code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() A: Union[str, Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : List[str] , a : Optional[int] ) -> List[str]: """simple docstring""" lowercase_ : str = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def _UpperCAmelCase ( a : str , a : List[Any] ) -> List[Any]: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase_ : Optional[int] = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) lowercase_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase_ : Tuple = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase_ : int = in_proj_weight[ -encoder_config.hidden_size :, : ] def _UpperCAmelCase ( a : int , a : List[Any] , a : Tuple ) -> List[str]: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Union[str, Any] = val def _UpperCAmelCase ( a : int ) -> Dict: """simple docstring""" if "handwritten" in checkpoint_url: lowercase_ : Optional[int] = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase_ : List[Any] = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' lowercase_ : str = Image.open(requests.get(a , stream=a ).raw ).convert('RGB' ) return im @torch.no_grad() def _UpperCAmelCase ( a : Optional[Any] , a : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase_ : Dict = ViTConfig(image_size=3_8_4 , qkv_bias=a ) lowercase_ : List[str] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase_ : Optional[int] = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase_ : int = 1_0_2_4 lowercase_ : str = 4_0_9_6 lowercase_ : Optional[Any] = 2_4 lowercase_ : Dict = 1_6 lowercase_ : List[Any] = 1_0_2_4 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase_ : List[Any] = False lowercase_ : Union[str, Any] = 'relu' lowercase_ : Optional[Any] = 1_0_2_4 lowercase_ : Optional[Any] = True lowercase_ : Optional[int] = False lowercase_ : str = False # load HuggingFace model lowercase_ : Optional[int] = ViTModel(a , add_pooling_layer=a ) lowercase_ : Tuple = TrOCRForCausalLM(a ) lowercase_ : Optional[int] = VisionEncoderDecoderModel(encoder=a , decoder=a ) model.eval() # load state_dict of original model, rename some keys lowercase_ : Optional[int] = torch.hub.load_state_dict_from_url(a , map_location='cpu' , check_hash=a )['model'] lowercase_ : Dict = create_rename_keys(a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase_ : Union[str, Any] = state_dict.pop(a ) if key.startswith('decoder' ) and "output_projection" not in key: lowercase_ : List[str] = val else: lowercase_ : List[Any] = val # load state dict model.load_state_dict(a ) # Check outputs on an image lowercase_ : Union[str, Any] = ViTImageProcessor(size=encoder_config.image_size ) lowercase_ : List[str] = RobertaTokenizer.from_pretrained('roberta-large' ) lowercase_ : List[Any] = TrOCRProcessor(a , a ) lowercase_ : Optional[int] = processor(images=prepare_img(a ) , return_tensors='pt' ).pixel_values # verify logits lowercase_ : int = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase_ : List[str] = model(pixel_values=a , decoder_input_ids=a ) lowercase_ : Optional[int] = outputs.logits lowercase_ : List[Any] = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase_ : Tuple = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase_ : Tuple = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: lowercase_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: lowercase_ : List[Any] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , a , atol=1e-3 ), "First elements of logits not as expected" Path(a ).mkdir(exist_ok=a ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(a ) if __name__ == "__main__": A: Dict = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A: Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A: Optional[int] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _UpperCAmelCase ( a : Union[str, Any] , a : List[str]=None , a : List[Any]=None , a : Optional[Any]=None ) -> str: """simple docstring""" lowercase_ : Tuple = True while ask_again: lowercase_ : Optional[Any] = input(a ) try: if default is not None and len(a ) == 0: return default return convert_value(a ) if convert_value is not None else result except Exception: if error_message is not None: print(a ) def _UpperCAmelCase ( a : Dict , a : Union[str, Any]=[] , a : Optional[Any]=None , a : Any=0 ) -> Any: """simple docstring""" lowercase_ : Tuple = BulletMenu(a , a ) lowercase_ : Dict = menu.run(default_choice=a ) return convert_value(a ) if convert_value is not None else result def _UpperCAmelCase ( a : Optional[int] ) -> List[str]: """simple docstring""" lowercase_ : str = int(a ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def _UpperCAmelCase ( a : str ) -> Optional[int]: """simple docstring""" lowercase_ : List[str] = int(a ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def _UpperCAmelCase ( a : List[str] ) -> Any: """simple docstring""" lowercase_ : List[Any] = int(a ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _UpperCAmelCase ( a : int ) -> str: """simple docstring""" lowercase_ : Union[str, Any] = int(a ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def _UpperCAmelCase ( a : int ) -> Dict: """simple docstring""" lowercase_ : Dict = int(a ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class __magic_name__ ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: lowercase_ : str = super()._format_usage(_lowercase , _lowercase , _lowercase , _lowercase ) lowercase_ : int = usage.replace('<command> [<args>] ' , '' ) return usage
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A: Any = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" A: Union[str, Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" A: Union[str, Any] = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" A: Any = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" A: Union[str, Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=[1, 10, 100] , _lowercase=4 , _lowercase=3.0 ) -> List[Any]: if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=_lowercase ) as executor: lowercase_ : List[Any] = [] lowercase_ : Union[str, Any] = Counter() lowercase_ : List[Any] = 0 lowercase_ : Any = defaultdict(_lowercase ) for task_id, (candidates, test_case) in enumerate(zip(_lowercase , _lowercase ) ): for candidate in candidates: lowercase_ : str = candidate + '\n' + test_case lowercase_ : Tuple = (test_program, timeout, task_id, completion_id[task_id]) lowercase_ : List[Any] = executor.submit(_lowercase , *_lowercase ) futures.append(_lowercase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_lowercase ): lowercase_ : Optional[Any] = future.result() results[result["task_id"]].append((result['completion_id'], result) ) lowercase_ , lowercase_ : Optional[Any] = [], [] for result in results.values(): result.sort() lowercase_ : Dict = [r[1]['passed'] for r in result] total.append(len(_lowercase ) ) correct.append(sum(_lowercase ) ) lowercase_ : Optional[Any] = np.array(_lowercase ) lowercase_ : List[Any] = np.array(_lowercase ) lowercase_ : List[str] = k lowercase_ : Dict = {f"pass@{k}": estimate_pass_at_k(_lowercase , _lowercase , _lowercase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCAmelCase ( a : Union[str, Any] , a : Union[str, Any] , a : Any ) -> Any: """simple docstring""" def estimator(a : int , a : int , a : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(a , a ): lowercase_ : Optional[Any] = itertools.repeat(a , len(a ) ) else: assert len(a ) == len(a ) lowercase_ : Tuple = iter(a ) return np.array([estimator(int(a ) , int(a ) , a ) for n, c in zip(a , a )] )
7
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING A: Tuple = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'upernet' def __init__( self , _lowercase=None , _lowercase=512 , _lowercase=0.02 , _lowercase=[1, 2, 3, 6] , _lowercase=True , _lowercase=0.4 , _lowercase=384 , _lowercase=256 , _lowercase=1 , _lowercase=False , _lowercase=255 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase_ : str = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(_lowercase , _lowercase ): lowercase_ : Any = backbone_config.get('model_type' ) lowercase_ : List[str] = CONFIG_MAPPING[backbone_model_type] lowercase_ : Tuple = config_class.from_dict(_lowercase ) lowercase_ : int = backbone_config lowercase_ : Union[str, Any] = hidden_size lowercase_ : str = initializer_range lowercase_ : Optional[Any] = pool_scales lowercase_ : Union[str, Any] = use_auxiliary_head lowercase_ : Dict = auxiliary_loss_weight lowercase_ : List[str] = auxiliary_in_channels lowercase_ : List[str] = auxiliary_channels lowercase_ : Optional[Any] = auxiliary_num_convs lowercase_ : Tuple = auxiliary_concat_input lowercase_ : Any = loss_ignore_index def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = copy.deepcopy(self.__dict__ ) lowercase_ : int = self.backbone_config.to_dict() lowercase_ : Union[str, Any] = self.__class__.model_type return output
7
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A: Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ['pixel_values'] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BICUBIC , _lowercase = True , _lowercase = None , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = IMAGENET_DEFAULT_MEAN , _lowercase = IMAGENET_DEFAULT_STD , **_lowercase , ) -> None: super().__init__(**_lowercase ) lowercase_ : Any = size if size is not None else {'shortest_edge': 224} lowercase_ : List[str] = get_size_dict(_lowercase , default_to_square=_lowercase ) lowercase_ : int = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase_ : str = get_size_dict(_lowercase , param_name='crop_size' ) lowercase_ : Any = do_resize lowercase_ : List[Any] = size lowercase_ : Tuple = resample lowercase_ : Union[str, Any] = do_center_crop lowercase_ : List[str] = crop_size lowercase_ : Any = do_rescale lowercase_ : Any = rescale_factor lowercase_ : Any = do_normalize lowercase_ : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ) -> np.ndarray: lowercase_ : Optional[Any] = get_size_dict(_lowercase , default_to_square=_lowercase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ : Any = int((256 / 224) * size['shortest_edge'] ) lowercase_ : Dict = get_resize_output_image_size(_lowercase , size=_lowercase , default_to_square=_lowercase ) lowercase_ : str = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( _lowercase , size=(size_dict['height'], size_dict['width']) , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: lowercase_ : Optional[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> BatchFeature: lowercase_ : int = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[int] = resample if resample is not None else self.resample lowercase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Dict = image_mean if image_mean is not None else self.image_mean lowercase_ : str = image_std if image_std is not None else self.image_std lowercase_ : List[str] = size if size is not None else self.size lowercase_ : str = get_size_dict(_lowercase , default_to_square=_lowercase ) lowercase_ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : Optional[Any] = get_size_dict(_lowercase , param_name='crop_size' ) lowercase_ : Union[str, Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase_ : Union[str, Any] = [to_numpy_array(_lowercase ) for image in images] if do_resize: lowercase_ : Dict = [self.resize(_lowercase , _lowercase , _lowercase ) for image in images] if do_center_crop: lowercase_ : Optional[int] = [self.center_crop(_lowercase , _lowercase ) for image in images] if do_rescale: lowercase_ : Optional[Any] = [self.rescale(_lowercase , _lowercase ) for image in images] if do_normalize: lowercase_ : Dict = [self.normalize(_lowercase , _lowercase , _lowercase ) for image in images] lowercase_ : Tuple = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] lowercase_ : Optional[Any] = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
1
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() A: Union[str, Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : str , a : str ) -> Union[str, Any]: """simple docstring""" lowercase_ : Dict = RobertaPreLayerNormConfig.from_pretrained( a , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict lowercase_ : Dict = torch.load(hf_hub_download(repo_id=a , filename='pytorch_model.bin' ) ) lowercase_ : Union[str, Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): lowercase_ : Optional[Any] = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue lowercase_ : int = tensor_value lowercase_ : str = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=a , config=a , state_dict=a ) model.save_pretrained(a ) # convert tokenizer lowercase_ : List[Any] = AutoTokenizer.from_pretrained(a ) tokenizer.save_pretrained(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A: str = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
7
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A: Dict = TypeVar("KEY") A: Dict = TypeVar("VAL") @dataclass(frozen=UpperCAmelCase_, slots=UpperCAmelCase_ ) class __magic_name__ ( Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : KEY SCREAMING_SNAKE_CASE_ : VAL class __magic_name__ ( _Item ): """simple docstring""" def __init__( self ) -> None: super().__init__(_lowercase , _lowercase ) def __bool__( self ) -> bool: return False A: Tuple = _DeletedItem() class __magic_name__ ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , _lowercase = 8 , _lowercase = 0.75 ) -> None: lowercase_ : Dict = initial_block_size lowercase_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase_ : List[str] = capacity_factor lowercase_ : Optional[Any] = 0 def lowerCamelCase__ ( self , _lowercase ) -> int: return hash(_lowercase ) % len(self._buckets ) def lowerCamelCase__ ( self , _lowercase ) -> int: return (ind + 1) % len(self._buckets ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> bool: lowercase_ : List[str] = self._buckets[ind] if not stored: lowercase_ : int = _Item(_lowercase , _lowercase ) self._len += 1 return True elif stored.key == key: lowercase_ : Tuple = _Item(_lowercase , _lowercase ) return True else: return False def lowerCamelCase__ ( self ) -> bool: lowercase_ : Tuple = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_lowercase ) def lowerCamelCase__ ( self ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False lowercase_ : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : int = self._buckets lowercase_ : Dict = [None] * new_size lowercase_ : str = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCamelCase__ ( self ) -> None: self._resize(len(self._buckets ) * 2 ) def lowerCamelCase__ ( self ) -> None: self._resize(len(self._buckets ) // 2 ) def lowerCamelCase__ ( self , _lowercase ) -> Iterator[int]: lowercase_ : int = self._get_bucket_index(_lowercase ) for _ in range(len(self._buckets ) ): yield ind lowercase_ : Tuple = self._get_next_ind(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> None: for ind in self._iterate_buckets(_lowercase ): if self._try_set(_lowercase , _lowercase , _lowercase ): break def __setitem__( self , _lowercase , _lowercase ) -> None: if self._is_full(): self._size_up() self._add_item(_lowercase , _lowercase ) def __delitem__( self , _lowercase ) -> None: for ind in self._iterate_buckets(_lowercase ): lowercase_ : Tuple = self._buckets[ind] if item is None: raise KeyError(_lowercase ) if item is _deleted: continue if item.key == key: lowercase_ : str = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , _lowercase ) -> VAL: for ind in self._iterate_buckets(_lowercase ): lowercase_ : Optional[int] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_lowercase ) def __len__( self ) -> int: return self._len def __iter__( self ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: lowercase_ : List[str] = ' ,'.join( f"{item.key}: {item.val}" for item in self._buckets if item ) return f"HashMap({val_string})"
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A: Dict = "▁" A: str = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = BertGenerationTokenizer SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[Any] = True def lowerCamelCase__ ( self ) -> Optional[Any]: super().setUp() lowercase_ : str = BertGenerationTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = '<s>' lowercase_ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(_lowercase ) , 1002 ) def lowerCamelCase__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = BertGenerationTokenizer(_lowercase , keep_accents=_lowercase ) lowercase_ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_lowercase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [285, 46, 10, 170, 382] , ) lowercase_ : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase_ : List[str] = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase_ : str = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowerCamelCase__ ( self ) -> Optional[int]: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : List[str] = 'Hello World!' lowercase_ : List[str] = [1_8536, 2260, 101] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Optional[int] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowercase_ : Optional[int] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @require_torch @slow def lowerCamelCase__ ( self ) -> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowercase_ : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase_ : str = ' '.join(_lowercase ) lowercase_ : List[Any] = self.big_tokenizer.encode_plus(_lowercase , return_tensors='pt' , return_token_type_ids=_lowercase ) lowercase_ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_lowercase ) lowercase_ : Tuple = BertGenerationConfig() lowercase_ : Union[str, Any] = BertGenerationEncoder(_lowercase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase ) model(**_lowercase ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: # fmt: off lowercase_ : List[str] = {'input_ids': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> int: """simple docstring""" if len(a ) != len(a ): raise ValueError('String lengths must match!' ) lowercase_ : Dict = 0 for chara, chara in zip(a , a ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A: List[Any] = logging.get_logger(__name__) A: Union[str, Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } A: Dict = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } A: Any = { "ctrl": 2_5_6, } A: int = { "Pregnancy": 1_6_8_6_2_9, "Christianity": 7_6_7_5, "Explain": 1_0_6_4_2_3, "Fitness": 6_3_4_4_0, "Saving": 6_3_1_6_3, "Ask": 2_7_1_7_1, "Ass": 9_5_9_8_5, "Joke": 1_6_3_5_0_9, "Questions": 4_5_6_2_2, "Thoughts": 4_9_6_0_5, "Retail": 5_2_3_4_2, "Feminism": 1_6_4_3_3_8, "Writing": 1_1_9_9_2, "Atheism": 1_9_2_2_6_3, "Netflix": 4_8_6_1_6, "Computing": 3_9_6_3_9, "Opinion": 4_3_2_1_3, "Alone": 4_4_9_6_7, "Funny": 5_8_9_1_7, "Gaming": 4_0_3_5_8, "Human": 4_0_8_8, "India": 1_3_3_1, "Joker": 7_7_1_3_8, "Diet": 3_6_2_0_6, "Legal": 1_1_8_5_9, "Norman": 4_9_3_9, "Tip": 7_2_6_8_9, "Weight": 5_2_3_4_3, "Movies": 4_6_2_7_3, "Running": 2_3_4_2_5, "Science": 2_0_9_0, "Horror": 3_7_7_9_3, "Confession": 6_0_5_7_2, "Finance": 1_2_2_5_0, "Politics": 1_6_3_6_0, "Scary": 1_9_1_9_8_5, "Support": 1_2_6_5_4, "Technologies": 3_2_5_1_6, "Teenage": 6_6_1_6_0, "Event": 3_2_7_6_9, "Learned": 6_7_4_6_0, "Notion": 1_8_2_7_7_0, "Wikipedia": 3_7_5_8_3, "Books": 6_6_6_5, "Extract": 7_6_0_5_0, "Confessions": 1_0_2_7_0_1, "Conspiracy": 7_5_9_3_2, "Links": 6_3_6_7_4, "Narcissus": 1_5_0_4_2_5, "Relationship": 5_4_7_6_6, "Relationships": 1_3_4_7_9_6, "Reviews": 4_1_6_7_1, "News": 4_2_5_6, "Translation": 2_6_8_2_0, "multilingual": 1_2_8_4_0_6, } def _UpperCAmelCase ( a : Tuple ) -> List[Any]: """simple docstring""" lowercase_ : Optional[Any] = set() lowercase_ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ : Union[str, Any] = char lowercase_ : List[str] = set(a ) return pairs class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = CONTROL_CODES def __init__( self , _lowercase , _lowercase , _lowercase="<unk>" , **_lowercase ) -> Any: super().__init__(unk_token=_lowercase , **_lowercase ) with open(_lowercase , encoding='utf-8' ) as vocab_handle: lowercase_ : List[Any] = json.load(_lowercase ) lowercase_ : int = {v: k for k, v in self.encoder.items()} with open(_lowercase , encoding='utf-8' ) as merges_handle: lowercase_ : List[Any] = merges_handle.read().split('\n' )[1:-1] lowercase_ : List[Any] = [tuple(merge.split() ) for merge in merges] lowercase_ : List[str] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) lowercase_ : Union[str, Any] = {} @property def lowerCamelCase__ ( self ) -> str: return len(self.encoder ) def lowerCamelCase__ ( self ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self , _lowercase ) -> str: if token in self.cache: return self.cache[token] lowercase_ : List[Any] = tuple(_lowercase ) lowercase_ : str = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowercase_ : Union[str, Any] = get_pairs(_lowercase ) if not pairs: return token while True: lowercase_ : Tuple = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ : Optional[Any] = bigram lowercase_ : Dict = [] lowercase_ : Tuple = 0 while i < len(_lowercase ): try: lowercase_ : List[Any] = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ : List[Any] = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ : List[str] = tuple(_lowercase ) lowercase_ : Tuple = new_word if len(_lowercase ) == 1: break else: lowercase_ : Optional[Any] = get_pairs(_lowercase ) lowercase_ : Union[str, Any] = '@@ '.join(_lowercase ) lowercase_ : int = word[:-4] lowercase_ : Any = word return word def lowerCamelCase__ ( self , _lowercase ) -> List[str]: lowercase_ : Optional[Any] = [] lowercase_ : Optional[int] = re.findall(r'\S+\n?' , _lowercase ) for token in words: split_tokens.extend(list(self.bpe(_lowercase ).split(' ' ) ) ) return split_tokens def lowerCamelCase__ ( self , _lowercase ) -> Dict: return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: return self.decoder.get(_lowercase , self.unk_token ) def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : Union[str, Any] = ' '.join(_lowercase ).replace('@@ ' , '' ).strip() return out_string def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : Optional[Any] = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : Optional[Any] = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + '\n' ) lowercase_ : Optional[Any] = 0 with open(_lowercase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowercase_ : Optional[Any] = token_index writer.write(' '.join(_lowercase ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
7
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = (PNDMScheduler,) SCREAMING_SNAKE_CASE_ : Tuple = (('num_inference_steps', 5_0),) def lowerCamelCase__ ( self , **_lowercase ) -> Union[str, Any]: lowercase_ : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_lowercase ) return config def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> Dict: lowercase_ : Optional[int] = dict(self.forward_default_kwargs ) lowercase_ : Any = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : Any = self.dummy_sample lowercase_ : List[Any] = 0.1 * sample lowercase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase_ : Optional[int] = self.get_scheduler_config(**_lowercase ) lowercase_ : Union[str, Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : Optional[Any] = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : Dict = dummy_past_residuals[:] lowercase_ : List[Any] = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Optional[Any] = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase_ : Any = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Dict = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self ) -> Optional[int]: pass def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> Tuple: lowercase_ : Optional[Any] = dict(self.forward_default_kwargs ) lowercase_ : Union[str, Any] = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : Dict = self.dummy_sample lowercase_ : List[str] = 0.1 * sample lowercase_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase_ : int = self.get_scheduler_config() lowercase_ : List[Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) lowercase_ : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : Optional[Any] = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) lowercase_ : Optional[Any] = dummy_past_residuals[:] lowercase_ : List[Any] = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Optional[int] = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase_ : Any = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Any = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self , **_lowercase ) -> str: lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config(**_lowercase ) lowercase_ : Any = scheduler_class(**_lowercase ) lowercase_ : Optional[Any] = 10 lowercase_ : int = self.dummy_model() lowercase_ : str = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase_ : Optional[int] = model(_lowercase , _lowercase ) lowercase_ : Dict = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase_ : Tuple = model(_lowercase , _lowercase ) lowercase_ : Any = scheduler.step_plms(_lowercase , _lowercase , _lowercase ).prev_sample return sample def lowerCamelCase__ ( self ) -> str: lowercase_ : int = dict(self.forward_default_kwargs ) lowercase_ : Optional[Any] = kwargs.pop('num_inference_steps' , _lowercase ) for scheduler_class in self.scheduler_classes: lowercase_ : Dict = self.get_scheduler_config() lowercase_ : Any = scheduler_class(**_lowercase ) lowercase_ : int = self.dummy_sample lowercase_ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , 'set_timesteps' ): scheduler.set_timesteps(_lowercase ) elif num_inference_steps is not None and not hasattr(_lowercase , 'set_timesteps' ): lowercase_ : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase_ : Optional[int] = dummy_past_residuals[:] lowercase_ : Any = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample lowercase_ : Optional[int] = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase_ : Optional[int] = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample lowercase_ : Any = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase__ ( self ) -> Optional[Any]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase ) lowercase_ : Optional[int] = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config(steps_offset=1 ) lowercase_ : Optional[Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowerCamelCase__ ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def lowerCamelCase__ ( self ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def lowerCamelCase__ ( self ) -> Any: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_lowercase ) def lowerCamelCase__ ( self ) -> Optional[int]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowercase_ : Optional[int] = 27 for scheduler_class in self.scheduler_classes: lowercase_ : Any = self.dummy_sample lowercase_ : List[Any] = 0.1 * sample lowercase_ : Optional[Any] = self.get_scheduler_config() lowercase_ : Dict = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase_ : int = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample def lowerCamelCase__ ( self ) -> Optional[Any]: with self.assertRaises(_lowercase ): lowercase_ : Any = self.scheduler_classes[0] lowercase_ : Optional[int] = self.get_scheduler_config() lowercase_ : Optional[int] = scheduler_class(**_lowercase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = self.full_loop() lowercase_ : Tuple = torch.sum(torch.abs(_lowercase ) ) lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Dict = self.full_loop(prediction_type='v_prediction' ) lowercase_ : List[str] = torch.sum(torch.abs(_lowercase ) ) lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def lowerCamelCase__ ( self ) -> int: # We specify different beta, so that the first alpha is 0.99 lowercase_ : List[str] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) lowercase_ : Tuple = torch.sum(torch.abs(_lowercase ) ) lowercase_ : List[str] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def lowerCamelCase__ ( self ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 lowercase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) lowercase_ : Optional[int] = torch.sum(torch.abs(_lowercase ) ) lowercase_ : List[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
7
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A: List[str] = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
7
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
1
'''simple docstring''' def _UpperCAmelCase ( a : Tuple ) -> str: """simple docstring""" lowercase_ : Tuple = len(a ) for i in range(length - 1 ): lowercase_ : str = i for k in range(i + 1 , a ): if collection[k] < collection[least]: lowercase_ : Optional[int] = k if least != i: lowercase_ , lowercase_ : List[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": A: int = input("Enter numbers separated by a comma:\n").strip() A: int = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging A: str = logging.get_logger(__name__) def _UpperCAmelCase ( a : List[str] , a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : int = set() lowercase_ : int = [] def parse_line(a : Tuple ): for line in fp: if isinstance(a , a ): lowercase_ : Dict = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(a ) > 0: lowercase_ : Optional[Any] = '\n'.join(a ) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets ): selected_warnings.add(a ) buffer.clear() continue else: lowercase_ : Optional[int] = line.strip() buffer.append(a ) if from_gh: for filename in os.listdir(a ): lowercase_ : Dict = os.path.join(a , a ) if not os.path.isdir(a ): # read the file if filename != "warnings.txt": continue with open(a ) as fp: parse_line(a ) else: try: with zipfile.ZipFile(a ) as z: for filename in z.namelist(): if not os.path.isdir(a ): # read the file if filename != "warnings.txt": continue with z.open(a ) as fp: parse_line(a ) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def _UpperCAmelCase ( a : str , a : int ) -> Dict: """simple docstring""" lowercase_ : int = set() lowercase_ : Union[str, Any] = [os.path.join(a , a ) for p in os.listdir(a ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(a , a ) ) return selected_warnings if __name__ == "__main__": def _UpperCAmelCase ( a : List[Any] ) -> Optional[Any]: """simple docstring""" return values.split(',' ) A: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) A: Dict = parser.parse_args() A: Optional[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links A: Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts A: Optional[Any] = extract_warnings(args.output_dir, args.targets) A: Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
7
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A: List[Any] = logging.get_logger(__name__) A: Optional[int] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } A: int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } A: List[str] = {"facebook/blenderbot-3B": 1_2_8} class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ : Optional[Any] = BlenderbotTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , _lowercase=True , **_lowercase , ) -> Optional[Any]: super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase , **_lowercase , ) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _lowercase ) != add_prefix_space: lowercase_ : str = getattr(_lowercase , pre_tok_state.pop('type' ) ) lowercase_ : str = add_prefix_space lowercase_ : Any = pre_tok_class(**_lowercase ) lowercase_ : List[Any] = add_prefix_space lowercase_ : Optional[int] = 'post_processor' lowercase_ : Optional[int] = getattr(self.backend_tokenizer , _lowercase , _lowercase ) if tokenizer_component_instance: lowercase_ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : Dict = tuple(state['sep'] ) if "cls" in state: lowercase_ : Dict = tuple(state['cls'] ) lowercase_ : Optional[int] = False if state.get('add_prefix_space' , _lowercase ) != add_prefix_space: lowercase_ : int = add_prefix_space lowercase_ : str = True if state.get('trim_offsets' , _lowercase ) != trim_offsets: lowercase_ : Dict = trim_offsets lowercase_ : Any = True if changes_to_apply: lowercase_ : Optional[Any] = getattr(_lowercase , state.pop('type' ) ) lowercase_ : Tuple = component_class(**_lowercase ) setattr(self.backend_tokenizer , _lowercase , _lowercase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase__ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase__ ( self , _lowercase ) -> str: lowercase_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else value lowercase_ : Any = value def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> BatchEncoding: lowercase_ : Tuple = kwargs.get('is_split_into_words' , _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowercase , **_lowercase ) def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> BatchEncoding: lowercase_ : str = kwargs.get('is_split_into_words' , _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: lowercase_ : List[str] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : Tuple = [self.sep_token_id] lowercase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Dict: return token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self , _lowercase ) -> List[int]: lowercase_ : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_lowercase ) lowercase_ : Optional[Any] = ' '.join(_lowercase ) lowercase_ : Optional[int] = self.encode(_lowercase ) if len(_lowercase ) > self.model_max_length: lowercase_ : Dict = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
7
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
1
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A: Dict = "src/diffusers" A: Any = "." # This is to make sure the diffusers module imported is the one in the repo. A: Dict = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) A: Any = spec.loader.load_module() def _UpperCAmelCase ( a : str , a : Any ) -> Tuple: """simple docstring""" return line.startswith(a ) or len(a ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , a ) is not None def _UpperCAmelCase ( a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : Tuple = object_name.split('.' ) lowercase_ : str = 0 # First let's find the module where our object lives. lowercase_ : Any = parts[i] while i < len(a ) and not os.path.isfile(os.path.join(a , f"{module}.py" ) ): i += 1 if i < len(a ): lowercase_ : Union[str, Any] = os.path.join(a , parts[i] ) if i >= len(a ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(a , f"{module}.py" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase_ : int = f.readlines() # Now let's find the class / func in the code! lowercase_ : Optional[int] = '' lowercase_ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(a ) and re.search(Rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(a ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase_ : str = line_index while line_index < len(a ) and _should_continue(lines[line_index] , a ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase_ : Union[str, Any] = lines[start_index:line_index] return "".join(a ) A: List[str] = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") A: Optional[int] = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") A: Dict = re.compile(r"<FILL\s+[^>]*>") def _UpperCAmelCase ( a : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase_ : str = code.split('\n' ) lowercase_ : Optional[int] = 0 while idx < len(a ) and len(lines[idx] ) == 0: idx += 1 if idx < len(a ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _UpperCAmelCase ( a : Optional[Any] ) -> Tuple: """simple docstring""" lowercase_ : str = len(get_indent(a ) ) > 0 if has_indent: lowercase_ : List[str] = f"class Bla:\n{code}" lowercase_ : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=a ) lowercase_ : List[str] = black.format_str(a , mode=a ) lowercase_ , lowercase_ : Any = style_docstrings_in_code(a ) return result[len('class Bla:\n' ) :] if has_indent else result def _UpperCAmelCase ( a : Optional[Any] , a : int=False ) -> Any: """simple docstring""" with open(a , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase_ : str = f.readlines() lowercase_ : int = [] lowercase_ : Optional[Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(a ): lowercase_ : Optional[int] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase_ , lowercase_ , lowercase_ : Any = search.groups() lowercase_ : int = find_code_in_diffusers(a ) lowercase_ : Optional[int] = get_indent(a ) lowercase_ : Any = line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase_ : List[Any] = theoretical_indent lowercase_ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase_ : Tuple = True while line_index < len(a ) and should_continue: line_index += 1 if line_index >= len(a ): break lowercase_ : Any = lines[line_index] lowercase_ : Tuple = _should_continue(a , a ) and re.search(f"^{indent}# End copy" , a ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase_ : Any = lines[start_index:line_index] lowercase_ : Any = ''.join(a ) # Remove any nested `Copied from` comments to avoid circular copies lowercase_ : str = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(a ) is None] lowercase_ : str = '\n'.join(a ) # Before comparing, use the `replace_pattern` on the original code. if len(a ) > 0: lowercase_ : Optional[Any] = replace_pattern.replace('with' , '' ).split(',' ) lowercase_ : int = [_re_replace_pattern.search(a ) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase_ , lowercase_ , lowercase_ : str = pattern.groups() lowercase_ : Dict = re.sub(a , a , a ) if option.strip() == "all-casing": lowercase_ : str = re.sub(obja.lower() , obja.lower() , a ) lowercase_ : List[Any] = re.sub(obja.upper() , obja.upper() , a ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase_ : Any = blackify(lines[start_index - 1] + theoretical_code ) lowercase_ : int = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowercase_ : Tuple = lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase_ : List[Any] = start_index + 1 if overwrite and len(a ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) return diffs def _UpperCAmelCase ( a : bool = False ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = glob.glob(os.path.join(a , '**/*.py' ) , recursive=a ) lowercase_ : List[str] = [] for filename in all_files: lowercase_ : Tuple = is_copy_consistent(a , a ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(a ) > 0: lowercase_ : Tuple = '\n'.join(a ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": A: Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A: str = parser.parse_args() check_copies(args.fix_and_overwrite)
7
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
1
'''simple docstring''' import random def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" lowercase_ : List[str] = num - 1 lowercase_ : Dict = 0 while s % 2 == 0: lowercase_ : Union[str, Any] = s // 2 t += 1 for _ in range(5 ): lowercase_ : Any = random.randrange(2 , num - 1 ) lowercase_ : Any = pow(a , a , a ) if v != 1: lowercase_ : Any = 0 while v != (num - 1): if i == t - 1: return False else: lowercase_ : Union[str, Any] = i + 1 lowercase_ : Tuple = (v**2) % num return True def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" if num < 2: return False lowercase_ : List[str] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(a ) def _UpperCAmelCase ( a : int = 1_0_2_4 ) -> int: """simple docstring""" while True: lowercase_ : int = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(a ): return num if __name__ == "__main__": A: str = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
7
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: str = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def _UpperCAmelCase ( a : float , a : float , a : float ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(a , 2 ) - pow(a , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(a , 2 ) - pow(a , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(a , 2 ) + pow(a , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
1
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate A: Tuple = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) A: Any = [] A: Dict = [] A: Optional[Any] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} A: str = [ { "type": "header", "text": { "type": "plain_text", "text": f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", "emoji": True, }, } ] A: Optional[int] = 0 for log in Path().glob("*.log"): A: Dict = 0 with open(log, "r") as f: for line in f: A: str = json.loads(line) if line.get("nodeid", "") != "": A: List[Any] = line["nodeid"] if line.get("duration", None) is not None: A: Dict = f"""{line['duration']:.4f}""" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) A: Tuple = [] log.unlink() A: Dict = "" A: Tuple = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" A: Union[str, Any] = [] A: str = {} for test in failed_tests: A: List[str] = test[0].split("::") A: Any = data[0].split("/")[-1] if data[0] not in filesafailed: A: List[str] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) A: List[str] = [test[0] for test in failed_table] A: Optional[Any] = list(set(files)) # Count number of instances in failed_tests A: Tuple = [] for file in individual_files: table.append([file, len(filesafailed[file])]) A: Optional[Any] = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: A: Tuple = "Too many failed tests, please see the full report in the Action results." A: Optional[int] = len(err) + 1_0 A: str = message[: 3_0_0_0 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: A: List[Any] = "No failed tests! 🤗" print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient A: List[str] = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": A: List[Any] = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) A: Optional[Any] = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) A: List[str] = { "type": "context", "elements": [ { "type": "plain_text", "text": f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) A: Dict = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) A: int = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name A: List[Any] = "" for i, row in enumerate(test_failures): if row[0] != test_class: A: str = row[0] else: A: Any = "" A: str = { "type": "section", "text": { "type": "mrkdwn", "text": f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor A: List[Any] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> None: warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
7
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
1
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
1
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A: int = logging.getLogger(__name__) @dataclass class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.0, metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) SCREAMING_SNAKE_CASE_ : bool = field(default=UpperCAmelCase_, metadata={'help': 'Whether to SortishSamler or not.'} ) SCREAMING_SNAKE_CASE_ : bool = field( default=UpperCAmelCase_, metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) SCREAMING_SNAKE_CASE_ : bool = field(default=UpperCAmelCase_, metadata={'help': 'whether to use adafactor'} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=UpperCAmelCase_, metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=UpperCAmelCase_, metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field(default=UpperCAmelCase_, metadata={'help': 'Dropout probability. Goes into model.config.'} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=UpperCAmelCase_, metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default='linear', metadata={'help': f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""}, )
7
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __magic_name__ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowercase_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = self.dummy_uncond_unet lowercase_ : Dict = ScoreSdeVeScheduler() lowercase_ : Optional[Any] = ScoreSdeVePipeline(unet=_lowercase , scheduler=_lowercase ) sde_ve.to(_lowercase ) sde_ve.set_progress_bar_config(disable=_lowercase ) lowercase_ : Any = torch.manual_seed(0 ) lowercase_ : Optional[int] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_lowercase ).images lowercase_ : Any = torch.manual_seed(0 ) lowercase_ : Optional[int] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_lowercase , return_dict=_lowercase )[ 0 ] lowercase_ : int = image[0, -3:, -3:, -1] lowercase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[int] = 'google/ncsnpp-church-256' lowercase_ : str = UNetaDModel.from_pretrained(_lowercase ) lowercase_ : List[str] = ScoreSdeVeScheduler.from_pretrained(_lowercase ) lowercase_ : List[str] = ScoreSdeVePipeline(unet=_lowercase , scheduler=_lowercase ) sde_ve.to(_lowercase ) sde_ve.set_progress_bar_config(disable=_lowercase ) lowercase_ : Any = torch.manual_seed(0 ) lowercase_ : int = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=_lowercase ).images lowercase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase_ : Any = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(a ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
7
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
1
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A: int = pytest.mark.integration A: List[Any] = {"comet"} A: Dict = importlib.util.find_spec("fairseq") is not None A: Dict = {"code_eval"} A: str = os.name == "nt" A: Optional[int] = {"bertscore", "frugalscore", "perplexity"} A: Optional[Any] = importlib.util.find_spec("transformers") is not None def _UpperCAmelCase ( a : Tuple ) -> Tuple: """simple docstring""" @wraps(a ) def wrapper(self : Optional[Any] , a : Any ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , a ) return wrapper def _UpperCAmelCase ( a : int ) -> Dict: """simple docstring""" @wraps(a ) def wrapper(self : Dict , a : List[Any] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , a ) return wrapper def _UpperCAmelCase ( a : Any ) -> Tuple: """simple docstring""" @wraps(a ) def wrapper(self : Optional[int] , a : str ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , a ) return wrapper def _UpperCAmelCase ( ) -> List[str]: """simple docstring""" lowercase_ : Union[str, Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) @local class __magic_name__ ( parameterized.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : Tuple = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = '[...]' lowercase_ : int = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _lowercase ) ).module_path ) lowercase_ : int = datasets.load.import_main_class(metric_module.__name__ , dataset=_lowercase ) # check parameters lowercase_ : str = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_lowercase , metric_module.__name__ ): with self.use_local_metrics(): try: lowercase_ : Optional[Any] = doctest.testmod(_lowercase , verbose=_lowercase , raise_on_error=_lowercase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCamelCase__ ( self , _lowercase ) -> Any: lowercase_ : List[str] = '[...]' lowercase_ : Dict = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _lowercase ) ).module_path ) # run doctest with self.use_local_metrics(): lowercase_ : Optional[int] = doctest.testmod(_lowercase , verbose=_lowercase , raise_on_error=_lowercase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Tuple: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_lowercase ): yield else: yield @contextmanager def lowerCamelCase__ ( self ) -> int: def load_local_metric(_lowercase , *_lowercase , **_lowercase ): return load_metric(os.path.join('metrics' , _lowercase ) , *_lowercase , **_lowercase ) with patch('datasets.load_metric' ) as mock_load_metric: lowercase_ : Dict = load_local_metric yield @classmethod def lowerCamelCase__ ( cls , _lowercase ) -> Dict: def wrapper(_lowercase ): lowercase_ : Optional[int] = contextmanager(_lowercase ) lowercase_ : int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def _UpperCAmelCase ( a : Dict ) -> Any: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Dict: assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: lowercase_ : Dict = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def _UpperCAmelCase ( a : Union[str, Any] ) -> Tuple: """simple docstring""" import torch def bert_cos_score_idf(a : Any , a : List[str] , *a : Tuple , **a : int ): return torch.tensor([[1.0, 1.0, 1.0]] * len(a ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: lowercase_ : int = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def _UpperCAmelCase ( a : Dict ) -> Any: """simple docstring""" def load_from_checkpoint(a : Any ): class __magic_name__ : """simple docstring""" def lowerCamelCase__ ( self , _lowercase , *_lowercase , **_lowercase ) -> int: assert len(_lowercase ) == 2 lowercase_ : Dict = [0.19, 0.92] return scores, sum(_lowercase ) / len(_lowercase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: lowercase_ : List[Any] = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: lowercase_ : List[str] = load_from_checkpoint yield def _UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" lowercase_ : List[str] = load_metric(os.path.join('metrics' , 'seqeval' ) ) lowercase_ : List[str] = 'ERROR' lowercase_ : str = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(a , match=re.escape(a ) ): metric.compute(predictions=[] , references=[] , scheme=a )
7
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A: Dict = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Any = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys A: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
'''simple docstring''' import re import string import numpy as np import datasets A: Optional[int] = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" A: Tuple = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" A: str = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=False , ) -> Any: if regexes_to_ignore is not None: for s in regexes_to_ignore: lowercase_ : Any = np.array([re.sub(_lowercase , '' , _lowercase ) for x in predictions] ) lowercase_ : Union[str, Any] = np.array([re.sub(_lowercase , '' , _lowercase ) for x in references] ) else: lowercase_ : int = np.asarray(_lowercase ) lowercase_ : str = np.asarray(_lowercase ) if ignore_case: lowercase_ : Dict = np.char.lower(_lowercase ) lowercase_ : Union[str, Any] = np.char.lower(_lowercase ) if ignore_punctuation: lowercase_ : Union[str, Any] = string.punctuation.maketrans('' , '' , string.punctuation ) lowercase_ : List[str] = np.char.translate(_lowercase , table=_lowercase ) lowercase_ : List[str] = np.char.translate(_lowercase , table=_lowercase ) if ignore_numbers: lowercase_ : Optional[Any] = string.digits.maketrans('' , '' , string.digits ) lowercase_ : Optional[int] = np.char.translate(_lowercase , table=_lowercase ) lowercase_ : Dict = np.char.translate(_lowercase , table=_lowercase ) lowercase_ : Union[str, Any] = predictions == references return {"exact_match": np.mean(_lowercase ) * 100}
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = XGLMConfig SCREAMING_SNAKE_CASE_ : List[Any] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = 'gelu' def __init__( self , _lowercase , _lowercase=14 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , ) -> str: lowercase_ : Any = parent lowercase_ : Tuple = batch_size lowercase_ : Dict = seq_length lowercase_ : List[str] = is_training lowercase_ : int = use_input_mask lowercase_ : Any = use_labels lowercase_ : str = vocab_size lowercase_ : Dict = d_model lowercase_ : str = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : List[Any] = ffn_dim lowercase_ : Optional[int] = activation_function lowercase_ : int = activation_dropout lowercase_ : Optional[Any] = attention_dropout lowercase_ : List[str] = max_position_embeddings lowercase_ : Optional[int] = initializer_range lowercase_ : str = None lowercase_ : Any = 0 lowercase_ : Union[str, Any] = 2 lowercase_ : Optional[Any] = 1 def lowerCamelCase__ ( self ) -> int: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : List[str] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowercase_ : Optional[Any] = None if self.use_input_mask: lowercase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : str = self.get_config() lowercase_ : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCamelCase__ ( self ) -> Any: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_lowercase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_lowercase , ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : str = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Dict = config_and_inputs lowercase_ : Optional[Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Dict = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : int = False def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = TFXGLMModelTester(self ) lowercase_ : List[str] = ConfigTester(self , config_class=_lowercase , n_embd=37 ) def lowerCamelCase__ ( self ) -> List[Any]: self.config_tester.run_common_tests() @slow def lowerCamelCase__ ( self ) -> int: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Any = TFXGLMModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowerCamelCase__ ( self ) -> List[Any]: super().test_resize_token_embeddings() @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self , _lowercase=True ) -> List[Any]: lowercase_ : List[str] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) lowercase_ : Tuple = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase_ : Any = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on lowercase_ : Tuple = model.generate(_lowercase , do_sample=_lowercase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _lowercase ) @slow def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : int = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) lowercase_ : Dict = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) lowercase_ : Any = tokenizer('Today is a nice day and' , return_tensors='tf' ) lowercase_ : Any = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): lowercase_ : List[str] = model.generate(_lowercase , do_sample=_lowercase , seed=[7, 0] ) lowercase_ : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=_lowercase ) lowercase_ : Optional[Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(_lowercase , _lowercase ) @slow def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) lowercase_ : Optional[Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) lowercase_ : str = 'left' # use different length sentences to test batching lowercase_ : str = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] lowercase_ : List[Any] = tokenizer(_lowercase , return_tensors='tf' , padding=_lowercase ) lowercase_ : Tuple = inputs['input_ids'] lowercase_ : Optional[int] = model.generate(input_ids=_lowercase , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) lowercase_ : Optional[Any] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowercase_ : List[Any] = model.generate(input_ids=_lowercase , max_new_tokens=12 ) lowercase_ : List[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowercase_ : Tuple = model.generate(input_ids=_lowercase , max_new_tokens=12 ) lowercase_ : Union[str, Any] = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) lowercase_ : Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowercase ) lowercase_ : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowercase ) lowercase_ : Dict = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , [non_padded_sentence, padded_sentence] )
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=64 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , _lowercase=2 , _lowercase=2 , _lowercase=2 , _lowercase=2 , _lowercase=4 , _lowercase=1 , ) -> Dict: lowercase_ : Tuple = parent lowercase_ : Any = batch_size lowercase_ : Dict = seq_length lowercase_ : int = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Tuple = use_token_type_ids lowercase_ : List[Any] = use_labels lowercase_ : List[Any] = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Tuple = intermediate_size lowercase_ : str = hidden_act lowercase_ : str = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : List[str] = max_position_embeddings lowercase_ : Any = type_vocab_size lowercase_ : str = type_sequence_label_size lowercase_ : Optional[Any] = initializer_range lowercase_ : List[str] = num_labels lowercase_ : Dict = num_choices lowercase_ : Union[str, Any] = scope lowercase_ : Any = q_groups lowercase_ : Dict = k_groups lowercase_ : Optional[int] = v_groups lowercase_ : str = post_attention_groups lowercase_ : Union[str, Any] = intermediate_groups lowercase_ : Any = output_groups def lowerCamelCase__ ( self ) -> Dict: lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Dict = None lowercase_ : int = None lowercase_ : List[str] = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ) -> Union[str, Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: lowercase_ : Tuple = SqueezeBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = model(_lowercase , _lowercase ) lowercase_ : Tuple = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: lowercase_ : Dict = SqueezeBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Optional[Any] = SqueezeBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: lowercase_ : Tuple = self.num_labels lowercase_ : Any = SqueezeBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : str = self.num_labels lowercase_ : Any = SqueezeBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : Any = self.num_choices lowercase_ : Any = SqueezeBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Dict = model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : str = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) : Optional[int] = config_and_inputs lowercase_ : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE_ : List[str] = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = False def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Tuple = SqueezeBertModelTester(self ) lowercase_ : Optional[int] = ConfigTester(self , config_class=_lowercase , dim=37 ) def lowerCamelCase__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> int: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_lowercase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_lowercase ) @slow def lowerCamelCase__ ( self ) -> Any: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = SqueezeBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_sentencepiece @require_tokenizers @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) lowercase_ : Union[str, Any] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) lowercase_ : Optional[int] = model(_lowercase )[0] lowercase_ : str = torch.Size((1, 3) ) self.assertEqual(output.shape , _lowercase ) lowercase_ : str = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-4 ) )
7
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A: List[Any] = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Any = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Any = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[Any] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
1
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[int] = {"vocab_file": "vocab.txt"} A: Optional[int] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } A: Optional[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def _UpperCAmelCase ( a : Any ) -> List[str]: """simple docstring""" with open(a , 'r' ) as f: lowercase_ : int = f.read().splitlines() return [l.strip() for l in lines] class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[str] = ['input_ids', 'attention_mask'] def __init__( self , _lowercase , _lowercase="<unk>" , _lowercase="<cls>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase="<eos>" , **_lowercase , ) -> Any: super().__init__(**_lowercase ) lowercase_ : Dict = load_vocab_file(_lowercase ) lowercase_ : Tuple = dict(enumerate(self.all_tokens ) ) lowercase_ : Dict = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ : Optional[Any] = unk_token lowercase_ : Dict = cls_token lowercase_ : List[Any] = pad_token lowercase_ : List[Any] = mask_token lowercase_ : Dict = eos_token lowercase_ : Dict = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowerCamelCase__ ( self , _lowercase ) -> str: return self._id_to_token.get(_lowercase , self.unk_token ) def lowerCamelCase__ ( self , _lowercase ) -> int: return self._token_to_id.get(_lowercase , self._token_to_id.get(self.unk_token ) ) def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> List[Any]: return text.split() def lowerCamelCase__ ( self , _lowercase=False ) -> List[Any]: return len(self._id_to_token ) def lowerCamelCase__ ( self ) -> Any: return {token: i for i, token in enumerate(self.all_tokens )} def lowerCamelCase__ ( self , _lowercase ) -> int: return self._token_to_id.get(_lowercase , self._token_to_id.get(self.unk_token ) ) def lowerCamelCase__ ( self , _lowercase ) -> str: return self._id_to_token.get(_lowercase , self.unk_token ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : Union[str, Any] = [self.cls_token_id] lowercase_ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ : Optional[int] = [1] + ([0] * len(_lowercase )) + [1] if token_ids_a is not None: mask += [0] * len(_lowercase ) + [1] return mask def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Tuple: lowercase_ : Any = os.path.join(_lowercase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(_lowercase , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def lowerCamelCase__ ( self ) -> int: return self.get_vocab_size(with_added_tokens=_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = False ) -> int: return super()._add_tokens(_lowercase , special_tokens=_lowercase )
7
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , ) -> int: lowercase_ : Dict = parent lowercase_ : Dict = 13 lowercase_ : Optional[Any] = 7 lowercase_ : Union[str, Any] = True lowercase_ : str = True lowercase_ : Optional[Any] = True lowercase_ : List[Any] = 99 lowercase_ : Union[str, Any] = 32 lowercase_ : str = 2 lowercase_ : Optional[int] = 4 lowercase_ : Optional[int] = 37 lowercase_ : Any = 'gelu' lowercase_ : Tuple = 0.1 lowercase_ : List[Any] = 0.1 lowercase_ : int = 512 lowercase_ : Tuple = 16 lowercase_ : Any = 2 lowercase_ : Tuple = 0.02 lowercase_ : Union[str, Any] = 3 lowercase_ : int = 4 lowercase_ : Optional[Any] = None def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Tuple = None if self.use_input_mask: lowercase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : List[str] = None lowercase_ : Tuple = None lowercase_ : Dict = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : str = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ) -> Union[str, Any]: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Any = self.prepare_config_and_inputs() lowercase_ : Dict = True lowercase_ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: lowercase_ : int = TFEsmModel(config=_lowercase ) lowercase_ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} lowercase_ : Tuple = model(_lowercase ) lowercase_ : Dict = [input_ids, input_mask] lowercase_ : List[Any] = model(_lowercase ) lowercase_ : Tuple = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> List[Any]: lowercase_ : Union[str, Any] = True lowercase_ : Tuple = TFEsmModel(config=_lowercase ) lowercase_ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowercase_ : Optional[int] = model(_lowercase ) lowercase_ : str = [input_ids, input_mask] lowercase_ : Union[str, Any] = model(_lowercase , encoder_hidden_states=_lowercase ) # Also check the case where encoder outputs are not passed lowercase_ : List[Any] = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: lowercase_ : Optional[Any] = TFEsmForMaskedLM(config=_lowercase ) lowercase_ : List[Any] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Union[str, Any] = self.num_labels lowercase_ : Dict = TFEsmForTokenClassification(config=_lowercase ) lowercase_ : str = {'input_ids': input_ids, 'attention_mask': input_mask} lowercase_ : int = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[str] = config_and_inputs lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Tuple = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[int] = TFEsmModelTester(self ) lowercase_ : Any = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def lowerCamelCase__ ( self ) -> str: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> Any: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowercase ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = TFEsmModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCamelCase__ ( self ) -> Tuple: pass def lowerCamelCase__ ( self ) -> List[str]: lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[Any] = model_class(_lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase_ : Any = model.get_bias() assert isinstance(_lowercase , _lowercase ) for k, v in name.items(): assert isinstance(_lowercase , tf.Variable ) else: lowercase_ : Union[str, Any] = model.get_output_embeddings() assert x is None lowercase_ : Tuple = model.get_bias() assert name is None @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Optional[int] = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowercase_ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Tuple = model(_lowercase )[0] lowercase_ : int = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _lowercase ) # compare the actual values for a slice. lowercase_ : Union[str, Any] = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Dict = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowercase_ : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : str = model(_lowercase )[0] # compare the actual values for a slice. lowercase_ : Optional[int] = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets A: Any = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" A: Tuple = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" A: Optional[int] = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase=True , _lowercase=False ) -> str: if rouge_types is None: lowercase_ : Union[str, Any] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] lowercase_ : Optional[Any] = rouge_scorer.RougeScorer(rouge_types=_lowercase , use_stemmer=_lowercase ) if use_aggregator: lowercase_ : List[str] = scoring.BootstrapAggregator() else: lowercase_ : str = [] for ref, pred in zip(_lowercase , _lowercase ): lowercase_ : Optional[Any] = scorer.score(_lowercase , _lowercase ) if use_aggregator: aggregator.add_scores(_lowercase ) else: scores.append(_lowercase ) if use_aggregator: lowercase_ : Optional[int] = aggregator.aggregate() else: lowercase_ : Optional[int] = {} for key in scores[0]: lowercase_ : int = [score[key] for score in scores] return result
7
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A: List[Any] = logging.get_logger(__name__) A: List[Any] = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class __magic_name__ : """simple docstring""" def __init__( self , _lowercase=None , **_lowercase ) -> int: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) lowercase_ : Optional[Any] = model lowercase_ : str = kwargs.get('model_save_dir' , _lowercase ) lowercase_ : Union[str, Any] = kwargs.get('latest_model_name' , _lowercase ) def __call__( self , **_lowercase ) -> Optional[Any]: lowercase_ : str = {k: np.array(_lowercase ) for k, v in kwargs.items()} return self.model.run(_lowercase , _lowercase ) @staticmethod def lowerCamelCase__ ( _lowercase , _lowercase=None , _lowercase=None ) -> Union[str, Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) lowercase_ : Optional[int] = 'CPUExecutionProvider' return ort.InferenceSession(_lowercase , providers=[provider] , sess_options=_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None , **_lowercase ) -> Dict: lowercase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowercase_ : Any = self.model_save_dir.joinpath(self.latest_model_name ) lowercase_ : Dict = Path(_lowercase ).joinpath(_lowercase ) try: shutil.copyfile(_lowercase , _lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowercase_ : Optional[Any] = self.model_save_dir.joinpath(_lowercase ) if src_path.exists(): lowercase_ : Optional[int] = Path(_lowercase ).joinpath(_lowercase ) try: shutil.copyfile(_lowercase , _lowercase ) except shutil.SameFileError: pass def lowerCamelCase__ ( self , _lowercase , **_lowercase , ) -> List[str]: if os.path.isfile(_lowercase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_lowercase , exist_ok=_lowercase ) # saving model weights/files self._save_pretrained(_lowercase , **_lowercase ) @classmethod def lowerCamelCase__ ( cls , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ) -> Any: lowercase_ : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowercase ): lowercase_ : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(_lowercase , _lowercase ) , provider=_lowercase , sess_options=_lowercase ) lowercase_ : str = Path(_lowercase ) # load model from hub else: # download model lowercase_ : Optional[Any] = hf_hub_download( repo_id=_lowercase , filename=_lowercase , use_auth_token=_lowercase , revision=_lowercase , cache_dir=_lowercase , force_download=_lowercase , ) lowercase_ : Union[str, Any] = Path(_lowercase ).parent lowercase_ : Optional[int] = Path(_lowercase ).name lowercase_ : List[Any] = OnnxRuntimeModel.load_model(_lowercase , provider=_lowercase , sess_options=_lowercase ) return cls(model=_lowercase , **_lowercase ) @classmethod def lowerCamelCase__ ( cls , _lowercase , _lowercase = True , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[int]: lowercase_ : List[str] = None if len(str(_lowercase ).split('@' ) ) == 2: lowercase_ , lowercase_ : int = model_id.split('@' ) return cls._from_pretrained( model_id=_lowercase , revision=_lowercase , cache_dir=_lowercase , force_download=_lowercase , use_auth_token=_lowercase , **_lowercase , )
7
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] SCREAMING_SNAKE_CASE_ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE_ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE_ : ClassVar[Any] = None SCREAMING_SNAKE_CASE_ : str = field(default='Translation', init=UpperCAmelCase_, repr=UpperCAmelCase_ ) def __call__( self ) -> str: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowerCamelCase__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[List] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE_ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE_ : ClassVar[Any] = None SCREAMING_SNAKE_CASE_ : str = field(default='TranslationVariableLanguages', init=UpperCAmelCase_, repr=UpperCAmelCase_ ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None lowercase_ : str = len(self.languages ) if self.languages else None def __call__( self ) -> Union[str, Any]: return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : Union[str, Any] = set(self.languages ) if self.languages and set(_lowercase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(_lowercase ) - lang_set ) )}) are not in valid set ({', '.join(_lowercase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase_ : List[Any] = [] for lang, text in translation_dict.items(): if isinstance(_lowercase , _lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase_ , lowercase_ : int = zip(*sorted(_lowercase ) ) return {"language": languages, "translation": translations} def lowerCamelCase__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
7
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ('foo.json',)] ) def lowerCamelCase__ ( self , _lowercase ) -> Any: lowercase_ : Tuple = GenerationConfig( do_sample=_lowercase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase , config_name=_lowercase ) lowercase_ : Any = GenerationConfig.from_pretrained(_lowercase , config_name=_lowercase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _lowercase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _lowercase ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Optional[Any] = AutoConfig.from_pretrained('gpt2' ) lowercase_ : Optional[Any] = GenerationConfig.from_model_config(_lowercase ) lowercase_ : Tuple = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_lowercase , _lowercase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : str = GenerationConfig() lowercase_ : Any = { 'max_new_tokens': 1024, 'foo': 'bar', } lowercase_ : str = copy.deepcopy(_lowercase ) lowercase_ : Any = generation_config.update(**_lowercase ) # update_kwargs was not modified (no side effects) self.assertEqual(_lowercase , _lowercase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_lowercase , {'foo': 'bar'} ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Optional[Any] = GenerationConfig() lowercase_ : Any = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(_lowercase ) lowercase_ : Dict = GenerationConfig.from_pretrained(_lowercase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowercase_ : Tuple = GenerationConfig.from_model_config(_lowercase ) assert not hasattr(_lowercase , 'foo' ) # no new kwargs should be initialized if from config def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : int = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _lowercase ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : int = GenerationConfig( do_sample=_lowercase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _lowercase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(_lowercase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _lowercase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCamelCase__ ( cls ) -> Optional[int]: lowercase_ : List[Any] = TOKEN HfFolder.save_token(_lowercase ) @classmethod def lowerCamelCase__ ( cls ) -> Tuple: try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Tuple = GenerationConfig( do_sample=_lowercase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowercase_ : Union[str, Any] = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowercase , repo_id='test-generation-config' , push_to_hub=_lowercase , use_auth_token=self._token ) lowercase_ : Tuple = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = GenerationConfig( do_sample=_lowercase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowercase , repo_id='valid_org/test-generation-config-org' , push_to_hub=_lowercase , use_auth_token=self._token ) lowercase_ : Union[str, Any] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
7
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A: Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
1
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowercase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(_lowercase , 'num_heads' ) ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=64 , _lowercase=3 , _lowercase=[16, 48, 96] , _lowercase=[1, 3, 6] , _lowercase=[1, 2, 10] , _lowercase=[7, 3, 3] , _lowercase=[4, 2, 2] , _lowercase=[2, 1, 1] , _lowercase=[2, 2, 2] , _lowercase=[False, False, True] , _lowercase=[0.0, 0.0, 0.0] , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=True , _lowercase=True , _lowercase=2 , ) -> Dict: lowercase_ : Any = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = image_size lowercase_ : Tuple = patch_sizes lowercase_ : int = patch_stride lowercase_ : Optional[Any] = patch_padding lowercase_ : Optional[int] = is_training lowercase_ : List[Any] = use_labels lowercase_ : List[str] = num_labels lowercase_ : Optional[int] = num_channels lowercase_ : Any = embed_dim lowercase_ : Optional[Any] = num_heads lowercase_ : str = stride_kv lowercase_ : List[Any] = depth lowercase_ : int = cls_token lowercase_ : Optional[Any] = attention_drop_rate lowercase_ : Optional[int] = initializer_range lowercase_ : int = layer_norm_eps def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : str = None if self.use_labels: lowercase_ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ) -> Optional[int]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : Optional[Any] = CvtModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model(_lowercase ) lowercase_ : Optional[Any] = (self.image_size, self.image_size) lowercase_ , lowercase_ : Dict = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase_ : str = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase_ : List[str] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: lowercase_ : List[Any] = self.num_labels lowercase_ : Union[str, Any] = CvtForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[int] = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Dict = config_and_inputs lowercase_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = (CvtModel, CvtForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Dict = False def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[Any] = CvtModelTester(self ) lowercase_ : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def lowerCamelCase__ ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase__ ( self ) -> List[Any]: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase__ ( self ) -> Union[str, Any]: pass def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(_lowercase ) lowercase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : int = [*signature.parameters.keys()] lowercase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): lowercase_ : int = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): lowercase_ : List[str] = model(**self._prepare_for_class(_lowercase , _lowercase ) ) lowercase_ : Any = outputs.hidden_states lowercase_ : str = len(self.model_tester.depth ) self.assertEqual(len(_lowercase ) , _lowercase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Union[str, Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__ ( self ) -> Optional[Any]: pass @slow def lowerCamelCase__ ( self ) -> Union[str, Any]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[int] = CvtModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowercase ) lowercase_ : Tuple = self.default_image_processor lowercase_ : Any = prepare_img() lowercase_ : Union[str, Any] = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : Optional[Any] = model(**_lowercase ) # verify the logits lowercase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowercase ) lowercase_ : int = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) )
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor A: Any = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> None: warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
'''simple docstring''' import math def _UpperCAmelCase ( a : float , a : float ) -> float: """simple docstring""" if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(a ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
7
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=16 , _lowercase=36 , _lowercase=6 , _lowercase=6 , _lowercase=6 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> List[Any]: lowercase_ : List[Any] = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : Any = seq_length lowercase_ : List[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[int] = use_token_type_ids lowercase_ : Optional[Any] = use_labels lowercase_ : Optional[int] = vocab_size lowercase_ : Union[str, Any] = embedding_size lowercase_ : Union[str, Any] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_hidden_groups lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : str = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : Union[str, Any] = attention_probs_dropout_prob lowercase_ : List[str] = max_position_embeddings lowercase_ : Any = type_vocab_size lowercase_ : Any = type_sequence_label_size lowercase_ : str = initializer_range lowercase_ : Optional[Any] = num_labels lowercase_ : List[str] = num_choices lowercase_ : Tuple = scope def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Tuple = None if self.use_input_mask: lowercase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None if self.use_token_type_ids: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Any = None lowercase_ : Union[str, Any] = None lowercase_ : Optional[Any] = None if self.use_labels: lowercase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ) -> Any: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: lowercase_ : Dict = AlbertModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[int] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) lowercase_ : Dict = model(_lowercase , token_type_ids=_lowercase ) lowercase_ : str = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: lowercase_ : Optional[int] = AlbertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , sentence_order_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: lowercase_ : Optional[Any] = AlbertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : Optional[Any] = AlbertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: lowercase_ : Dict = self.num_labels lowercase_ : Union[str, Any] = AlbertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[int] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: lowercase_ : List[Any] = self.num_labels lowercase_ : Optional[Any] = AlbertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : List[Any] = self.num_choices lowercase_ : Tuple = AlbertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : List[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : int = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = True def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> str: lowercase_ : List[Any] = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): lowercase_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) lowercase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[str] = AlbertModelTester(self ) lowercase_ : str = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def lowerCamelCase__ ( self ) -> Tuple: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Tuple = type self.model_tester.create_and_check_model(*_lowercase ) @slow def lowerCamelCase__ ( self ) -> Union[str, Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = AlbertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self ) -> Any: lowercase_ : List[str] = AlbertModel.from_pretrained('albert-base-v2' ) lowercase_ : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase_ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : List[Any] = model(_lowercase , attention_mask=_lowercase )[0] lowercase_ : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowercase ) lowercase_ : Tuple = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
7
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask A: str = logging.getLogger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase=-1 ) -> Tuple: # in NER datasets, the last column is usually reserved for NER label lowercase_ : Optional[int] = label_idx def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[InputExample]: if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = mode.value lowercase_ : Tuple = os.path.join(_lowercase , f"{mode}.txt" ) lowercase_ : Any = 1 lowercase_ : str = [] with open(_lowercase , encoding='utf-8' ) as f: lowercase_ : List[str] = [] lowercase_ : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_lowercase , labels=_lowercase ) ) guid_index += 1 lowercase_ : Optional[Any] = [] lowercase_ : int = [] else: lowercase_ : Dict = line.split(' ' ) words.append(splits[0] ) if len(_lowercase ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_lowercase , labels=_lowercase ) ) return examples def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[str]: lowercase_ : Tuple = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(_lowercase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase_ : str = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(_lowercase ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def lowerCamelCase__ ( self , _lowercase ) -> List[str]: if path: with open(_lowercase , 'r' ) as f: lowercase_ : Union[str, Any] = f.read().splitlines() if "O" not in labels: lowercase_ : Tuple = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self ) -> Tuple: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def lowerCamelCase__ ( self , _lowercase ) -> List[str]: if path: with open(_lowercase , 'r' ) as f: lowercase_ : Tuple = f.read().splitlines() if "O" not in labels: lowercase_ : str = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[InputExample]: if isinstance(_lowercase , _lowercase ): lowercase_ : Optional[int] = mode.value lowercase_ : Any = os.path.join(_lowercase , f"{mode}.txt" ) lowercase_ : Dict = 1 lowercase_ : Dict = [] with open(_lowercase , encoding='utf-8' ) as f: for sentence in parse_incr(_lowercase ): lowercase_ : List[Any] = [] lowercase_ : Union[str, Any] = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(_lowercase ) == len(_lowercase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_lowercase , labels=_lowercase ) ) guid_index += 1 return examples def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : Optional[int] = 0 for sentence in parse_incr(_lowercase ): lowercase_ : Optional[int] = preds_list[example_id] lowercase_ : Tuple = '' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(_lowercase ) example_id += 1 def lowerCamelCase__ ( self , _lowercase ) -> List[str]: if path: with open(_lowercase , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
'''simple docstring''' def _UpperCAmelCase ( a : Optional[Any] , a : Any , a : List[str]=False ) -> str: """simple docstring""" if isinstance(a , a ) and isinstance(a , a ): lowercase_ : Dict = len(set_a.intersection(a ) ) if alternative_union: lowercase_ : Union[str, Any] = len(a ) + len(a ) else: lowercase_ : Optional[Any] = len(set_a.union(a ) ) return intersection / union if isinstance(a , (list, tuple) ) and isinstance(a , (list, tuple) ): lowercase_ : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: lowercase_ : Dict = len(a ) + len(a ) return len(a ) / union else: lowercase_ : int = set_a + [element for element in set_b if element not in set_a] return len(a ) / len(a ) return len(a ) / len(a ) return None if __name__ == "__main__": A: List[Any] = {"a", "b", "c", "d", "e"} A: Optional[Any] = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
7
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A: List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Any = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: str = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'data2vec-text' def __init__( self , _lowercase=3_0522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ) -> List[Any]: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ : Dict = vocab_size lowercase_ : Optional[int] = hidden_size lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : Tuple = num_attention_heads lowercase_ : str = hidden_act lowercase_ : Any = intermediate_size lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : int = max_position_embeddings lowercase_ : Tuple = type_vocab_size lowercase_ : Union[str, Any] = initializer_range lowercase_ : Any = layer_norm_eps lowercase_ : List[Any] = position_embedding_type lowercase_ : List[str] = use_cache lowercase_ : List[Any] = classifier_dropout class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase_ : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase_ : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING A: Tuple = logging.get_logger(__name__) A: List[Any] = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 'blip_2_vision_model' def __init__( self , _lowercase=1408 , _lowercase=6144 , _lowercase=39 , _lowercase=16 , _lowercase=224 , _lowercase=14 , _lowercase="gelu" , _lowercase=0.0_00_01 , _lowercase=0.0 , _lowercase=1E-1_0 , _lowercase=True , **_lowercase , ) -> Optional[int]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : Dict = intermediate_size lowercase_ : str = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = patch_size lowercase_ : Dict = image_size lowercase_ : Optional[Any] = initializer_range lowercase_ : str = attention_dropout lowercase_ : Dict = layer_norm_eps lowercase_ : Tuple = hidden_act lowercase_ : Optional[int] = qkv_bias @classmethod def lowerCamelCase__ ( cls , _lowercase , **_lowercase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase ) lowercase_ , lowercase_ : Any = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowercase_ : Union[str, Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'blip_2_qformer' def __init__( self , _lowercase=3_0522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=0 , _lowercase="absolute" , _lowercase=2 , _lowercase=1408 , **_lowercase , ) -> Any: super().__init__(pad_token_id=_lowercase , **_lowercase ) lowercase_ : List[Any] = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Tuple = num_attention_heads lowercase_ : Dict = hidden_act lowercase_ : Optional[Any] = intermediate_size lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : Any = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Optional[int] = position_embedding_type lowercase_ : List[str] = cross_attention_frequency lowercase_ : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls , _lowercase , **_lowercase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase ) lowercase_ , lowercase_ : str = cls.get_config_dict(_lowercase , **_lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowercase_ : Union[str, Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'blip-2' SCREAMING_SNAKE_CASE_ : str = True def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=32 , **_lowercase ) -> int: super().__init__(**_lowercase ) if vision_config is None: lowercase_ : Tuple = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: lowercase_ : str = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: lowercase_ : Tuple = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) lowercase_ : List[str] = BlipaVisionConfig(**_lowercase ) lowercase_ : Union[str, Any] = BlipaQFormerConfig(**_lowercase ) lowercase_ : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' lowercase_ : Any = CONFIG_MAPPING[text_model_type](**_lowercase ) lowercase_ : int = self.text_config.tie_word_embeddings lowercase_ : int = self.text_config.is_encoder_decoder lowercase_ : Tuple = num_query_tokens lowercase_ : Tuple = self.vision_config.hidden_size lowercase_ : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase_ : Any = 1.0 lowercase_ : Union[str, Any] = 0.02 @classmethod def lowerCamelCase__ ( cls , _lowercase , _lowercase , _lowercase , **_lowercase , ) -> Optional[int]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowercase , ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase_ : int = self.vision_config.to_dict() lowercase_ : Any = self.qformer_config.to_dict() lowercase_ : Optional[int] = self.text_config.to_dict() lowercase_ : str = self.__class__.model_type return output
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
'''simple docstring''' from maths.prime_factors import prime_factors def _UpperCAmelCase ( a : int ) -> int: """simple docstring""" if not isinstance(a , a ): lowercase_ : int = f"Input value of [number={number}] must be an integer" raise TypeError(a ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' from __future__ import annotations from typing import Any class __magic_name__ : """simple docstring""" def __init__( self , _lowercase = 6 ) -> None: lowercase_ : Node | None = None lowercase_ : Node | None = None self.create_linked_list(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : Optional[int] = Node() lowercase_ : int = current_node lowercase_ : List[str] = current_node lowercase_ : Union[str, Any] = current_node for _ in range(1 , _lowercase ): lowercase_ : List[str] = Node() lowercase_ : Any = current_node lowercase_ : List[Any] = previous_node lowercase_ : Union[str, Any] = current_node lowercase_ : Optional[int] = self.front lowercase_ : List[str] = previous_node def lowerCamelCase__ ( self ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCamelCase__ ( self ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def lowerCamelCase__ ( self , _lowercase ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ : Any = self.rear.next if self.rear: lowercase_ : Tuple = data def lowerCamelCase__ ( self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ : Dict = self.front.data lowercase_ : Union[str, Any] = None return data lowercase_ : Optional[int] = self.front lowercase_ : Any = old_front.next lowercase_ : Any = old_front.data lowercase_ : List[str] = None return data def lowerCamelCase__ ( self ) -> None: if self.is_empty(): raise Exception('Empty Queue' ) def lowerCamelCase__ ( self ) -> None: if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class __magic_name__ : """simple docstring""" def __init__( self ) -> None: lowercase_ : Any | None = None lowercase_ : Node | None = None lowercase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
1
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Any = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCamelCase__ ( self ) -> Union[str, Any]: with self.assertRaises(_lowercase ): lowercase_ : str = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def lowerCamelCase__ ( self ) -> str: with self.assertRaises(_lowercase ): lowercase_ : Optional[int] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Any = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCamelCase__ ( self ) -> Union[str, Any]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase_ : Union[str, Any] = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : List[Any] = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Dict = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def lowerCamelCase__ ( self ) -> int: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase_ : List[Any] = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Optional[Any] = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def lowerCamelCase__ ( self ) -> Tuple: import PIL.Image lowercase_ : Optional[Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=_lowercase ) as mock_cast_to_python_objects: lowercase_ : List[Any] = pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] , type=Image() ) ) lowercase_ , lowercase_ : Any = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , _lowercase ) self.assertFalse(kwargs['optimize_list_casting'] ) def _UpperCAmelCase ( a : List[Any] , a : int ) -> int: """simple docstring""" lowercase_ : Union[str, Any] = pa.BufferReader(a ) if isinstance(a , pa.Buffer ) else pa.memory_map(a ) lowercase_ : Tuple = pa.ipc.open_stream(a ) lowercase_ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 1_0] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _UpperCAmelCase ( a : str , a : int ) -> str: """simple docstring""" lowercase_ : str = pa.BufferOutputStream() lowercase_ : Union[str, Any] = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) lowercase_ , lowercase_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ : str = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" lowercase_ : Any = pa.BufferOutputStream() lowercase_ : Dict = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=a , features=a ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) lowercase_ , lowercase_ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowercase_ : Dict = pa.BufferReader(output.getvalue() ) lowercase_ : str = pa.ipc.open_stream(a ) lowercase_ : pa.Table = f.read_all() lowercase_ : Optional[int] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(a ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 1_0] ) def _UpperCAmelCase ( a : int ) -> List[str]: """simple docstring""" lowercase_ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=a , writer_batch_size=a , hash_salt='split_name' , check_duplicates=a , ) as writer: with pytest.raises(a ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) lowercase_ , lowercase_ : Optional[int] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 1_0] ) def _UpperCAmelCase ( a : Tuple ) -> str: """simple docstring""" lowercase_ : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=a , writer_batch_size=a , hash_salt='split_name' , check_duplicates=a , ) as writer: with pytest.raises(a ): writer.write({'col_1': 'foo', 'col_2': 1} , key=1_0 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=1_0 ) lowercase_ , lowercase_ : Optional[Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 1_0] ) def _UpperCAmelCase ( a : Union[str, Any] ) -> Any: """simple docstring""" lowercase_ : int = pa.BufferOutputStream() with ArrowWriter( stream=a , writer_batch_size=a , hash_salt='split_name' , check_duplicates=a , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) lowercase_ , lowercase_ : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 1_0] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _UpperCAmelCase ( a : Optional[Any] , a : Optional[Any] ) -> int: """simple docstring""" lowercase_ : List[str] = pa.BufferOutputStream() lowercase_ : Dict = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) lowercase_ , lowercase_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ : str = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 1_0] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _UpperCAmelCase ( a : Dict , a : str ) -> Union[str, Any]: """simple docstring""" lowercase_ : Optional[Any] = pa.BufferOutputStream() lowercase_ : List[Any] = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) lowercase_ , lowercase_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ : Union[str, Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 1_0] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _UpperCAmelCase ( a : List[Any] , a : int ) -> Optional[Any]: """simple docstring""" lowercase_ : Tuple = pa.BufferOutputStream() lowercase_ : Tuple = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) lowercase_ , lowercase_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ : Dict = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()} lowercase_ : Dict = os.path.join(a , 'test.arrow' ) with ArrowWriter(path=a , schema=pa.schema(a ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) lowercase_ , lowercase_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(a , 1 ) def _UpperCAmelCase ( a : Optional[int] ) -> int: """simple docstring""" if pa.types.is_list(a ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _UpperCAmelCase ( a : List[str] , a : str ) -> Any: """simple docstring""" if isinstance(lst[0] , a ): change_first_primitive_element_in_list(lst[0] , a ) else: lowercase_ : str = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCAmelCase ( a : Dict , a : Tuple , a : Dict ) -> int: """simple docstring""" lowercase_ : Any = pa.array(TypedSequence(a , optimized_int_type=a ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCAmelCase ( a : Optional[Any] , a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" # in range lowercase_ : int = pa.array(OptimizedTypedSequence(a , col=a ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowercase_ : Union[str, Any] = copy.deepcopy(a ) lowercase_ : str = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(a , a ) lowercase_ : Tuple = pa.array(OptimizedTypedSequence(a , col=a ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def _UpperCAmelCase ( a : int , a : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase_ : Any = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=a ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _UpperCAmelCase ( a : Dict ) -> List[Any]: """simple docstring""" lowercase_ : Tuple = 'mock://dataset-train.arrow' with ArrowWriter(path=a , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(a ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) lowercase_ , lowercase_ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(a ) def _UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" lowercase_ : Tuple = pa.BufferOutputStream() with ParquetWriter(stream=a ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) lowercase_ , lowercase_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowercase_ : Union[str, Any] = pa.BufferReader(output.getvalue() ) lowercase_ : pa.Table = pq.read_table(a ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def _UpperCAmelCase ( a : Optional[int] , a : Optional[Any] ) -> Dict: """simple docstring""" import PIL.Image lowercase_ : str = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(a , format='png' ) lowercase_ : Optional[Any] = pa.BufferOutputStream() with ParquetWriter( stream=a , features=Features({'image': Image()} ) , embed_local_files=a ) as writer: writer.write({'image': image_path} ) writer.finalize() lowercase_ : Optional[int] = pa.BufferReader(output.getvalue() ) lowercase_ : pa.Table = pq.read_table(a ) lowercase_ : List[Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , a ) with open(a , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _UpperCAmelCase ( ) -> Any: """simple docstring""" lowercase_ : int = pa.schema([pa.field('col_1' , pa.string() , nullable=a )] ) lowercase_ : List[str] = pa.BufferOutputStream() with ArrowWriter(stream=a ) as writer: writer._build_writer(inferred_schema=a ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
7
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated A: int = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ A: int = "https://storage.googleapis.com/cvdf-datasets/mnist/" def _UpperCAmelCase ( a : List[Any] ) -> List[Any]: """simple docstring""" lowercase_ : str = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=a )[0] @deprecated(a , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: lowercase_ : List[str] = _readaa(a ) if magic != 2_0_5_1: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowercase_ : Optional[int] = _readaa(a ) lowercase_ : Tuple = _readaa(a ) lowercase_ : Optional[Any] = _readaa(a ) lowercase_ : Tuple = bytestream.read(rows * cols * num_images ) lowercase_ : Optional[int] = numpy.frombuffer(a , dtype=numpy.uinta ) lowercase_ : Optional[Any] = data.reshape(a , a , a , 1 ) return data @deprecated(a , 'Please use tf.one_hot on tensors.' ) def _UpperCAmelCase ( a : Optional[Any] , a : List[str] ) -> Any: """simple docstring""" lowercase_ : Dict = labels_dense.shape[0] lowercase_ : List[Any] = numpy.arange(a ) * num_classes lowercase_ : Union[str, Any] = numpy.zeros((num_labels, num_classes) ) lowercase_ : List[str] = 1 return labels_one_hot @deprecated(a , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( a : Optional[Any] , a : str=False , a : Tuple=1_0 ) -> str: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: lowercase_ : int = _readaa(a ) if magic != 2_0_4_9: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowercase_ : Tuple = _readaa(a ) lowercase_ : Union[str, Any] = bytestream.read(a ) lowercase_ : int = numpy.frombuffer(a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(a , a ) return labels class __magic_name__ : """simple docstring""" @deprecated( _lowercase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , _lowercase , _lowercase , _lowercase=False , _lowercase=False , _lowercase=dtypes.floataa , _lowercase=True , _lowercase=None , ) -> int: lowercase_ , lowercase_ : Union[str, Any] = random_seed.get_seed(_lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowercase_ : Optional[int] = dtypes.as_dtype(_lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowercase_ : Optional[int] = 1_0000 lowercase_ : int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" lowercase_ : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowercase_ : Optional[Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowercase_ : Union[str, Any] = images.astype(numpy.floataa ) lowercase_ : str = numpy.multiply(_lowercase , 1.0 / 2_55.0 ) lowercase_ : Dict = images lowercase_ : Union[str, Any] = labels lowercase_ : int = 0 lowercase_ : List[Any] = 0 @property def lowerCamelCase__ ( self ) -> Tuple: return self._images @property def lowerCamelCase__ ( self ) -> Tuple: return self._labels @property def lowerCamelCase__ ( self ) -> Dict: return self._num_examples @property def lowerCamelCase__ ( self ) -> Optional[Any]: return self._epochs_completed def lowerCamelCase__ ( self , _lowercase , _lowercase=False , _lowercase=True ) -> int: if fake_data: lowercase_ : str = [1] * 784 lowercase_ : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_lowercase )], [fake_label for _ in range(_lowercase )], ) lowercase_ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowercase_ : List[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_lowercase ) lowercase_ : Optional[Any] = self.images[perma] lowercase_ : Optional[Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowercase_ : List[str] = self._num_examples - start lowercase_ : List[str] = self._images[start : self._num_examples] lowercase_ : Union[str, Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowercase_ : int = numpy.arange(self._num_examples ) numpy.random.shuffle(_lowercase ) lowercase_ : List[str] = self.images[perm] lowercase_ : Dict = self.labels[perm] # Start next epoch lowercase_ : List[str] = 0 lowercase_ : int = batch_size - rest_num_examples lowercase_ : Dict = self._index_in_epoch lowercase_ : Union[str, Any] = self._images[start:end] lowercase_ : List[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowercase_ : Any = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(a , 'Please write your own downloading logic.' ) def _UpperCAmelCase ( a : Dict , a : Any , a : str ) -> List[str]: """simple docstring""" if not gfile.Exists(a ): gfile.MakeDirs(a ) lowercase_ : Tuple = os.path.join(a , a ) if not gfile.Exists(a ): urllib.request.urlretrieve(a , a ) # noqa: S310 with gfile.GFile(a ) as f: lowercase_ : str = f.size() print('Successfully downloaded' , a , a , 'bytes.' ) return filepath @deprecated( a , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def _UpperCAmelCase ( a : Union[str, Any] , a : int=False , a : Dict=False , a : List[Any]=dtypes.floataa , a : List[str]=True , a : Tuple=5_0_0_0 , a : Any=None , a : Optional[int]=DEFAULT_SOURCE_URL , ) -> Optional[int]: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=a , one_hot=a , dtype=a , seed=a ) lowercase_ : Tuple = fake() lowercase_ : Tuple = fake() lowercase_ : Tuple = fake() return _Datasets(train=a , validation=a , test=a ) if not source_url: # empty string check lowercase_ : Dict = DEFAULT_SOURCE_URL lowercase_ : List[Any] = 'train-images-idx3-ubyte.gz' lowercase_ : str = 'train-labels-idx1-ubyte.gz' lowercase_ : Optional[int] = 't10k-images-idx3-ubyte.gz' lowercase_ : Optional[Any] = 't10k-labels-idx1-ubyte.gz' lowercase_ : Tuple = _maybe_download( a , a , source_url + train_images_file ) with gfile.Open(a , 'rb' ) as f: lowercase_ : Optional[int] = _extract_images(a ) lowercase_ : Optional[int] = _maybe_download( a , a , source_url + train_labels_file ) with gfile.Open(a , 'rb' ) as f: lowercase_ : Optional[Any] = _extract_labels(a , one_hot=a ) lowercase_ : Dict = _maybe_download( a , a , source_url + test_images_file ) with gfile.Open(a , 'rb' ) as f: lowercase_ : Optional[Any] = _extract_images(a ) lowercase_ : List[str] = _maybe_download( a , a , source_url + test_labels_file ) with gfile.Open(a , 'rb' ) as f: lowercase_ : int = _extract_labels(a , one_hot=a ) if not 0 <= validation_size <= len(a ): lowercase_ : List[str] = ( 'Validation size should be between 0 and ' f"{len(a )}. Received: {validation_size}." ) raise ValueError(a ) lowercase_ : List[Any] = train_images[:validation_size] lowercase_ : List[str] = train_labels[:validation_size] lowercase_ : Any = train_images[validation_size:] lowercase_ : Optional[int] = train_labels[validation_size:] lowercase_ : Optional[int] = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowercase_ : Optional[int] = _DataSet(a , a , **a ) lowercase_ : List[Any] = _DataSet(a , a , **a ) lowercase_ : Optional[Any] = _DataSet(a , a , **a ) return _Datasets(train=a , validation=a , test=a )
7
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
1
'''simple docstring''' from manim import * class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = Rectangle(height=0.5 , width=0.5 ) lowercase_ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase_ : List[Any] = Rectangle(height=0.25 , width=0.25 ) lowercase_ : List[Any] = [mem.copy() for i in range(6 )] lowercase_ : Union[str, Any] = [mem.copy() for i in range(6 )] lowercase_ : int = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Optional[int] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Any = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : str = Text('CPU' , font_size=24 ) lowercase_ : Optional[Any] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) lowercase_ : Optional[Any] = [mem.copy() for i in range(4 )] lowercase_ : Dict = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : List[Any] = Text('GPU' , font_size=24 ) lowercase_ : Tuple = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.move_to([-1, -1, 0] ) self.add(_lowercase ) lowercase_ : Union[str, Any] = [mem.copy() for i in range(6 )] lowercase_ : Dict = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Dict = Text('Model' , font_size=24 ) lowercase_ : List[str] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.add(_lowercase ) lowercase_ : Optional[Any] = [] lowercase_ : Optional[int] = [] for i, rect in enumerate(_lowercase ): lowercase_ : List[Any] = fill.copy().set_fill(_lowercase , opacity=0.8 ) target.move_to(_lowercase ) model_arr.append(_lowercase ) lowercase_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowercase ) self.add(*_lowercase , *_lowercase ) lowercase_ : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowercase_ : str = [meta_mem.copy() for i in range(6 )] lowercase_ : int = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : List[str] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Optional[Any] = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) lowercase_ : Union[str, Any] = Text('Disk' , font_size=24 ) lowercase_ : Union[str, Any] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowercase , _lowercase ) lowercase_ : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase_ : str = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowercase , _lowercase ) lowercase_ : Tuple = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowercase ) lowercase_ : Optional[int] = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase ) ) lowercase_ : Union[str, Any] = Square(0.3 ) input.set_fill(_lowercase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowercase , buff=0.5 ) self.play(Write(_lowercase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowercase , buff=0.02 ) self.play(MoveToTarget(_lowercase ) ) self.play(FadeOut(_lowercase ) ) lowercase_ : int = Arrow(start=_lowercase , end=_lowercase , color=_lowercase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowercase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowercase_ : Any = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=3 ) ) lowercase_ : str = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_lowercase ) , Circumscribe(model_arr[0] , color=_lowercase , **_lowercase ) , Circumscribe(model_cpu_arr[0] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowercase_ : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowercase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowercase_ : Any = AnimationGroup( FadeOut(_lowercase , run_time=0.5 ) , MoveToTarget(_lowercase , run_time=0.5 ) , FadeIn(_lowercase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowercase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowercase_ : Optional[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **_lowercase ) , Circumscribe(cpu_left_col_base[i] , **_lowercase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , Circumscribe(model_arr[i + 1] , color=_lowercase , **_lowercase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowercase , **_lowercase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowercase_ : Any = a_c lowercase_ : Any = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowercase ) , FadeOut(_lowercase , run_time=0.5 ) , ) lowercase_ : Dict = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=3 ) , MoveToTarget(_lowercase ) ) self.wait()
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py A: Union[str, Any] = "src/transformers" A: Any = "docs/source/en" A: Tuple = "." def _UpperCAmelCase ( a : List[Any] , a : Dict , a : List[str] ) -> List[str]: """simple docstring""" with open(a , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() # Find the start prompt. lowercase_ : List[Any] = 0 while not lines[start_index].startswith(a ): start_index += 1 start_index += 1 lowercase_ : List[str] = start_index while not lines[end_index].startswith(a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | A: Optional[Any] = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. A: int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") A: Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. A: Optional[Any] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. A: Tuple = direct_transformers_import(TRANSFORMERS_PATH) def _UpperCAmelCase ( a : Optional[Any] ) -> Any: """simple docstring""" lowercase_ : Any = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , a ) return [m.group(0 ) for m in matches] def _UpperCAmelCase ( a : int , a : Tuple ) -> Tuple: """simple docstring""" lowercase_ : Any = 2 if text == '✅' or text == '❌' else len(a ) lowercase_ : int = (width - text_length) // 2 lowercase_ : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Tuple = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : Union[str, Any] = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : str = collections.defaultdict(a ) lowercase_ : int = collections.defaultdict(a ) lowercase_ : str = collections.defaultdict(a ) lowercase_ : Dict = collections.defaultdict(a ) lowercase_ : Union[str, Any] = collections.defaultdict(a ) # Let's lookup through all transformers object (once). for attr_name in dir(a ): lowercase_ : Dict = None if attr_name.endswith('Tokenizer' ): lowercase_ : List[str] = slow_tokenizers lowercase_ : Dict = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): lowercase_ : Any = fast_tokenizers lowercase_ : Optional[Any] = attr_name[:-1_3] elif _re_tf_models.match(a ) is not None: lowercase_ : Optional[Any] = tf_models lowercase_ : Union[str, Any] = _re_tf_models.match(a ).groups()[0] elif _re_flax_models.match(a ) is not None: lowercase_ : Optional[Any] = flax_models lowercase_ : Union[str, Any] = _re_flax_models.match(a ).groups()[0] elif _re_pt_models.match(a ) is not None: lowercase_ : Optional[int] = pt_models lowercase_ : Union[str, Any] = _re_pt_models.match(a ).groups()[0] if lookup_dict is not None: while len(a ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : Union[str, Any] = True break # Try again after removing the last word in the name lowercase_ : Optional[int] = ''.join(camel_case_split(a )[:-1] ) # Let's build that table! lowercase_ : List[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : List[Any] = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : List[Any] = [len(a ) + 2 for c in columns] lowercase_ : Any = max([len(a ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Optional[Any] = '|' + '|'.join([_center_text(a , a ) for c, w in zip(a , a )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" lowercase_ : Any = {True: '✅', False: '❌'} for name in model_names: lowercase_ : List[str] = model_name_to_prefix[name] lowercase_ : int = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(a , a ) for l, w in zip(a , a )] ) + "|\n" return table def _UpperCAmelCase ( a : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = _find_text_in_file( filename=os.path.join(a , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) lowercase_ : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(a , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": A: List[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A: str = parser.parse_args() check_model_table(args.fix_and_overwrite)
7
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A: Dict = logging.get_logger(__name__) A: Union[str, Any] = "▁" A: Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} A: str = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } A: Optional[Any] = { "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off A: Dict = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : List[int] = [] def __init__( self , _lowercase , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = None , _lowercase=None , _lowercase=False , **_lowercase , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token lowercase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ : Union[str, Any] = legacy_behaviour super().__init__( bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , tokenizer_file=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_lowercase , **_lowercase , ) lowercase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowercase ) ) lowercase_ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : List[str] = 1 lowercase_ : Optional[int] = len(self.sp_model ) lowercase_ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowercase ) } lowercase_ : Tuple = {v: k for k, v in self.lang_code_to_id.items()} lowercase_ : Optional[int] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase_ : Optional[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase_ : List[str] = src_lang if src_lang is not None else 'eng_Latn' lowercase_ : Union[str, Any] = self.lang_code_to_id[self._src_lang] lowercase_ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Tuple: lowercase_ : Dict = self.__dict__.copy() lowercase_ : Tuple = None lowercase_ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowercase ) -> int: lowercase_ : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase_ : str = {} lowercase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ ( self ) -> Optional[int]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) lowercase_ : Union[str, Any] = [1] * len(self.prefix_tokens ) lowercase_ : Union[str, Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase )) + suffix_ones return prefix_ones + ([0] * len(_lowercase )) + ([0] * len(_lowercase )) + suffix_ones def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : Any = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase_ : Dict = src_lang lowercase_ : str = self(_lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , **_lowercase ) lowercase_ : str = self.convert_tokens_to_ids(_lowercase ) lowercase_ : Any = tgt_lang_id return inputs def lowerCamelCase__ ( self ) -> str: lowercase_ : Dict = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self , _lowercase ) -> List[str]: return self.sp_model.encode(_lowercase , out_type=_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : str = self.sp_model.PieceToId(_lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self , _lowercase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self , _lowercase ) -> List[str]: lowercase_ : Union[str, Any] = ''.join(_lowercase ).replace(_lowercase , ' ' ).strip() return out_string def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : Any = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , 'wb' ) as fi: lowercase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def lowerCamelCase__ ( self , _lowercase , _lowercase = "eng_Latn" , _lowercase = None , _lowercase = "fra_Latn" , **_lowercase , ) -> BatchEncoding: lowercase_ : Optional[int] = src_lang lowercase_ : int = tgt_lang return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : Optional[Any] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase_ : Any = [] lowercase_ : Tuple = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : str = [self.cur_lang_code] lowercase_ : Union[str, Any] = [self.eos_token_id] def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : str = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase_ : List[Any] = [] lowercase_ : List[str] = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : int = [self.cur_lang_code] lowercase_ : Union[str, Any] = [self.eos_token_id]
7
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
1
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def _UpperCAmelCase ( a : jnp.ndarray , a : int , a : float = 1 , a : float = 1 , a : float = 1.0e4 , a : bool = False , a : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even" lowercase_ : Dict = float(embedding_dim // 2 ) lowercase_ : Tuple = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowercase_ : List[str] = min_timescale * jnp.exp(jnp.arange(a , dtype=jnp.floataa ) * -log_timescale_increment ) lowercase_ : List[str] = jnp.expand_dims(a , 1 ) * jnp.expand_dims(a , 0 ) # scale embeddings lowercase_ : str = scale * emb if flip_sin_to_cos: lowercase_ : Union[str, Any] = jnp.concatenate([jnp.cos(a ), jnp.sin(a )] , axis=1 ) else: lowercase_ : str = jnp.concatenate([jnp.sin(a ), jnp.cos(a )] , axis=1 ) lowercase_ : Optional[Any] = jnp.reshape(a , [jnp.shape(a )[0], embedding_dim] ) return signal class __magic_name__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 3_2 SCREAMING_SNAKE_CASE_ : jnp.dtype = jnp.floataa @nn.compact def __call__( self , _lowercase ) -> Tuple: lowercase_ : List[str] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_lowercase ) lowercase_ : Any = nn.silu(_lowercase ) lowercase_ : int = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_lowercase ) return temb class __magic_name__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 3_2 SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : float = 1 @nn.compact def __call__( self , _lowercase ) -> Any: return get_sinusoidal_embeddings( _lowercase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
7
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
1
'''simple docstring''' import baseaa def _UpperCAmelCase ( a : str ) -> bytes: """simple docstring""" return baseaa.aaaencode(string.encode('utf-8' ) ) def _UpperCAmelCase ( a : bytes ) -> str: """simple docstring""" return baseaa.aaadecode(a ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A: Union[str, Any] = logging.get_logger(__name__) # TODO Update this A: List[str] = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'esm' def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1026 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=None , _lowercase=None , **_lowercase , ) -> int: super().__init__(pad_token_id=_lowercase , mask_token_id=_lowercase , **_lowercase ) lowercase_ : Tuple = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : str = intermediate_size lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : List[str] = max_position_embeddings lowercase_ : Optional[int] = initializer_range lowercase_ : Any = layer_norm_eps lowercase_ : Tuple = position_embedding_type lowercase_ : Dict = use_cache lowercase_ : str = emb_layer_norm_before lowercase_ : Union[str, Any] = token_dropout lowercase_ : int = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) lowercase_ : List[str] = EsmFoldConfig() elif isinstance(_lowercase , _lowercase ): lowercase_ : int = EsmFoldConfig(**_lowercase ) lowercase_ : int = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) lowercase_ : List[str] = get_default_vocab_list() else: lowercase_ : Any = vocab_list else: lowercase_ : str = None lowercase_ : int = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _lowercase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , _lowercase ): lowercase_ : List[Any] = self.esmfold_config.to_dict() return output @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : float = 0 SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : int = 1_2_8 SCREAMING_SNAKE_CASE_ : "TrunkConfig" = None def lowerCamelCase__ ( self ) -> List[str]: if self.trunk is None: lowercase_ : List[Any] = TrunkConfig() elif isinstance(self.trunk , _lowercase ): lowercase_ : Any = TrunkConfig(**self.trunk ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[Any] = asdict(self ) lowercase_ : Union[str, Any] = self.trunk.to_dict() return output @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 4_8 SCREAMING_SNAKE_CASE_ : int = 1_0_2_4 SCREAMING_SNAKE_CASE_ : int = 1_2_8 SCREAMING_SNAKE_CASE_ : int = 3_2 SCREAMING_SNAKE_CASE_ : int = 3_2 SCREAMING_SNAKE_CASE_ : int = 3_2 SCREAMING_SNAKE_CASE_ : float = 0 SCREAMING_SNAKE_CASE_ : float = 0 SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = 1_2_8 SCREAMING_SNAKE_CASE_ : "StructureModuleConfig" = None def lowerCamelCase__ ( self ) -> int: if self.structure_module is None: lowercase_ : str = StructureModuleConfig() elif isinstance(self.structure_module , _lowercase ): lowercase_ : Dict = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) lowercase_ : Dict = self.sequence_state_dim // self.sequence_head_width lowercase_ : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Dict = asdict(self ) lowercase_ : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 3_8_4 SCREAMING_SNAKE_CASE_ : int = 1_2_8 SCREAMING_SNAKE_CASE_ : int = 1_6 SCREAMING_SNAKE_CASE_ : int = 1_2_8 SCREAMING_SNAKE_CASE_ : int = 1_2 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : int = 8 SCREAMING_SNAKE_CASE_ : float = 0.1 SCREAMING_SNAKE_CASE_ : int = 8 SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : int = 2 SCREAMING_SNAKE_CASE_ : int = 7 SCREAMING_SNAKE_CASE_ : int = 1_0 SCREAMING_SNAKE_CASE_ : float = 1E-8 SCREAMING_SNAKE_CASE_ : float = 1E5 def lowerCamelCase__ ( self ) -> Any: return asdict(self ) def _UpperCAmelCase ( ) -> int: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
1
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def _UpperCAmelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline A: Dict = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: if isinstance(_lowercase , _lowercase ): lowercase_ : Tuple = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , _lowercase , _lowercase , _lowercase ) -> Dict: if len(_lowercase ) == 0 or len(_lowercase ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(_lowercase ) ) if isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [sequences] lowercase_ : List[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase_ ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase=ZeroShotClassificationArgumentHandler() , *_lowercase , **_lowercase ) -> Union[str, Any]: lowercase_ : Dict = args_parser super().__init__(*_lowercase , **_lowercase ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def lowerCamelCase__ ( self ) -> Optional[int]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def lowerCamelCase__ ( self , _lowercase , _lowercase=True , _lowercase=True , _lowercase=TruncationStrategy.ONLY_FIRST , **_lowercase ) -> str: lowercase_ : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) lowercase_ : Dict = self.tokenizer.eos_token try: lowercase_ : str = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , padding=_lowercase , truncation=_lowercase , ) except Exception as e: if "too short" in str(_lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowercase_ : Tuple = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , padding=_lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCamelCase__ ( self , **_lowercase ) -> Dict: if kwargs.get('multi_class' , _lowercase ) is not None: lowercase_ : List[str] = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) lowercase_ : int = {} if "candidate_labels" in kwargs: lowercase_ : Optional[int] = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: lowercase_ : Dict = kwargs['hypothesis_template'] lowercase_ : Union[str, Any] = {} if "multi_label" in kwargs: lowercase_ : str = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , _lowercase , *_lowercase , **_lowercase , ) -> List[Any]: if len(_lowercase ) == 0: pass elif len(_lowercase ) == 1 and "candidate_labels" not in kwargs: lowercase_ : str = args[0] else: raise ValueError(f"Unable to understand extra arguments {args}" ) return super().__call__(_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=None , _lowercase="This example is {}." ) -> Dict: lowercase_ , lowercase_ : int = self._args_parser(_lowercase , _lowercase , _lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(_lowercase , _lowercase ) ): lowercase_ : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_lowercase ) - 1, **model_input, } def lowerCamelCase__ ( self , _lowercase ) -> int: lowercase_ : Optional[Any] = inputs['candidate_label'] lowercase_ : Optional[int] = inputs['sequence'] lowercase_ : Optional[int] = {k: inputs[k] for k in self.tokenizer.model_input_names} lowercase_ : List[str] = self.model(**_lowercase ) lowercase_ : Any = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def lowerCamelCase__ ( self , _lowercase , _lowercase=False ) -> Any: lowercase_ : List[str] = [outputs['candidate_label'] for outputs in model_outputs] lowercase_ : Dict = [outputs['sequence'] for outputs in model_outputs] lowercase_ : List[Any] = np.concatenate([output['logits'].numpy() for output in model_outputs] ) lowercase_ : Tuple = logits.shape[0] lowercase_ : Tuple = len(_lowercase ) lowercase_ : List[Any] = N // n lowercase_ : List[Any] = logits.reshape((num_sequences, n, -1) ) if multi_label or len(_lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowercase_ : Tuple = self.entailment_id lowercase_ : Optional[int] = -1 if entailment_id == 0 else 0 lowercase_ : List[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] lowercase_ : Any = np.exp(_lowercase ) / np.exp(_lowercase ).sum(-1 , keepdims=_lowercase ) lowercase_ : Optional[Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowercase_ : Optional[int] = reshaped_outputs[..., self.entailment_id] lowercase_ : Optional[int] = np.exp(_lowercase ) / np.exp(_lowercase ).sum(-1 , keepdims=_lowercase ) lowercase_ : Union[str, Any] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
7
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
1
'''simple docstring''' from __future__ import annotations A: int = list[list[int]] # assigning initial values to the grid A: Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A: Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _UpperCAmelCase ( a : Matrix , a : int , a : int , a : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _UpperCAmelCase ( a : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _UpperCAmelCase ( a : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(a ): lowercase_ , lowercase_ : List[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 1_0 ): if is_safe(a , a , a , a ): lowercase_ : str = digit if sudoku(a ) is not None: return grid lowercase_ : Union[str, Any] = 0 return None def _UpperCAmelCase ( a : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(a , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 2_0) print_solution(example_grid) print("\nExample grid solution:") A: Any = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
'''simple docstring''' def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowercase_ : str = 4 lowercase_ : Union[str, Any] = (1 << p) - 1 for _ in range(p - 2 ): lowercase_ : Optional[int] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
7
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
1
'''simple docstring''' from collections import deque class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> None: lowercase_ : List[str] = process_name # process name lowercase_ : Dict = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase_ : int = arrival_time lowercase_ : List[str] = burst_time # remaining burst time lowercase_ : Union[str, Any] = 0 # total time of the process wait in ready queue lowercase_ : List[str] = 0 # time from arrival time to completion time class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , ) -> None: # total number of mlfq's queues lowercase_ : Any = number_of_queues # time slice of queues that round robin algorithm applied lowercase_ : Union[str, Any] = time_slices # unfinished process is in this ready_queue lowercase_ : int = queue # current time lowercase_ : int = current_time # finished process is in this sequence queue lowercase_ : deque[Process] = deque() def lowerCamelCase__ ( self ) -> list[str]: lowercase_ : List[Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase__ ( self , _lowercase ) -> list[int]: lowercase_ : Dict = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase__ ( self , _lowercase ) -> list[int]: lowercase_ : Optional[int] = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase__ ( self , _lowercase ) -> list[int]: lowercase_ : int = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase__ ( self , _lowercase ) -> list[int]: return [q.burst_time for q in queue] def lowerCamelCase__ ( self , _lowercase ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase__ ( self , _lowercase ) -> deque[Process]: lowercase_ : deque[Process] = deque() # sequence deque of finished process while len(_lowercase ) != 0: lowercase_ : Any = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase_ : Any = 0 # set the process's turnaround time because it is finished lowercase_ : Optional[Any] = self.current_time - cp.arrival_time # set the completion time lowercase_ : Dict = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> tuple[deque[Process], deque[Process]]: lowercase_ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): lowercase_ : Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase_ : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase_ : Optional[Any] = 0 # set the finish time lowercase_ : List[str] = self.current_time # update the process' turnaround time because it is finished lowercase_ : str = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase__ ( self ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowercase_ , lowercase_ : int = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A: List[str] = Process("P1", 0, 5_3) A: List[str] = Process("P2", 0, 1_7) A: Dict = Process("P3", 0, 6_8) A: Union[str, Any] = Process("P4", 0, 2_4) A: Any = 3 A: Optional[Any] = [1_7, 2_5] A: List[str] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A: Optional[Any] = Process("P1", 0, 5_3) A: Tuple = Process("P2", 0, 1_7) A: Optional[int] = Process("P3", 0, 6_8) A: int = Process("P4", 0, 2_4) A: int = 3 A: Any = [1_7, 2_5] A: Any = deque([Pa, Pa, Pa, Pa]) A: Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A: List[str] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
7
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
1
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> str: lowercase_ : int = torch.nn.Linear(10 , 10 ) lowercase_ : int = torch.optim.SGD(model.parameters() , 0.1 ) lowercase_ : Optional[Any] = Accelerator() lowercase_ : Optional[Any] = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'do_clean_text': False, 'add_prefix_space': False} def lowerCamelCase__ ( self ) -> List[Any]: super().setUp() # fmt: off lowercase_ : Optional[int] = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowercase_ : str = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowercase_ : str = {'unk_token': '<unk>'} lowercase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(_lowercase ) ) def lowerCamelCase__ ( self , **_lowercase ) -> List[str]: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> str: lowercase_ : Optional[int] = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowercase_ : Dict = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ , lowercase_ : Dict = self.get_input_output_texts(_lowercase ) lowercase_ : List[Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) lowercase_ : Optional[Any] = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) return text, ids def lowerCamelCase__ ( self ) -> Tuple: pass # TODO add if relevant def lowerCamelCase__ ( self ) -> int: pass # TODO add if relevant def lowerCamelCase__ ( self ) -> int: pass # TODO add if relevant def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = self.get_tokenizer() # Testing tokenization lowercase_ : Any = 'こんにちは、世界。 こんばんは、㔺界。' lowercase_ : Optional[Any] = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowercase_ : List[Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Testing conversion to ids without special tokens lowercase_ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase_ : List[Any] = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Testing conversion to ids with special tokens lowercase_ : List[str] = tokens + [tokenizer.unk_token] lowercase_ : List[str] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase_ : Dict = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Any = self.get_tokenizer() # Testing tokenization lowercase_ : Optional[Any] = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowercase_ : str = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowercase_ : Optional[int] = tokenizer.encode(_lowercase ) lowercase_ : int = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase , _lowercase ) @slow def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowercase_ : Tuple = 'こんにちは、世界。' lowercase_ : Optional[int] = 'こんばんは、㔺界。😀' lowercase_ : Optional[int] = 'こんにちは、世界。こんばんは、世界。😀' lowercase_ : Union[str, Any] = tokenizer.encode(prefix_text + input_text ) lowercase_ : str = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowercase_ : Union[str, Any] = tokenizer.encode(_lowercase , prefix_text=_lowercase ) lowercase_ : Optional[int] = tokenizer.decode(_lowercase ) lowercase_ : List[Any] = tokenizer.decode(_lowercase ) lowercase_ : List[Any] = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) @slow def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : str = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowercase_ : Tuple = 'こんにちは、世界。' lowercase_ : str = 'こんばんは、㔺界。😀' lowercase_ : int = len(tokenizer.encode(_lowercase ) ) - 2 lowercase_ : str = len(tokenizer.encode(_lowercase ) ) - 2 lowercase_ : str = [1] + [0] * (len_prefix + len_text + 1) lowercase_ : Optional[Any] = [1] * (len_prefix + len_text + 1) + [0] lowercase_ : Union[str, Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase_ : Optional[int] = tokenizer(prefix_text + input_text ).token_type_ids lowercase_ : Optional[int] = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowercase_ : List[Any] = tokenizer(_lowercase , prefix_text=_lowercase ).token_type_ids self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase ) @slow def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowercase_ : Any = tokenizer.encode('あンいワ' ) lowercase_ : Union[str, Any] = tokenizer.encode('' , prefix_text='あンいワ' ) lowercase_ : List[str] = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(_lowercase ) , tokenizer.decode(_lowercase ) ) self.assertEqual(tokenizer.decode(_lowercase ) , tokenizer.decode(_lowercase ) ) self.assertNotEqual(_lowercase , _lowercase ) self.assertNotEqual(_lowercase , _lowercase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase__ ( self ) -> str: lowercase_ : Optional[Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowercase_ : Union[str, Any] = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowercase_ : Optional[int] = tokenizer(_lowercase , padding=_lowercase ) lowercase_ : List[str] = tokenizer.batch_encode_plus(_lowercase , padding=_lowercase ) # fmt: off lowercase_ : Optional[Any] = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase_ : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase_ : List[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _lowercase ) self.assertListEqual(x_token.token_type_ids , _lowercase ) self.assertListEqual(x_token.attention_mask , _lowercase ) self.assertListEqual(x_token_a.input_ids , _lowercase ) self.assertListEqual(x_token_a.token_type_ids , _lowercase ) self.assertListEqual(x_token_a.attention_mask , _lowercase ) def lowerCamelCase__ ( self ) -> int: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase__ ( self ) -> Any: # tokenizer has no padding token pass
7
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
1
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=100 , _lowercase=13 , _lowercase=30 , _lowercase=2 , _lowercase=3 , _lowercase=True , _lowercase=True , _lowercase=32 , _lowercase=4 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=10 , _lowercase=0.02 , _lowercase=3 , _lowercase=None , _lowercase=[0, 1, 2, 3] , ) -> Optional[Any]: lowercase_ : Optional[int] = parent lowercase_ : List[Any] = 100 lowercase_ : Union[str, Any] = batch_size lowercase_ : Dict = image_size lowercase_ : Optional[int] = patch_size lowercase_ : List[Any] = num_channels lowercase_ : str = is_training lowercase_ : str = use_labels lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : Union[str, Any] = intermediate_size lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Union[str, Any] = type_sequence_label_size lowercase_ : str = initializer_range lowercase_ : str = scope lowercase_ : Optional[int] = out_indices lowercase_ : List[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : Optional[int] = (image_size // patch_size) ** 2 lowercase_ : Any = num_patches + 1 def lowerCamelCase__ ( self ) -> str: lowercase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : str = None lowercase_ : List[str] = None if self.use_labels: lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase_ : str = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase__ ( self ) -> Optional[Any]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: lowercase_ : str = BeitModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: lowercase_ : List[Any] = BeitForMaskedImageModeling(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : int = self.type_sequence_label_size lowercase_ : Optional[int] = BeitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : int = 1 lowercase_ : Tuple = BeitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Any = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: lowercase_ : Dict = self.num_labels lowercase_ : List[Any] = BeitForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase_ : Any = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = config_and_inputs lowercase_ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Any = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Any = False def lowerCamelCase__ ( self ) -> int: lowercase_ : Union[str, Any] = BeitModelTester(self ) lowercase_ : Optional[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def lowerCamelCase__ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCamelCase__ ( self ) -> Union[str, Any]: pass def lowerCamelCase__ ( self ) -> Dict: lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(_lowercase ) lowercase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) def lowerCamelCase__ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowercase ), BeitForMaskedImageModeling]: continue lowercase_ : int = model_class(_lowercase ) model.to(_lowercase ) model.train() lowercase_ : Union[str, Any] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) lowercase_ : Dict = model(**_lowercase ).loss loss.backward() def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ : Optional[Any] = False lowercase_ : Dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowercase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase_ : Dict = model_class(_lowercase ) model.gradient_checkpointing_enable() model.to(_lowercase ) model.train() lowercase_ : Any = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) lowercase_ : Any = model(**_lowercase ).loss loss.backward() def lowerCamelCase__ ( self ) -> Dict: lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : str = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(config=_lowercase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def lowerCamelCase__ ( self ) -> List[Any]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Union[str, Any] = BeitModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( ) -> List[Any]: """simple docstring""" lowercase_ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ) -> Dict: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(_lowercase ) lowercase_ : int = self.default_image_processor lowercase_ : Union[str, Any] = prepare_img() lowercase_ : Any = image_processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase ) # prepare bool_masked_pos lowercase_ : List[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : Any = model(pixel_values=_lowercase , bool_masked_pos=_lowercase ) lowercase_ : Union[str, Any] = outputs.logits # verify the logits lowercase_ : Union[str, Any] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _lowercase ) lowercase_ : Tuple = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowercase , atol=1E-2 ) ) @slow def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : int = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(_lowercase ) lowercase_ : Dict = self.default_image_processor lowercase_ : Optional[int] = prepare_img() lowercase_ : Tuple = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : str = model(**_lowercase ) lowercase_ : Dict = outputs.logits # verify the logits lowercase_ : List[str] = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _lowercase ) lowercase_ : Optional[Any] = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowercase , atol=1E-4 ) ) lowercase_ : Union[str, Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , _lowercase ) @slow def lowerCamelCase__ ( self ) -> int: lowercase_ : List[Any] = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( _lowercase ) lowercase_ : Dict = self.default_image_processor lowercase_ : Optional[Any] = prepare_img() lowercase_ : List[Any] = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : str = model(**_lowercase ) lowercase_ : Any = outputs.logits # verify the logits lowercase_ : Dict = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , _lowercase ) lowercase_ : Tuple = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowercase , atol=1E-4 ) ) lowercase_ : str = 2396 self.assertEqual(logits.argmax(-1 ).item() , _lowercase ) @slow def lowerCamelCase__ ( self ) -> int: lowercase_ : Tuple = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) lowercase_ : Optional[int] = model.to(_lowercase ) lowercase_ : str = BeitImageProcessor(do_resize=_lowercase , size=640 , do_center_crop=_lowercase ) lowercase_ : Tuple = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowercase_ : Dict = Image.open(ds[0]['file'] ) lowercase_ : Optional[Any] = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : List[Any] = model(**_lowercase ) lowercase_ : Union[str, Any] = outputs.logits # verify the logits lowercase_ : Dict = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _lowercase ) lowercase_ : Union[str, Any] = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: lowercase_ : Optional[Any] = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=_lowercase , ) else: lowercase_ : Optional[int] = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=_lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : List[str] = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) lowercase_ : List[str] = model.to(_lowercase ) lowercase_ : Tuple = BeitImageProcessor(do_resize=_lowercase , size=640 , do_center_crop=_lowercase ) lowercase_ : str = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowercase_ : List[str] = Image.open(ds[0]['file'] ) lowercase_ : Optional[Any] = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : Optional[Any] = model(**_lowercase ) lowercase_ : Dict = outputs.logits.detach().cpu() lowercase_ : int = image_processor.post_process_semantic_segmentation(outputs=_lowercase , target_sizes=[(500, 300)] ) lowercase_ : Optional[Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowercase ) lowercase_ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowercase ) lowercase_ : List[Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _lowercase )
7
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
1
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets A: int = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" A: str = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" A: Tuple = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="auto" , _lowercase=-1 , _lowercase=0.9 , _lowercase=5 , _lowercase=500 , _lowercase="gpt2-large" , _lowercase=-1 , _lowercase=1024 , _lowercase=25 , _lowercase=5 , _lowercase=True , _lowercase=25 , ) -> str: lowercase_ : Dict = compute_mauve( p_text=_lowercase , q_text=_lowercase , p_features=_lowercase , q_features=_lowercase , p_tokens=_lowercase , q_tokens=_lowercase , num_buckets=_lowercase , pca_max_data=_lowercase , kmeans_explained_var=_lowercase , kmeans_num_redo=_lowercase , kmeans_max_iter=_lowercase , featurize_model_name=_lowercase , device_id=_lowercase , max_text_length=_lowercase , divergence_curve_discretization_size=_lowercase , mauve_scaling_factor=_lowercase , verbose=_lowercase , seed=_lowercase , ) return out
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: List[str] = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: str = logging.get_logger(__name__) A: Optional[int] = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'pegasus' SCREAMING_SNAKE_CASE_ : str = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowercase=5_0265 , _lowercase=1024 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=True , _lowercase=True , _lowercase="gelu" , _lowercase=1024 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=0 , _lowercase=False , _lowercase=0 , _lowercase=1 , _lowercase=1 , **_lowercase , ) -> Tuple: lowercase_ : int = vocab_size lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : List[Any] = d_model lowercase_ : int = encoder_ffn_dim lowercase_ : Any = encoder_layers lowercase_ : List[str] = encoder_attention_heads lowercase_ : List[str] = decoder_ffn_dim lowercase_ : int = decoder_layers lowercase_ : List[Any] = decoder_attention_heads lowercase_ : List[str] = dropout lowercase_ : Any = attention_dropout lowercase_ : Optional[Any] = activation_dropout lowercase_ : List[Any] = activation_function lowercase_ : Union[str, Any] = init_std lowercase_ : Union[str, Any] = encoder_layerdrop lowercase_ : Tuple = decoder_layerdrop lowercase_ : Dict = use_cache lowercase_ : List[Any] = encoder_layers lowercase_ : str = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) @property def lowerCamelCase__ ( self ) -> int: return self.encoder_attention_heads @property def lowerCamelCase__ ( self ) -> int: return self.d_model
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : float , a : float , a : float ) -> float: """simple docstring""" if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def _UpperCAmelCase ( a : float , a : float , a : float , ) -> float: """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _UpperCAmelCase ( a : float , a : float , a : float , ) -> float: """simple docstring""" if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( a , nominal_annual_percentage_rate / 3_6_5 , number_of_years * 3_6_5 ) if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
1
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" lowercase_ : int = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ : List[str] = True for i in range(0 , len(a ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : List[Any] = False for i in range(1 , len(a ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : List[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : Dict = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A: Optional[Any] = [int(x) for x in input().split()] # inputing elements of the list in one line A: int = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
7
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
1
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Dict = SMALL_MODEL_IDENTIFIER lowercase_ : Optional[int] = 'pt' lowercase_ : Any = 'tf' def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : List[str] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : List[str] = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowercase ) model_tf.save_pretrained(_lowercase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[Any] = 'mock_framework' # Framework provided - return whatever the user provides lowercase_ : int = FeaturesManager.determine_framework(self.test_model , _lowercase ) self.assertEqual(_lowercase , _lowercase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowercase ) lowercase_ : Optional[int] = FeaturesManager.determine_framework(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowercase ) lowercase_ : Optional[Any] = FeaturesManager.determine_framework(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> Dict: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowercase ) lowercase_ : Union[str, Any] = FeaturesManager.determine_framework(_lowercase ) self.assertEqual(_lowercase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowercase ) lowercase_ : int = FeaturesManager.determine_framework(_lowercase ) self.assertEqual(_lowercase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowercase ): lowercase_ : Dict = FeaturesManager.determine_framework(_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : int = MagicMock(return_value=_lowercase ) with patch('transformers.onnx.features.is_tf_available' , _lowercase ): lowercase_ : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowercase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowercase_ : str = MagicMock(return_value=_lowercase ) with patch('transformers.onnx.features.is_torch_available' , _lowercase ): lowercase_ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowercase , self.framework_tf ) # Both in environment -> use PyTorch lowercase_ : Optional[int] = MagicMock(return_value=_lowercase ) lowercase_ : Union[str, Any] = MagicMock(return_value=_lowercase ) with patch('transformers.onnx.features.is_tf_available' , _lowercase ), patch( 'transformers.onnx.features.is_torch_available' , _lowercase ): lowercase_ : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowercase , self.framework_pt ) # Both not in environment -> raise error lowercase_ : List[str] = MagicMock(return_value=_lowercase ) lowercase_ : Any = MagicMock(return_value=_lowercase ) with patch('transformers.onnx.features.is_tf_available' , _lowercase ), patch( 'transformers.onnx.features.is_torch_available' , _lowercase ): with self.assertRaises(_lowercase ): lowercase_ : str = FeaturesManager.determine_framework(self.test_model )
7
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule A: Tuple = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE_ : Tuple = 'ViTImageProcessor' SCREAMING_SNAKE_CASE_ : str = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , _lowercase=None , _lowercase=None , **_lowercase ) -> Optional[int]: lowercase_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowercase , ) lowercase_ : str = kwargs.pop('feature_extractor' ) lowercase_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_lowercase , _lowercase ) def __call__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , **_lowercase ) -> Union[str, Any]: if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: lowercase_ : str = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) if visual_prompt is not None: lowercase_ : Any = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase ) if images is not None: lowercase_ : Optional[Any] = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase ) if visual_prompt is not None and images is not None: lowercase_ : List[Any] = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowercase_ : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowercase_ : Tuple = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase ) def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> Optional[int]: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def lowerCamelCase__ ( self , *_lowercase , **_lowercase ) -> Union[str, Any]: return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def lowerCamelCase__ ( self ) -> int: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowercase , ) return self.image_processor_class @property def lowerCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowercase , ) return self.image_processor
7
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' def _UpperCAmelCase ( a : int = 1_0 ) -> str: """simple docstring""" if not isinstance(a , a ) or n < 0: raise ValueError('Invalid input' ) lowercase_ : List[str] = 1_0**n lowercase_ : Optional[int] = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(1_0) = }""")
7
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple ) -> Any: """simple docstring""" lowercase_ : Optional[Any] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowercase_ : List[Any] = DatasetInfosDict.from_directory(a ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=4_2 , ), ] , ) def _UpperCAmelCase ( a : List[Any] , a : DatasetInfo ) -> str: """simple docstring""" lowercase_ : Dict = str(a ) dataset_info.write_to_directory(a ) lowercase_ : Tuple = DatasetInfo.from_directory(a ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a , 'dataset_info.json' ) ) def _UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" lowercase_ : Dict = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) lowercase_ : int = dataset_info._to_yaml_dict() assert sorted(a ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowercase_ : List[Any] = yaml.safe_dump(a ) lowercase_ : Dict = yaml.safe_load(a ) assert dataset_info_yaml_dict == reloaded def _UpperCAmelCase ( ) -> str: """simple docstring""" lowercase_ : Any = DatasetInfo() lowercase_ : Dict = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=4_2 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=4_2 ), 'v2': DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def _UpperCAmelCase ( a : Dict , a : DatasetInfosDict ) -> Optional[Any]: """simple docstring""" lowercase_ : Dict = str(a ) dataset_infos_dict.write_to_directory(a ) lowercase_ : int = DatasetInfosDict.from_directory(a ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowercase_ : int = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowercase_ : Any = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a , 'README.md' ) )
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A: Optional[Any] = get_tests_dir("fixtures") A: Union[str, Any] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") A: int = get_tests_dir("fixtures/dummy-config.json") class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = 0 def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : List[str] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : str = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Optional[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowercase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(_lowercase ).to_dict() config_dict.pop('feature_extractor_type' ) lowercase_ : List[Any] = WavaVecaFeatureExtractor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) lowercase_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved lowercase_ : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: with self.assertRaisesRegex( _lowercase , 'bert-base is not a local folder and is not a valid model identifier' ): lowercase_ : Tuple = AutoFeatureExtractor.from_pretrained('bert-base' ) def lowerCamelCase__ ( self ) -> int: with self.assertRaisesRegex( _lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase_ : int = AutoFeatureExtractor.from_pretrained(_lowercase , revision='aaaaaa' ) def lowerCamelCase__ ( self ) -> Any: with self.assertRaisesRegex( _lowercase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): lowercase_ : Any = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCamelCase__ ( self ) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase ): lowercase_ : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): lowercase_ : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_lowercase ) lowercase_ : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) lowercase_ : Dict = AutoFeatureExtractor.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def lowerCamelCase__ ( self ) -> Optional[int]: try: AutoConfig.register('custom' , _lowercase ) AutoFeatureExtractor.register(_lowercase , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoFeatureExtractor.register(_lowercase , _lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase_ : Any = CustomFeatureExtractor.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) lowercase_ : str = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self ) -> List[Any]: class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = True try: AutoConfig.register('custom' , _lowercase ) AutoFeatureExtractor.register(_lowercase , _lowercase ) # If remote code is not set, the default is to use local lowercase_ : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowercase_ : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowercase_ : str = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(_lowercase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
7
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available A: str = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Tuple = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys A: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A: Optional[Any] = logging.get_logger(__name__) A: List[str] = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] A: Dict = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" lowercase_ : int = torch.load(a , map_location='cpu' ) return sd def _UpperCAmelCase ( a : List[Any] , a : Tuple , a : Tuple=rename_keys_prefix ) -> List[str]: """simple docstring""" lowercase_ : Dict = OrderedDict() lowercase_ : Tuple = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase_ : Optional[Any] = key for name_pair in rename_keys_prefix: lowercase_ : Optional[Any] = new_key.replace(name_pair[0] , name_pair[1] ) lowercase_ : int = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase_ : List[Any] = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def _UpperCAmelCase ( a : Optional[Any] , a : Any ) -> Any: """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: lowercase_ : Any = 'pretraining' if "vcr" in checkpoint_path: lowercase_ : Dict = {'visual_embedding_dim': 5_1_2} elif "vqa_advanced" in checkpoint_path: lowercase_ : Tuple = {'visual_embedding_dim': 2_0_4_8} elif "vqa" in checkpoint_path: lowercase_ : List[Any] = {'visual_embedding_dim': 2_0_4_8} elif "nlvr" in checkpoint_path: lowercase_ : Optional[int] = {'visual_embedding_dim': 1_0_2_4} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: lowercase_ : Tuple = {'visual_embedding_dim': 5_1_2} lowercase_ : List[Any] = 'multichoice' elif "vqa_advanced" in checkpoint_path: lowercase_ : Tuple = {'visual_embedding_dim': 2_0_4_8} lowercase_ : str = 'vqa_advanced' elif "vqa" in checkpoint_path: lowercase_ : List[str] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9} lowercase_ : Optional[Any] = 'vqa' elif "nlvr" in checkpoint_path: lowercase_ : int = { 'visual_embedding_dim': 1_0_2_4, 'num_labels': 2, } lowercase_ : List[Any] = 'nlvr' lowercase_ : Any = VisualBertConfig(**a ) # Load State Dict lowercase_ : Any = load_state_dict(a ) lowercase_ : Optional[Any] = get_new_dict(a , a ) if model_type == "pretraining": lowercase_ : Union[str, Any] = VisualBertForPreTraining(a ) elif model_type == "vqa": lowercase_ : int = VisualBertForQuestionAnswering(a ) elif model_type == "nlvr": lowercase_ : Union[str, Any] = VisualBertForVisualReasoning(a ) elif model_type == "multichoice": lowercase_ : List[Any] = VisualBertForMultipleChoice(a ) model.load_state_dict(a ) # Save Checkpoints Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) if __name__ == "__main__": A: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") A: Union[str, Any] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
7
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A: Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") A: str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) A: Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( a : str ) -> Any: """simple docstring""" with open(a , 'rb' ) as f: lowercase_ : List[str] = Image.open(a ) return im.convert('RGB' ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=UpperCAmelCase_, metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' }, ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=UpperCAmelCase_, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=UpperCAmelCase_, metadata={'help': 'A folder containing the training data.'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=UpperCAmelCase_, metadata={'help': 'A folder containing the validation data.'} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.15, metadata={'help': 'Percent to split off of train for validation.'} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=UpperCAmelCase_, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=UpperCAmelCase_, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) def lowerCamelCase__ ( self ) -> Any: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( default='google/vit-base-patch16-224-in21k', metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}, ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=UpperCAmelCase_, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(UpperCAmelCase_ )}, ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=UpperCAmelCase_, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=UpperCAmelCase_, metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) SCREAMING_SNAKE_CASE_ : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) SCREAMING_SNAKE_CASE_ : str = field(default=UpperCAmelCase_, metadata={'help': 'Name or path of preprocessor config.'} ) SCREAMING_SNAKE_CASE_ : bool = field( default=UpperCAmelCase_, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) SCREAMING_SNAKE_CASE_ : bool = field( default=UpperCAmelCase_, metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'}, ) def _UpperCAmelCase ( a : List[Any] ) -> List[str]: """simple docstring""" lowercase_ : Optional[int] = torch.stack([example['pixel_values'] for example in examples] ) lowercase_ : int = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> str: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , a , a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ : List[Any] = training_args.get_process_log_level() logger.setLevel(a ) transformers.utils.logging.set_verbosity(a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowercase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase_ : Tuple = {} if data_args.train_dir is not None: lowercase_ : List[Any] = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: lowercase_ : Any = os.path.join(data_args.validation_dir , '**' ) lowercase_ : Optional[int] = load_dataset( 'imagefolder' , data_files=a , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ : List[str] = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , a ) and data_args.train_val_split > 0.0: lowercase_ : Optional[Any] = dataset['train'].train_test_split(data_args.train_val_split ) lowercase_ : int = split['train'] lowercase_ : Tuple = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase_ : Tuple = dataset['train'].features['labels'].names lowercase_ , lowercase_ : Any = {}, {} for i, label in enumerate(a ): lowercase_ : int = str(a ) lowercase_ : Union[str, Any] = label # Load the accuracy metric from the datasets package lowercase_ : List[str] = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a : Dict ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase_ : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(a ) , labelaid=a , idalabel=a , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase_ : Dict = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase_ : int = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase_ : Tuple = image_processor.size['shortest_edge'] else: lowercase_ : int = (image_processor.size['height'], image_processor.size['width']) lowercase_ : Union[str, Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase_ : List[str] = Compose( [ RandomResizedCrop(a ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase_ : Tuple = Compose( [ Resize(a ), CenterCrop(a ), ToTensor(), normalize, ] ) def train_transforms(a : Any ): lowercase_ : int = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(a : Any ): lowercase_ : Optional[Any] = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowercase_ : Optional[Any] = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(a ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowercase_ : Tuple = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(a ) # Initalize our trainer lowercase_ : List[str] = Trainer( model=a , args=a , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=a , tokenizer=a , data_collator=a , ) # Training if training_args.do_train: lowercase_ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: lowercase_ : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ : Optional[Any] = last_checkpoint lowercase_ : str = trainer.train(resume_from_checkpoint=a ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ : str = trainer.evaluate() trainer.log_metrics('eval' , a ) trainer.save_metrics('eval' , a ) # Write model card and (optionally) push to hub lowercase_ : Tuple = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**a ) else: trainer.create_model_card(**a ) if __name__ == "__main__": main()
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: Tuple = logging.get_logger(__name__) A: List[Any] = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 'vit_mae' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , _lowercase=512 , _lowercase=8 , _lowercase=2048 , _lowercase=0.75 , _lowercase=False , **_lowercase , ) -> Tuple: super().__init__(**_lowercase ) lowercase_ : str = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : int = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : Union[str, Any] = layer_norm_eps lowercase_ : Optional[int] = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : int = qkv_bias lowercase_ : Optional[Any] = decoder_num_attention_heads lowercase_ : Any = decoder_hidden_size lowercase_ : Optional[int] = decoder_num_hidden_layers lowercase_ : Optional[int] = decoder_intermediate_size lowercase_ : Optional[Any] = mask_ratio lowercase_ : Optional[int] = norm_pix_loss
7
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = None ) -> List[Any]: super().__init__() lowercase_ : List[Any] = pad_token_id lowercase_ : Tuple = max_length lowercase_ : List[Any] = vocab lowercase_ : int = merges lowercase_ : Tuple = BytePairTokenizer(_lowercase , _lowercase , sequence_length=_lowercase ) @classmethod def lowerCamelCase__ ( cls , _lowercase , *_lowercase , **_lowercase ) -> Any: lowercase_ : str = [' '.join(_lowercase ) for m in tokenizer.bpe_ranks.keys()] lowercase_ : Union[str, Any] = tokenizer.get_vocab() return cls(_lowercase , _lowercase , *_lowercase , **_lowercase ) @classmethod def lowerCamelCase__ ( cls , _lowercase , *_lowercase , **_lowercase ) -> Tuple: lowercase_ : str = GPTaTokenizer.from_pretrained(_lowercase , *_lowercase , **_lowercase ) return cls.from_tokenizer(_lowercase , *_lowercase , **_lowercase ) @classmethod def lowerCamelCase__ ( cls , _lowercase ) -> Tuple: return cls(**_lowercase ) def lowerCamelCase__ ( self ) -> List[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Optional[int]: lowercase_ : Union[str, Any] = self.tf_tokenizer(_lowercase ) lowercase_ : str = tf.ones_like(_lowercase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase_ : List[str] = max_length if max_length is not None else self.max_length if max_length is not None: lowercase_ , lowercase_ : str = pad_model_inputs( _lowercase , max_seq_length=_lowercase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
7
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> Optional[int]: lowercase_ : str = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : Tuple = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : List[Any] = use_input_mask lowercase_ : int = use_token_type_ids lowercase_ : Optional[Any] = use_labels lowercase_ : Optional[int] = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Dict = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : Any = type_vocab_size lowercase_ : int = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : Optional[Any] = num_labels lowercase_ : List[str] = num_choices lowercase_ : List[Any] = scope def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Union[str, Any] = None if self.use_input_mask: lowercase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Union[str, Any] = None if self.use_token_type_ids: lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Union[str, Any] = None lowercase_ : Tuple = None lowercase_ : Any = None if self.use_labels: lowercase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ) -> Union[str, Any]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , use_stable_embedding=_lowercase , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: lowercase_ : Optional[int] = OpenLlamaModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = model(_lowercase , attention_mask=_lowercase ) lowercase_ : Tuple = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Optional[Any]: lowercase_ : Optional[Any] = True lowercase_ : str = OpenLlamaModel(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) lowercase_ : Dict = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , ) lowercase_ : Tuple = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Optional[int]: lowercase_ : Optional[Any] = OpenLlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> List[str]: lowercase_ : Any = True lowercase_ : Any = True lowercase_ : Tuple = OpenLlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass lowercase_ : int = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , use_cache=_lowercase , ) lowercase_ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ : Optional[Any] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , output_hidden_states=_lowercase , )['hidden_states'][0] lowercase_ : Union[str, Any] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )['hidden_states'][0] # select random slice lowercase_ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[Any] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[str] = config_and_inputs lowercase_ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Dict = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Dict = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Optional[int] = False def lowerCamelCase__ ( self ) -> str: lowercase_ : str = OpenLlamaModelTester(self ) lowercase_ : List[Any] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def lowerCamelCase__ ( self ) -> List[str]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> int: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Union[str, Any] = type self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : str = 3 lowercase_ : Optional[int] = input_dict['input_ids'] lowercase_ : str = input_ids.ne(1 ).to(_lowercase ) lowercase_ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ : Dict = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[int] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Optional[int] = 3 lowercase_ : Union[str, Any] = 'single_label_classification' lowercase_ : List[str] = input_dict['input_ids'] lowercase_ : Union[str, Any] = input_ids.ne(1 ).to(_lowercase ) lowercase_ : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ : List[Any] = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Optional[Any] = 3 lowercase_ : int = 'multi_label_classification' lowercase_ : Tuple = input_dict['input_ids'] lowercase_ : List[str] = input_ids.ne(1 ).to(_lowercase ) lowercase_ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ : Dict = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def lowerCamelCase__ ( self ) -> int: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCamelCase__ ( self , _lowercase ) -> Any: lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Any = ids_tensor([1, 10] , config.vocab_size ) lowercase_ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ : List[str] = OpenLlamaModel(_lowercase ) original_model.to(_lowercase ) original_model.eval() lowercase_ : int = original_model(_lowercase ).last_hidden_state lowercase_ : int = original_model(_lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ : Optional[Any] = {'type': scaling_type, 'factor': 10.0} lowercase_ : str = OpenLlamaModel(_lowercase ) scaled_model.to(_lowercase ) scaled_model.eval() lowercase_ : int = scaled_model(_lowercase ).last_hidden_state lowercase_ : List[str] = scaled_model(_lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1E-5 ) )
7
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
1
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase__ ( self ) -> Any: lowercase_ : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowercase_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowercase_ : Optional[Any] = 'xvjiarui/stable-diffusion-2-inpainting' lowercase_ , lowercase_ : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(_lowercase , safety_checker=_lowercase ) lowercase_ : Optional[int] = 'Face of a yellow cat, high resolution, sitting on a park bench' lowercase_ : List[Any] = jax.random.PRNGKey(0 ) lowercase_ : Union[str, Any] = 50 lowercase_ : Any = jax.device_count() lowercase_ : int = num_samples * [prompt] lowercase_ : Tuple = num_samples * [init_image] lowercase_ : Optional[Any] = num_samples * [mask_image] lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = pipeline.prepare_inputs(_lowercase , _lowercase , _lowercase ) # shard inputs and rng lowercase_ : Union[str, Any] = replicate(_lowercase ) lowercase_ : Dict = jax.random.split(_lowercase , jax.device_count() ) lowercase_ : Optional[int] = shard(_lowercase ) lowercase_ : Optional[Any] = shard(_lowercase ) lowercase_ : Any = shard(_lowercase ) lowercase_ : str = pipeline( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ) lowercase_ : Tuple = output.images.reshape(_lowercase , 512 , 512 , 3 ) lowercase_ : Dict = images[0, 253:256, 253:256, -1] lowercase_ : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase_ : Optional[Any] = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A: Tuple = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = ["ConvNextFeatureExtractor"] A: Dict = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A: Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
7
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) A: Tuple = logging.getLogger(__name__) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=UpperCAmelCase_, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=UpperCAmelCase_, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=UpperCAmelCase_, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) SCREAMING_SNAKE_CASE_ : bool = field(default=UpperCAmelCase_, metadata={'help': 'Whether tp freeze the encoder.'} ) SCREAMING_SNAKE_CASE_ : bool = field(default=UpperCAmelCase_, metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default='summarization', metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'}, ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=1_0_2_4, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=1_2_8, metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=1_4_2, metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) }, ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=1_4_2, metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) SCREAMING_SNAKE_CASE_ : Optional[int] = field(default=-1, metadata={'help': '# training examples. -1 means use all.'} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field(default=-1, metadata={'help': '# validation examples. -1 means use all.'} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field(default=-1, metadata={'help': '# test examples. -1 means use all.'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=UpperCAmelCase_, metadata={'help': 'Source language id for translation.'} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=UpperCAmelCase_, metadata={'help': 'Target language id for translation.'} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field(default=UpperCAmelCase_, metadata={'help': '# num_beams to use for evaluation.'} ) SCREAMING_SNAKE_CASE_ : bool = field( default=UpperCAmelCase_, metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'}, ) def _UpperCAmelCase ( a : Any , a : Dict , a : Optional[Any] ) -> Any: """simple docstring""" logger.info(f"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(f" {key} = {metrics[key]}" ) save_json(a , os.path.join(a , f"{split}_results.json" ) ) def _UpperCAmelCase ( ) -> str: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = parser.parse_args_into_dataclasses() check_output_dir(a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase_ : Union[str, Any] = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(a , a , a ): assert hasattr(a , a ), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(a , a , getattr(a , a ) ) lowercase_ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase_ : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(a , a ): lowercase_ : Union[str, Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase_ : Dict = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase_ : str = SeqaSeqDataset # Get datasets lowercase_ : Tuple = ( dataset_class( a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) lowercase_ : Optional[int] = ( dataset_class( a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase_ : Dict = ( dataset_class( a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase_ : List[str] = ( build_compute_metrics_fn(data_args.task , a ) if training_args.predict_with_generate else None ) lowercase_ : Union[str, Any] = SeqaSeqTrainer( model=a , args=a , data_args=a , train_dataset=a , eval_dataset=a , data_collator=SeqaSeqDataCollator( a , a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=a , tokenizer=a , ) lowercase_ : Tuple = {} # Training if training_args.do_train: logger.info('*** Train ***' ) lowercase_ : str = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase_ : str = train_result.metrics lowercase_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , a , training_args.output_dir ) all_metrics.update(a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase_ : str = trainer.evaluate(metric_key_prefix='val' ) lowercase_ : Dict = data_args.n_val lowercase_ : Optional[int] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , a , training_args.output_dir ) all_metrics.update(a ) if training_args.do_predict: logger.info('*** Predict ***' ) lowercase_ : List[Any] = trainer.predict(test_dataset=a , metric_key_prefix='test' ) lowercase_ : Optional[Any] = test_output.metrics lowercase_ : Union[str, Any] = data_args.n_test if trainer.is_world_process_zero(): lowercase_ : Tuple = round(metrics['test_loss'] , 4 ) handle_metrics('test' , a , training_args.output_dir ) all_metrics.update(a ) if training_args.predict_with_generate: lowercase_ : Tuple = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=a , clean_up_tokenization_spaces=a ) lowercase_ : Any = lmap(str.strip , a ) write_txt_file(a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def _UpperCAmelCase ( a : Optional[int] ) -> int: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
7
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
1
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : str = None lowercase_ : Dict = None lowercase_ : str = graph self._normalize_graph(_lowercase , _lowercase ) lowercase_ : List[str] = len(_lowercase ) lowercase_ : Optional[Any] = None def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[str]: if sources is int: lowercase_ : Tuple = [sources] if sinks is int: lowercase_ : Union[str, Any] = [sinks] if len(_lowercase ) == 0 or len(_lowercase ) == 0: return lowercase_ : Dict = sources[0] lowercase_ : Union[str, Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowercase ) > 1 or len(_lowercase ) > 1: lowercase_ : str = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase_ : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase_ : List[Any] = max_input_flow lowercase_ : List[Any] = 0 lowercase_ : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase_ : str = max_input_flow lowercase_ : str = size - 1 def lowerCamelCase__ ( self ) -> int: if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = algorithm(self ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Dict: lowercase_ : List[Any] = flow_network lowercase_ : Tuple = flow_network.verticesCount lowercase_ : str = flow_network.sourceIndex lowercase_ : Optional[int] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase_ : Dict = flow_network.graph lowercase_ : Optional[int] = False def lowerCamelCase__ ( self ) -> Optional[int]: if not self.executed: self._algorithm() lowercase_ : str = True def lowerCamelCase__ ( self ) -> Any: pass class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase ) -> int: super().__init__(_lowercase ) # use this to save your result lowercase_ : List[Any] = -1 def lowerCamelCase__ ( self ) -> Dict: if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase ) -> List[Any]: super().__init__(_lowercase ) lowercase_ : Union[str, Any] = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase_ : Any = [0] * self.verticies_count lowercase_ : List[Any] = [0] * self.verticies_count def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase_ : str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase_ : List[Any] = 0 while i < len(_lowercase ): lowercase_ : Any = vertices_list[i] lowercase_ : Optional[Any] = self.heights[vertex_index] self.process_vertex(_lowercase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowercase ) ) lowercase_ : Union[str, Any] = 0 else: i += 1 lowercase_ : str = sum(self.preflow[self.source_index] ) def lowerCamelCase__ ( self , _lowercase ) -> List[Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowercase , _lowercase ) self.relabel(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[Any]: lowercase_ : List[str] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : Union[str, Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase_ : Tuple = self.heights[to_index] if min_height is not None: lowercase_ : Union[str, Any] = min_height + 1 if __name__ == "__main__": A: str = [0] A: Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A: str = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A: Any = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A: Tuple = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput A: Tuple = 8 def _UpperCAmelCase ( a : Optional[int] , a : int=BITS ) -> Optional[int]: """simple docstring""" lowercase_ : List[Any] = x.device lowercase_ : Optional[Any] = (x * 2_5_5).int().clamp(0 , 2_5_5 ) lowercase_ : str = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a ) lowercase_ : Optional[Any] = rearrange(a , 'd -> d 1 1' ) lowercase_ : int = rearrange(a , 'b c h w -> b c 1 h w' ) lowercase_ : Optional[int] = ((x & mask) != 0).float() lowercase_ : Optional[Any] = rearrange(a , 'b c d h w -> b (c d) h w' ) lowercase_ : List[Any] = bits * 2 - 1 return bits def _UpperCAmelCase ( a : List[Any] , a : int=BITS ) -> Optional[Any]: """simple docstring""" lowercase_ : Union[str, Any] = x.device lowercase_ : List[Any] = (x > 0).int() lowercase_ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a , dtype=torch.intaa ) lowercase_ : int = rearrange(a , 'd -> d 1 1' ) lowercase_ : Tuple = rearrange(a , 'b (c d) h w -> b c d h w' , d=8 ) lowercase_ : List[Any] = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def _UpperCAmelCase ( self : Optional[Any] , a : torch.FloatTensor , a : int , a : torch.FloatTensor , a : float = 0.0 , a : bool = True , a : int=None , a : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowercase_ : List[Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowercase_ : List[Any] = self.alphas_cumprod[timestep] lowercase_ : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowercase_ : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowercase_ : Any = self.bit_scale if self.config.clip_sample: lowercase_ : str = torch.clamp(a , -scale , a ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowercase_ : str = self._get_variance(a , a ) lowercase_ : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowercase_ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : List[str] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowercase_ : int = model_output.device if torch.is_tensor(a ) else 'cpu' lowercase_ : Any = torch.randn(model_output.shape , dtype=model_output.dtype , generator=a ).to(a ) lowercase_ : Union[str, Any] = self._get_variance(a , a ) ** 0.5 * eta * noise lowercase_ : List[str] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=a , pred_original_sample=a ) def _UpperCAmelCase ( self : Any , a : torch.FloatTensor , a : int , a : torch.FloatTensor , a : Tuple="epsilon" , a : Any=None , a : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" lowercase_ : Tuple = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowercase_ , lowercase_ : Optional[Any] = torch.split(a , sample.shape[1] , dim=1 ) else: lowercase_ : Optional[Any] = None # 1. compute alphas, betas lowercase_ : Dict = self.alphas_cumprod[t] lowercase_ : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowercase_ : Dict = 1 - alpha_prod_t lowercase_ : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowercase_ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowercase_ : Dict = model_output else: raise ValueError(f"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" lowercase_ : Dict = self.bit_scale if self.config.clip_sample: lowercase_ : Any = torch.clamp(a , -scale , a ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : Dict = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowercase_ : List[Any] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase_ : Any = 0 if t > 0: lowercase_ : Dict = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=a ).to(model_output.device ) lowercase_ : str = (self._get_variance(a , predicted_variance=a ) ** 0.5) * noise lowercase_ : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=a , pred_original_sample=a ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase = 1.0 , ) -> Union[str, Any]: super().__init__() lowercase_ : Union[str, Any] = bit_scale lowercase_ : Union[str, Any] = ( ddim_bit_scheduler_step if isinstance(_lowercase , _lowercase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 256 , _lowercase = 256 , _lowercase = 50 , _lowercase = None , _lowercase = 1 , _lowercase = "pil" , _lowercase = True , **_lowercase , ) -> Union[Tuple, ImagePipelineOutput]: lowercase_ : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_lowercase , ) lowercase_ : Union[str, Any] = decimal_to_bits(_lowercase ) * self.bit_scale lowercase_ : Optional[int] = latents.to(self.device ) self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowercase_ : Union[str, Any] = self.unet(_lowercase , _lowercase ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Tuple = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample lowercase_ : List[str] = bits_to_decimal(_lowercase ) if output_type == "pil": lowercase_ : Optional[int] = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A: Optional[Any] = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' A: Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } A: str = {value: key for key, value in encode_dict.items()} def _UpperCAmelCase ( a : Optional[int] ) -> str: """simple docstring""" lowercase_ : Dict = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def _UpperCAmelCase ( a : Optional[int] ) -> str: """simple docstring""" if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Optional[Any] = '' for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] lowercase_ : str = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0