( a : datasets.Dataset , a : List[Any] , a : Tuple ) -> List[Any]: """simple docstring""" with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowercase_ : Tuple = dataset[i] @get_duration def _UpperCAmelCase ( a : datasets.Dataset , a : List[Any] , a : Dict , a : int ) -> Optional[Any]: """simple docstring""" with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase_ : Union[str, Any] = dataset[i : i + batch_size] def _UpperCAmelCase ( ) -> str: """simple docstring""" lowercase_ : str = {'num examples': SPEED_TEST_N_EXAMPLES} lowercase_ : Any = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0_0}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0_0_0}), ] lowercase_ : str = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0_0}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) lowercase_ : str = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) lowercase_ : List[Any] = generate_example_dataset( os.path.join(lowerCAmelCase__ , 'dataset.arrow' ) , lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes={'list': (1_0_0,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase__ ) ) lowercase_ : Tuple = func(lowerCAmelCase__ , **lowerCAmelCase__ ) print('shuffling dataset' ) lowercase_ : str = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(lowerCAmelCase__ ) ) lowercase_ : Optional[Any] = func( lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'wb' ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
708
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: Optional[Any] = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Any = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCAmelCase ( a : int , a : int , a : int , a : int , a : int , a : int ) -> str: """simple docstring""" # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase_ : Optional[Any] = ksize + 1 lowercase_ : Union[str, Any] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(a ): for x in range(a ): # distance from center lowercase_ : Dict = x - ksize // 2 lowercase_ : Optional[Any] = y - ksize // 2 # degree to radiant lowercase_ : int = theta / 1_8_0 * np.pi lowercase_ : List[Any] = np.cos(_theta ) lowercase_ : int = np.sin(_theta ) # get kernel x lowercase_ : Dict = cos_theta * px + sin_theta * py # get kernel y lowercase_ : Tuple = -sin_theta * px + cos_theta * py # fill kernel lowercase_ : Optional[int] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __a: str = imread("../image_data/lena.jpg") # turn image in gray scale value __a: List[str] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __a: Any = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: __a: List[Any] = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __a: List[str] = out / out.max() * 2_5_5 __a: List[str] = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: Optional[Any] = logging.get_logger(__name__) A: str = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class __magic_name__ ( __UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'audio-spectrogram-transformer' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=16 , _lowercase=True , _lowercase=10 , _lowercase=10 , _lowercase=1024 , _lowercase=128 , **_lowercase , ) -> Tuple: super().__init__(**lowerCAmelCase_ ) lowercase_ : List[Any] = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : Dict = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Union[str, Any] = initializer_range lowercase_ : Union[str, Any] = layer_norm_eps lowercase_ : List[Any] = patch_size lowercase_ : str = qkv_bias lowercase_ : Any = frequency_stride lowercase_ : Optional[int] = time_stride lowercase_ : str = max_length lowercase_ : Optional[Any] = num_mel_bins
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A: List[str] = 1_6 A: Optional[int] = 3_2 def _UpperCAmelCase ( a : Accelerator , a : int = 1_6 , a : str = "bert-base-cased" ) -> Any: """simple docstring""" lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained(a_ ) lowercase_ : Optional[int] = load_dataset('glue' , 'mrpc' ) def tokenize_function(a : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowercase_ : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase_ : Optional[int] = datasets.map( a_ , batched=a_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=a_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ : Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(a_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowercase_ : int = DataLoader( tokenized_datasets['train'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) lowercase_ : int = DataLoader( tokenized_datasets['validation'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader def _UpperCAmelCase ( a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" # Initialize accelerator lowercase_ : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ : Optional[int] = config['''lr'''] lowercase_ : Optional[int] = int(config['num_epochs'] ) lowercase_ : Dict = int(config['seed'] ) lowercase_ : str = int(config['batch_size'] ) lowercase_ : List[str] = args.model_name_or_path set_seed(a_ ) lowercase_ : List[Any] = get_dataloaders(a_ , a_ , a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ : List[str] = AutoModelForSequenceClassification.from_pretrained(a_ , return_dict=a_ ) # Instantiate optimizer lowercase_ : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase_ : Any = optimizer_cls(params=model.parameters() , lr=a_ ) if accelerator.state.deepspeed_plugin is not None: lowercase_ : int = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowercase_ : Dict = 1 lowercase_ : List[Any] = (len(a_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase_ : Optional[int] = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=0 , num_training_steps=a_ , ) else: lowercase_ : Optional[int] = DummyScheduler(a_ , total_num_steps=a_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # We need to keep track of how many total steps we have iterated over lowercase_ : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly lowercase_ : Tuple = 0 # Now we train the model lowercase_ : Tuple = evaluate.load('glue' , 'mrpc' ) lowercase_ : Optional[Any] = 0 lowercase_ : Tuple = {} for epoch in range(a_ , a_ ): model.train() for step, batch in enumerate(a_ ): lowercase_ : Any = model(**a_ ) lowercase_ : int = outputs.loss lowercase_ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase_ : str = 0 for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ : int = model(**a_ ) lowercase_ : List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase_ : Optional[Any] = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(a_ ) - 1: lowercase_ : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase_ : Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=a_ , references=a_ , ) lowercase_ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , a_ ) lowercase_ : int = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: lowercase_ : Dict = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(a_ , a_ ) def _UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : str = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=a_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=a_ , ) parser.add_argument( '--output_dir' , type=a_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=a_ , default=a_ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=a_ , default=3 , help='Number of train epochs.' , ) lowercase_ : Optional[Any] = parser.parse_args() lowercase_ : Optional[int] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 4_2, '''batch_size''': 1_6} training_function(a_ , a_ ) if __name__ == "__main__": main()
712
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
0