code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase__ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]:
inspect_dataset(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : str = path + '.py'
assert script_name in os.listdir(lowerCamelCase_)
assert "__pycache__" not in os.listdir(lowerCamelCase_)
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning')
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning')
@pytest.mark.parametrize('path' , ['accuracy'])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]:
inspect_metric(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : int = path + '.py'
assert script_name in os.listdir(lowerCamelCase_)
assert "__pycache__" not in os.listdir(lowerCamelCase_)
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]:
UpperCamelCase__ : Optional[Any] = get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_)
assert info.config_name == config_name
assert list(info.splits.keys()) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]:
with pytest.raises(lowerCamelCase_):
get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_)
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Any = get_dataset_config_names(lowerCamelCase_)
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]:
UpperCamelCase__ : Union[str, Any] = get_dataset_infos(lowerCamelCase_)
assert list(infos.keys()) == expected_configs
UpperCamelCase__ : Tuple = expected_configs[0]
assert expected_config in infos
UpperCamelCase__ : List[Any] = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys()) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]:
UpperCamelCase__ : str = get_dataset_infos(lowerCamelCase_)
assert expected_config in infos
UpperCamelCase__ : Union[str, Any] = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys()) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
with pytest.raises(lowerCamelCase_):
get_dataset_split_names(lowerCamelCase_ , config_name=lowerCamelCase_)
| 709 |
'''simple docstring'''
import numpy as np
from PIL import Image
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray:
UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : int = 0
UpperCamelCase__ : Optional[int] = 0
UpperCamelCase__ : str = 0
# compute the shape of the output matrix
UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape))
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size])
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : Optional[int] = 0
return updated_arr
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray:
UpperCamelCase__ : Tuple = np.array(lowerCamelCase_)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
UpperCamelCase__ : Optional[int] = 0
UpperCamelCase__ : int = 0
UpperCamelCase__ : List[str] = 0
UpperCamelCase__ : List[Any] = 0
# compute the shape of the output matrix
UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape))
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size]))
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ : Union[str, Any] = 0
UpperCamelCase__ : Optional[Any] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='avgpooling', verbose=True)
# Loading the image
lowerCAmelCase__ = Image.open('path_to_image')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 6 | 0 |
def __UpperCAmelCase ( lowerCamelCase_) -> int:
UpperCamelCase__ : Optional[int] = []
UpperCamelCase__ : Tuple = set({'(', '[', '{'})
UpperCamelCase__ : Dict = set({')', ']', '}'})
UpperCamelCase__ : Optional[Any] = {'{': '}', '[': ']', '(': ')'}
for i in range(len(lowerCamelCase_)):
if s[i] in open_brackets:
stack.append(s[i])
elif s[i] in closed_brackets and (
len(lowerCamelCase_) == 0 or (len(lowerCamelCase_) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(lowerCamelCase_) == 0
def __UpperCAmelCase ( ) -> Optional[int]:
UpperCamelCase__ : List[str] = input('Enter sequence of brackets: ')
if is_balanced(lowerCamelCase_):
print(lowerCamelCase_ , 'is balanced')
else:
print(lowerCamelCase_ , 'is not balanced')
if __name__ == "__main__":
main()
| 710 |
'''simple docstring'''
from __future__ import annotations
class __lowercase :
def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]):
UpperCamelCase__ : int = TypeError(
'Matrices must be formed from a list of zero or more lists containing at '
'least one and the same number of values, each of which must be of type '
'int or float.')
if len(UpperCAmelCase_) != 0:
UpperCamelCase__ : str = len(rows[0])
if cols == 0:
raise error
for row in rows:
if len(UpperCAmelCase_) != cols:
raise error
for value in row:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise error
UpperCamelCase__ : Optional[int] = rows
else:
UpperCamelCase__ : Optional[Any] = []
def __UpperCamelCase ( self : Union[str, Any]):
return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))]
@property
def __UpperCamelCase ( self : Dict):
return len(self.rows)
@property
def __UpperCamelCase ( self : Tuple):
return len(self.rows[0])
@property
def __UpperCamelCase ( self : List[Any]):
return (self.num_rows, self.num_columns)
@property
def __UpperCamelCase ( self : Any):
return self.order[0] == self.order[1]
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Optional[int] = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows)]
for row_num in range(self.num_rows)
]
return Matrix(UpperCAmelCase_)
def __UpperCamelCase ( self : Dict):
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0])
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]))
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns))
def __UpperCamelCase ( self : str):
return bool(self.determinant())
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
UpperCamelCase__ : Optional[Any] = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns)
if other_column != column
]
for other_row in range(self.num_rows)
if other_row != row
]
return Matrix(UpperCAmelCase_).determinant()
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
if (row + column) % 2 == 0:
return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_)
return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : List[Any]):
return Matrix(
[
[self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)]
for row in range(self.num_rows)
])
def __UpperCamelCase ( self : Optional[int]):
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns)
]
for row in range(self.minors().num_rows)
])
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Dict = [
[self.cofactors().rows[column][row] for column in range(self.num_columns)]
for row in range(self.num_rows)
]
return Matrix(UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__ : List[Any] = self.determinant()
if not determinant:
raise TypeError('Only matrices with a non-zero determinant have an inverse')
return self.adjugate() * (1 / determinant)
def __repr__( self : Any):
return str(self.rows)
def __str__( self : List[Any]):
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0])) + "]]"
return (
"["
+ "\n ".join(
[
'[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]'
for row in self.rows
])
+ "]"
)
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None):
UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats')
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise type_error
for value in row:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise type_error
if len(UpperCAmelCase_) != self.num_columns:
raise ValueError(
'Row must be equal in length to the other rows in the matrix')
if position is None:
self.rows.append(UpperCAmelCase_)
else:
UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:]
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None):
UpperCamelCase__ : int = TypeError(
'Column must be a list containing all ints and/or floats')
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise type_error
for value in column:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise type_error
if len(UpperCAmelCase_) != self.num_rows:
raise ValueError(
'Column must be equal in length to the other columns in the matrix')
if position is None:
UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)]
else:
UpperCamelCase__ : str = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows)
]
def __eq__( self : List[Any] , UpperCAmelCase_ : object):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
return NotImplemented
return self.rows == other.rows
def __ne__( self : Any , UpperCAmelCase_ : object):
return not self == other
def __neg__( self : Union[str, Any]):
return self * -1
def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix):
if self.order != other.order:
raise ValueError('Addition requires matrices of the same order')
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
])
def __sub__( self : Tuple , UpperCAmelCase_ : Matrix):
if self.order != other.order:
raise ValueError('Subtraction requires matrices of the same order')
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
])
def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float):
if isinstance(UpperCAmelCase_ , (int, float)):
return Matrix(
[[int(element * other) for element in row] for row in self.rows])
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
if self.num_columns != other.num_rows:
raise ValueError(
'The number of columns in the first matrix must '
'be equal to the number of rows in the second')
return Matrix(
[
[Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()]
for row in self.rows
])
else:
raise TypeError(
'A Matrix can only be multiplied by an int, float, or another matrix')
def __pow__( self : Dict , UpperCAmelCase_ : int):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise TypeError('A Matrix can only be raised to the power of an int')
if not self.is_square:
raise ValueError('Only square matrices can be raised to a power')
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
'Only invertable matrices can be raised to a negative power')
UpperCamelCase__ : str = self
for _ in range(other - 1):
result *= self
return result
@classmethod
def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]):
return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
'''simple docstring'''
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]:
UpperCamelCase__ : List[Any] = AutoConfig.from_pretrained(lowerCamelCase_)
UpperCamelCase__ : Tuple = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCamelCase_)
UpperCamelCase__ : Union[str, Any] = checkpoints.load_tax_checkpoint(lowerCamelCase_)
UpperCamelCase__ : str = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp']
if config.model_type == "t5":
UpperCamelCase__ : Union[str, Any] = 'SelfAttention'
if config.model_type == "longt5" and config.encoder_attention_type == "local":
UpperCamelCase__ : Dict = 'LocalSelfAttention'
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase__ : Dict = 'TransientGlobalSelfAttention'
else:
raise ValueError(
'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'
' attribute with a value from [\'local\', \'transient-global].')
# Encoder
for layer_index in range(config.num_layers):
UpperCamelCase__ : int = f'layers_{str(lowerCamelCase_)}'
# Self-Attention
UpperCamelCase__ : Any = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel']
UpperCamelCase__ : Optional[int] = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel']
UpperCamelCase__ : Optional[int] = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel']
UpperCamelCase__ : Optional[Any] = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase__ : Optional[int] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale']
# Layer Normalization
UpperCamelCase__ : int = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale']
if split_mlp_wi:
UpperCamelCase__ : int = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel']
UpperCamelCase__ : Dict = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel']
else:
UpperCamelCase__ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel']
UpperCamelCase__ : List[str] = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
UpperCamelCase__ : List[Any] = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
UpperCamelCase__ : List[Any] = flax_model.params['encoder']['block'][str(lowerCamelCase_)]['layer']
UpperCamelCase__ : Tuple = tax_attention_key
UpperCamelCase__ : Optional[Any] = tax_attention_out
UpperCamelCase__ : Tuple = tax_attention_query
UpperCamelCase__ : Union[str, Any] = tax_attention_value
UpperCamelCase__ : str = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase__ : Union[str, Any] = tax_global_layer_norm
if split_mlp_wi:
UpperCamelCase__ : int = tax_mlp_wi_a
UpperCamelCase__ : int = tax_mlp_wi_a
else:
UpperCamelCase__ : str = tax_mlp_wi
UpperCamelCase__ : Tuple = tax_mlp_wo
UpperCamelCase__ : Union[str, Any] = tax_mlp_layer_norm
UpperCamelCase__ : Any = flax_model_encoder_layer_block
# Only for layer 0:
UpperCamelCase__ : str = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T
UpperCamelCase__ : Tuple = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase__ : Union[str, Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T
UpperCamelCase__ : Optional[int] = tax_encoder_global_rel_embedding
# Assigning
UpperCamelCase__ : Dict = tax_model['target']['encoder']['encoder_norm']['scale']
UpperCamelCase__ : str = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
UpperCamelCase__ : List[Any] = f'layers_{str(lowerCamelCase_)}'
# Self-Attention
UpperCamelCase__ : int = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel']
UpperCamelCase__ : Optional[int] = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel']
UpperCamelCase__ : Any = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel']
UpperCamelCase__ : Tuple = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel']
# Layer Normalization
UpperCamelCase__ : Optional[Any] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][
'scale'
]
# Encoder-Decoder-Attention
UpperCamelCase__ : Optional[Any] = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention']
UpperCamelCase__ : List[Any] = tax_enc_dec_attention_module['key']['kernel']
UpperCamelCase__ : str = tax_enc_dec_attention_module['out']['kernel']
UpperCamelCase__ : List[Any] = tax_enc_dec_attention_module['query']['kernel']
UpperCamelCase__ : Union[str, Any] = tax_enc_dec_attention_module['value']['kernel']
# Layer Normalization
UpperCamelCase__ : List[Any] = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale']
# MLP
if split_mlp_wi:
UpperCamelCase__ : Union[str, Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel']
UpperCamelCase__ : int = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel']
else:
UpperCamelCase__ : List[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel']
UpperCamelCase__ : str = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
UpperCamelCase__ : Any = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
UpperCamelCase__ : List[str] = flax_model.params['decoder']['block'][str(lowerCamelCase_)]['layer']
UpperCamelCase__ : List[Any] = tax_attention_key
UpperCamelCase__ : int = tax_attention_out
UpperCamelCase__ : Tuple = tax_attention_query
UpperCamelCase__ : Dict = tax_attention_value
UpperCamelCase__ : int = tax_pre_attention_layer_norm
UpperCamelCase__ : Optional[int] = tax_enc_dec_attention_key
UpperCamelCase__ : List[Any] = tax_enc_dec_attention_out
UpperCamelCase__ : int = tax_enc_dec_attention_query
UpperCamelCase__ : Dict = tax_enc_dec_attention_value
UpperCamelCase__ : Tuple = tax_cross_layer_norm
if split_mlp_wi:
UpperCamelCase__ : int = tax_mlp_wi_a
UpperCamelCase__ : Dict = tax_mlp_wi_a
else:
UpperCamelCase__ : int = tax_mlp_wi
UpperCamelCase__ : Any = tax_mlp_wo
UpperCamelCase__ : Any = txa_mlp_layer_norm
UpperCamelCase__ : Tuple = flax_model_decoder_layer_block
# Decoder Normalization
UpperCamelCase__ : Optional[int] = tax_model['target']['decoder']['decoder_norm']['scale']
UpperCamelCase__ : Optional[int] = txa_decoder_norm
# Only for layer 0:
UpperCamelCase__ : Any = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T
UpperCamelCase__ : List[Any] = tax_decoder_rel_embedding
# Token Embeddings
UpperCamelCase__ : Dict = tax_model['target']['token_embedder']['embedding']
UpperCamelCase__ : int = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
UpperCamelCase__ : Union[str, Any] = tax_model['target']['decoder']['logits_dense']['kernel']
flax_model.save_pretrained(lowerCamelCase_)
print('T5X Model was sucessfully converted!')
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.'
)
parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.')
parser.add_argument(
'--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.'
)
lowerCAmelCase__ = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 711 |
'''simple docstring'''
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class __lowercase :
def __UpperCamelCase ( self : Union[str, Any]):
torch.manual_seed(0)
UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : List[str] = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , )
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
UpperCamelCase__ : Optional[Any] = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __UpperCamelCase ( self : Dict):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Any = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
UpperCamelCase__ : str = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0)
UpperCamelCase__ : List[str] = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , )
torch.manual_seed(0)
UpperCamelCase__ : Optional[Any] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Dict = self.get_dummy_components()
UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_)
pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = inputs['prompt']
UpperCamelCase__ : List[Any] = inputs['generator']
UpperCamelCase__ : Tuple = inputs['num_inference_steps']
UpperCamelCase__ : List[Any] = inputs['output_type']
if "image" in inputs:
UpperCamelCase__ : Tuple = inputs['image']
else:
UpperCamelCase__ : Union[str, Any] = None
if "mask_image" in inputs:
UpperCamelCase__ : Optional[int] = inputs['mask_image']
else:
UpperCamelCase__ : int = None
if "original_image" in inputs:
UpperCamelCase__ : List[Any] = inputs['original_image']
else:
UpperCamelCase__ : Optional[Any] = None
UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_)
# inputs with prompt converted to embeddings
UpperCamelCase__ : List[Any] = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
UpperCamelCase__ : Dict = image
if mask_image is not None:
UpperCamelCase__ : Optional[int] = mask_image
if original_image is not None:
UpperCamelCase__ : Union[str, Any] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_)
pipe_loaded.to(UpperCAmelCase_)
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , )
UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = inputs['generator']
UpperCamelCase__ : List[Any] = inputs['num_inference_steps']
UpperCamelCase__ : Optional[int] = inputs['output_type']
# inputs with prompt converted to embeddings
UpperCamelCase__ : Any = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
UpperCamelCase__ : Tuple = image
if mask_image is not None:
UpperCamelCase__ : Union[str, Any] = mask_image
if original_image is not None:
UpperCamelCase__ : str = original_image
UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0]
UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max()
self.assertLess(UpperCAmelCase_ , 1e-4)
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Any = self.get_dummy_components()
UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_)
pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_)
pipe_loaded.to(UpperCAmelCase_)
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0]
UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max()
self.assertLess(UpperCAmelCase_ , 1e-4)
| 6 | 0 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowercase (__lowerCamelCase ):
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : int=99 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Union[str, Any]="last" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=None , ):
UpperCamelCase__ : int = parent
UpperCamelCase__ : Any = batch_size
UpperCamelCase__ : Tuple = seq_length
UpperCamelCase__ : Tuple = is_training
UpperCamelCase__ : Union[str, Any] = use_input_lengths
UpperCamelCase__ : Any = use_token_type_ids
UpperCamelCase__ : List[Any] = use_labels
UpperCamelCase__ : Optional[Any] = gelu_activation
UpperCamelCase__ : Union[str, Any] = sinusoidal_embeddings
UpperCamelCase__ : Union[str, Any] = causal
UpperCamelCase__ : Optional[Any] = asm
UpperCamelCase__ : Union[str, Any] = n_langs
UpperCamelCase__ : str = vocab_size
UpperCamelCase__ : int = n_special
UpperCamelCase__ : Dict = hidden_size
UpperCamelCase__ : List[str] = num_hidden_layers
UpperCamelCase__ : Tuple = num_attention_heads
UpperCamelCase__ : str = hidden_dropout_prob
UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob
UpperCamelCase__ : int = max_position_embeddings
UpperCamelCase__ : Optional[Any] = type_vocab_size
UpperCamelCase__ : Optional[Any] = type_sequence_label_size
UpperCamelCase__ : Dict = initializer_range
UpperCamelCase__ : int = num_labels
UpperCamelCase__ : Optional[Any] = num_choices
UpperCamelCase__ : Dict = summary_type
UpperCamelCase__ : int = use_proj
UpperCamelCase__ : Optional[int] = scope
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length])
UpperCamelCase__ : Any = None
if self.use_input_lengths:
UpperCamelCase__ : Union[str, Any] = (
ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
UpperCamelCase__ : Optional[int] = None
if self.use_token_type_ids:
UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs)
UpperCamelCase__ : str = None
UpperCamelCase__ : List[str] = None
UpperCamelCase__ : int = None
if self.use_labels:
UpperCamelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
UpperCamelCase__ : List[str] = ids_tensor([self.batch_size] , 2).float()
UpperCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices)
UpperCamelCase__ : Tuple = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __UpperCamelCase ( self : Union[str, Any]):
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , ):
UpperCamelCase__ : str = FlaubertModel(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = model(UpperCAmelCase_ , langs=UpperCAmelCase_)
UpperCamelCase__ : Any = model(UpperCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , ):
UpperCamelCase__ : List[Any] = FlaubertWithLMHeadModel(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , ):
UpperCamelCase__ : List[Any] = FlaubertForQuestionAnsweringSimple(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : List[Any] = model(UpperCAmelCase_)
UpperCamelCase__ : List[str] = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def __UpperCamelCase ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , ):
UpperCamelCase__ : str = FlaubertForQuestionAnswering(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = model(
UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , )
UpperCamelCase__ : Optional[int] = model(
UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , )
(UpperCamelCase__ ) : Tuple = result_with_labels.to_tuple()
UpperCamelCase__ : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_)
(UpperCamelCase__ ) : int = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , ())
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top))
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top))
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,))
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , ):
UpperCamelCase__ : str = FlaubertForSequenceClassification(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Tuple = model(UpperCAmelCase_)
UpperCamelCase__ : Any = model(UpperCAmelCase_ , labels=UpperCAmelCase_)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , ):
UpperCamelCase__ : List[Any] = self.num_labels
UpperCamelCase__ : Optional[Any] = FlaubertForTokenClassification(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , ):
UpperCamelCase__ : Optional[Any] = self.num_choices
UpperCamelCase__ : List[Any] = FlaubertForMultipleChoice(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : List[str] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
UpperCamelCase__ : List[str] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
UpperCamelCase__ : Tuple = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
UpperCamelCase__ : List[str] = model(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def __UpperCamelCase ( self : Union[str, Any]):
UpperCamelCase__ : List[Any] = self.prepare_config_and_inputs()
(
UpperCamelCase__
) : str = config_and_inputs
UpperCamelCase__ : Optional[Any] = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'lengths': input_lengths,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_torch
class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
_lowerCamelCase = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
_lowerCamelCase = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast')
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=False):
UpperCamelCase__ : str = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_)
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
UpperCamelCase__ : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_)
return inputs_dict
def __UpperCamelCase ( self : Union[str, Any]):
UpperCamelCase__ : str = FlaubertModelTester(self)
UpperCamelCase__ : int = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=37)
def __UpperCamelCase ( self : Optional[Any]):
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : str):
UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*UpperCAmelCase_)
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any]):
UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCAmelCase_)
@slow
def __UpperCamelCase ( self : Union[str, Any]):
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ : int = FlaubertModel.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@slow
@require_torch_gpu
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
UpperCamelCase__ : str = True
UpperCamelCase__ : List[Any] = model_class(config=UpperCAmelCase_)
UpperCamelCase__ : Tuple = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = torch.jit.trace(
UpperCAmelCase_ , (inputs_dict['input_ids'].to('cpu'), inputs_dict['attention_mask'].to('cpu')))
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , 'traced_model.pt'))
UpperCamelCase__ : List[str] = torch.jit.load(os.path.join(UpperCAmelCase_ , 'traced_model.pt') , map_location=UpperCAmelCase_)
loaded(inputs_dict['input_ids'].to(UpperCAmelCase_) , inputs_dict['attention_mask'].to(UpperCAmelCase_))
@require_torch
class __lowercase (unittest.TestCase ):
@slow
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : str = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased')
UpperCamelCase__ : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]])
with torch.no_grad():
UpperCamelCase__ : str = model(UpperCAmelCase_)[0]
UpperCamelCase__ : Optional[int] = torch.Size((1, 11, 768))
self.assertEqual(output.shape , UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = torch.tensor(
[[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4))
| 712 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
lowerCAmelCase__ = 3
def __UpperCAmelCase ( lowerCamelCase_) -> int:
print('Generating primitive root of p')
while True:
UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_)
if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1:
continue
if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1:
continue
return g
def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print('Generating prime p...')
UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number.
UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p.
UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety.
UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_)
UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p)
UpperCamelCase__ : Optional[Any] = (key_size, d)
return public_key, private_key
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None:
if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'):
print('\nWARNING:')
print(
f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
'Use a different name or delete these files and re-run this program.')
sys.exit()
UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_)
print(f'\nWriting public key to file {name}_pubkey.txt...')
with open(f'{name}_pubkey.txt' , 'w') as fo:
fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}')
print(f'Writing private key to file {name}_privkey.txt...')
with open(f'{name}_privkey.txt' , 'w') as fo:
fo.write(f'{private_key[0]},{private_key[1]}')
def __UpperCAmelCase ( ) -> None:
print('Making key files...')
make_key_files('elgamal' , 2_048)
print('Key files generation successful')
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( ) -> list[list[int]]:
return [list(range(1_000 - i , -1_000 - i , -1)) for i in range(1_000)]
lowerCAmelCase__ = generate_large_matrix()
lowerCAmelCase__ = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __UpperCAmelCase ( lowerCamelCase_) -> None:
assert all(row == sorted(lowerCamelCase_ , reverse=lowerCamelCase_) for row in grid)
assert all(list(lowerCamelCase_) == sorted(lowerCamelCase_ , reverse=lowerCamelCase_) for col in zip(*lowerCamelCase_))
def __UpperCAmelCase ( lowerCamelCase_) -> int:
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : List[str] = len(lowerCamelCase_) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
UpperCamelCase__ : int = (left + right) // 2
UpperCamelCase__ : int = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
UpperCamelCase__ : Union[str, Any] = mid + 1
else:
UpperCamelCase__ : int = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_) -> int:
UpperCamelCase__ : Dict = 0
UpperCamelCase__ : Tuple = len(grid[0])
for i in range(len(lowerCamelCase_)):
UpperCamelCase__ : Dict = find_negative_index(grid[i][:bound])
total += bound
return (len(lowerCamelCase_) * len(grid[0])) - total
def __UpperCAmelCase ( lowerCamelCase_) -> int:
return len([number for row in grid for number in row if number < 0])
def __UpperCAmelCase ( lowerCamelCase_) -> int:
UpperCamelCase__ : List[str] = 0
for row in grid:
for i, number in enumerate(lowerCamelCase_):
if number < 0:
total += len(lowerCamelCase_) - i
break
return total
def __UpperCAmelCase ( ) -> None:
from timeit import timeit
print('Running benchmarks')
UpperCamelCase__ : Optional[int] = (
'from __main__ import count_negatives_binary_search, '
'count_negatives_brute_force, count_negatives_brute_force_with_break, grid'
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
UpperCamelCase__ : Any = timeit(f'{func}(grid=grid)' , setup=lowerCamelCase_ , number=500)
print(f'{func}() took {time:0.4f} seconds')
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 713 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'ctc_proj',
'mask_emb': 'masked_spec_embed',
}
lowerCAmelCase__ = [
'ctc_proj',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str:
for attribute in key.split('.'):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
UpperCamelCase__ : str = 'lm_head'
UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_)
if weight_type is not None:
UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape
else:
UpperCamelCase__ : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
UpperCamelCase__ : Optional[Any] = value
elif weight_type == "weight_g":
UpperCamelCase__ : Union[str, Any] = value
elif weight_type == "weight_v":
UpperCamelCase__ : List[Any] = value
elif weight_type == "bias":
UpperCamelCase__ : Any = value
else:
UpperCamelCase__ : Optional[int] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.')
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]:
UpperCamelCase__ : List[Any] = []
UpperCamelCase__ : int = fairseq_model.state_dict()
UpperCamelCase__ : int = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase__ : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase__ : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]:
UpperCamelCase__ : Any = True
if "*" in mapped_key:
UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2]
UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_)
if "weight_g" in name:
UpperCamelCase__ : int = 'weight_g'
elif "weight_v" in name:
UpperCamelCase__ : Any = 'weight_v'
elif "bias" in name:
UpperCamelCase__ : Union[str, Any] = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase__ : Any = 'weight'
else:
UpperCamelCase__ : Tuple = None
set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
continue
if not is_used:
unused_weights.append(lowerCamelCase_)
logger.warning(f'Unused weights: {unused_weights}')
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1]
UpperCamelCase__ : List[Any] = name.split('.')
UpperCamelCase__ : Any = int(items[0])
UpperCamelCase__ : int = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
UpperCamelCase__ : Tuple = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
UpperCamelCase__ : int = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
UpperCamelCase__ : Optional[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
UpperCamelCase__ : List[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.')
else:
unused_weights.append(lowerCamelCase_)
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple:
if config_path is not None:
UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_)
else:
UpperCamelCase__ : int = UniSpeechConfig()
if is_finetuned:
if dict_path:
UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase__ : List[Any] = target_dict.pad_index
UpperCamelCase__ : Dict = target_dict.bos_index
UpperCamelCase__ : Union[str, Any] = target_dict.eos_index
UpperCamelCase__ : Tuple = len(target_dict.symbols)
UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json')
if not os.path.isdir(lowerCamelCase_):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_))
return
os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_)
UpperCamelCase__ : Optional[int] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase__ : Any = 42
UpperCamelCase__ : List[str] = 43
with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle:
json.dump(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer(
lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , )
UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , )
UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_)
processor.save_pretrained(lowerCamelCase_)
UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_)
else:
UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_)
if is_finetuned:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path})
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path])
UpperCamelCase__ : int = model[0].eval()
recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
hf_unispeech.save_pretrained(lowerCamelCase_)
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
lowerCAmelCase__ = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 6 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'nielsr/canine-s': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
lowerCAmelCase__ = 111_4112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0xE_0_0_0
lowerCAmelCase__ = 0xE_0_0_1
lowerCAmelCase__ = 0xE_0_0_2
lowerCAmelCase__ = 0xE_0_0_3
lowerCAmelCase__ = 0xE_0_0_4
# Maps special codepoints to human-readable names.
lowerCAmelCase__ = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: '[CLS]',
SEP: '[SEP]',
BOS: '[BOS]',
MASK: '[MASK]',
PAD: '[PAD]',
RESERVED: '[RESERVED]',
}
# Maps special codepoint human-readable names to their codepoint values.
lowerCAmelCase__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Dict , UpperCAmelCase_ : Union[str, Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : int=chr(UpperCAmelCase_) , UpperCAmelCase_ : int=chr(UpperCAmelCase_) , UpperCAmelCase_ : List[Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : Union[str, Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : List[Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=2_048 , **UpperCAmelCase_ : Optional[int] , ):
UpperCamelCase__ : Optional[int] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token
UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token
UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token
UpperCamelCase__ : Dict = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token
UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase__ : str = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , model_max_length=UpperCAmelCase_ , **UpperCAmelCase_ , )
# Creates a mapping for looking up the IDs of special symbols.
UpperCamelCase__ : Dict[str, int] = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
UpperCamelCase__ : List[Any] = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
UpperCamelCase__ : Dict[int, str] = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
UpperCamelCase__ : Optional[int] = UNICODE_VOCAB_SIZE
UpperCamelCase__ : Union[str, Any] = len(self._special_codepoints)
@property
def __UpperCamelCase ( self : Dict):
return self._unicode_vocab_size
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str):
return list(UpperCAmelCase_)
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str):
try:
return ord(UpperCAmelCase_)
except TypeError:
raise ValueError(F'invalid token: \'{token}\'')
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int):
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(UpperCAmelCase_)
except TypeError:
raise ValueError(F'invalid id: {index}')
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[Any]):
return "".join(UpperCAmelCase_)
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
UpperCamelCase__ : List[str] = [self.sep_token_id]
UpperCamelCase__ : Union[str, Any] = [self.cls_token_id]
UpperCamelCase__ : Dict = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = [1] + ([0] * len(UpperCAmelCase_)) + [1]
if token_ids_a is not None:
result += ([0] * len(UpperCAmelCase_)) + [1]
return result
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
UpperCamelCase__ : Tuple = [self.sep_token_id]
UpperCamelCase__ : str = [self.cls_token_id]
UpperCamelCase__ : Tuple = len(cls + token_ids_a + sep) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep) * [1]
return result
def __UpperCamelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None):
return ()
| 714 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : List[str]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Union[str, Any] = 1
UpperCamelCase__ : Union[str, Any] = 3
UpperCamelCase__ : Dict = (32, 32)
UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_)
return image
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def __UpperCamelCase ( self : str):
torch.manual_seed(0)
UpperCamelCase__ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Optional[Any]):
def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict):
class __lowercase :
def __init__( self : List[Any]):
UpperCamelCase__ : Optional[Any] = torch.ones([0])
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int):
self.pixel_values.to(UpperCAmelCase_)
return self
return Out()
return extract
def __UpperCamelCase ( self : str):
UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ : Any = self.dummy_cond_unet
UpperCamelCase__ : Any = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , )
UpperCamelCase__ : List[str] = self.dummy_vae
UpperCamelCase__ : str = self.dummy_text_encoder
UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : Tuple = output.images
UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Tuple = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ : int = self.dummy_cond_unet
UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = self.dummy_vae
UpperCamelCase__ : Optional[int] = self.dummy_text_encoder
UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Dict = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : List[str] = output.images
UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Optional[Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1]
UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_)
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_)
assert isinstance(pipe.scheduler , UpperCAmelCase_)
assert pipe.safety_checker is None
UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU')
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Dict = self.dummy_cond_unet
UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_)
UpperCamelCase__ : Any = self.dummy_vae
UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder
UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# put models in fp16
UpperCamelCase__ : Any = unet.half()
UpperCamelCase__ : Tuple = vae.half()
UpperCamelCase__ : Optional[int] = bert.half()
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Optional[int] = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Optional[int]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = (
'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'
' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'
' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'
' children from bahnhof zoo, detailed '
)
UpperCamelCase__ : Any = 4_003_660_346
UpperCamelCase__ : Any = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : str = output.images
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# without safety guidance (strong configuration)
UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : str = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Dict = output.images
UpperCamelCase__ : str = image[0, -3:, -3:, -1]
UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_)
UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity'
UpperCamelCase__ : Tuple = 2_734_971_755
UpperCamelCase__ : Tuple = 7
UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : int = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : int = output.images
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Tuple = output.images
UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5')
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : int = (
'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'
' leyendecker'
)
UpperCamelCase__ : Any = 1_044_355_234
UpperCamelCase__ : Optional[int] = 12
UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : str = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : List[str] = output.images
UpperCamelCase__ : Any = image[0, -3:, -3:, -1]
UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7
UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : List[str] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Optional[Any] = output.images
UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 6 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 715 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
lowerCAmelCase__ = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
lowerCAmelCase__ = {'facebook/blenderbot-3B': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __UpperCAmelCase ( ) -> Union[str, Any]:
UpperCamelCase__ : Optional[Any] = (
list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1))
)
UpperCamelCase__ : List[Any] = bs[:]
UpperCamelCase__ : Optional[int] = 0
for b in range(2**8):
if b not in bs:
bs.append(lowerCamelCase_)
cs.append(2**8 + n)
n += 1
UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs]
return dict(zip(lowerCamelCase_ , lowerCamelCase_))
def __UpperCAmelCase ( lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Any = set()
UpperCamelCase__ : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
UpperCamelCase__ : str = char
return pairs
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ):
UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token
UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token
UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token
UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token
UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token
UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token
super().__init__(
errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , )
with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle:
UpperCamelCase__ : Any = json.load(UpperCAmelCase_)
UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()}
UpperCamelCase__ : Any = errors # how to handle errors in decoding
UpperCamelCase__ : Tuple = bytes_to_unicode()
UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle:
UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1]
UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges]
UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
UpperCamelCase__ : Dict = {}
UpperCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+')
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def __UpperCamelCase ( self : Tuple):
return len(self.encoder)
def __UpperCamelCase ( self : Tuple):
return dict(self.encoder , **self.added_tokens_encoder)
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]):
if token in self.cache:
return self.cache[token]
UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_)
UpperCamelCase__ : int = get_pairs(UpperCAmelCase_)
if not pairs:
return token
while True:
UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf')))
if bigram not in self.bpe_ranks:
break
UpperCamelCase__, UpperCamelCase__ : Tuple = bigram
UpperCamelCase__ : Dict = []
UpperCamelCase__ : Optional[int] = 0
while i < len(UpperCAmelCase_):
try:
UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
UpperCamelCase__ : Any = j
if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_)
UpperCamelCase__ : Dict = new_word
if len(UpperCAmelCase_) == 1:
break
else:
UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_)
UpperCamelCase__ : List[Any] = word
return word
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any):
UpperCamelCase__ : Optional[Any] = []
for token in re.findall(self.pat , UpperCAmelCase_):
UpperCamelCase__ : Optional[int] = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' '))
return bpe_tokens
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]):
return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token))
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]):
return self.decoder.get(UpperCAmelCase_)
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int):
UpperCamelCase__ : int = ''.join(UpperCAmelCase_)
UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors)
return text
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None):
if not os.path.isdir(UpperCAmelCase_):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
UpperCamelCase__ : str = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
UpperCamelCase__ : Optional[Any] = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n')
UpperCamelCase__ : str = 0
with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!')
UpperCamelCase__ : List[Any] = token_index
writer.write(' '.join(UpperCAmelCase_) + '\n')
index += 1
return vocab_file, merge_file
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase_)) + [1]
return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1]
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
UpperCamelCase__ : Any = [self.sep_token_id]
UpperCamelCase__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]):
UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()):
UpperCamelCase__ : str = ' ' + text
return (text, kwargs)
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
return token_ids_a + [self.eos_token_id]
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"):
UpperCamelCase__ : List[str] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text)
else:
# Generated responses should contain them already.
inputs.append(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_)
UpperCamelCase__ : int = self.encode(UpperCAmelCase_)
if len(UpperCAmelCase_) > self.model_max_length:
UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :]
logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.')
return input_ids
| 6 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'microsoft/table-transformer-detection': (
'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'
),
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''table-transformer'''
_lowerCamelCase = ['''past_key_values''']
_lowerCamelCase = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self : int , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : List[str]=100 , UpperCAmelCase_ : Tuple=6 , UpperCAmelCase_ : List[str]=2_048 , UpperCAmelCase_ : str=8 , UpperCAmelCase_ : Optional[int]=6 , UpperCAmelCase_ : Tuple=2_048 , UpperCAmelCase_ : Optional[int]=8 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str="relu" , UpperCAmelCase_ : Dict=256 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : int="sine" , UpperCAmelCase_ : Dict="resnet50" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : int=False , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : str=5 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Tuple=0.1 , **UpperCAmelCase_ : Tuple , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.')
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.')
UpperCamelCase__ : Tuple = CONFIG_MAPPING['resnet'](out_features=['stage4'])
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
UpperCamelCase__ : Optional[Any] = backbone_config.get('model_type')
UpperCamelCase__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type]
UpperCamelCase__ : Union[str, Any] = config_class.from_dict(UpperCAmelCase_)
# set timm attributes to None
UpperCamelCase__ : Union[str, Any] = None, None, None
UpperCamelCase__ : Any = use_timm_backbone
UpperCamelCase__ : str = backbone_config
UpperCamelCase__ : Dict = num_channels
UpperCamelCase__ : Optional[Any] = num_queries
UpperCamelCase__ : List[str] = d_model
UpperCamelCase__ : List[Any] = encoder_ffn_dim
UpperCamelCase__ : str = encoder_layers
UpperCamelCase__ : Dict = encoder_attention_heads
UpperCamelCase__ : str = decoder_ffn_dim
UpperCamelCase__ : Any = decoder_layers
UpperCamelCase__ : Optional[Any] = decoder_attention_heads
UpperCamelCase__ : Optional[int] = dropout
UpperCamelCase__ : Tuple = attention_dropout
UpperCamelCase__ : Tuple = activation_dropout
UpperCamelCase__ : Dict = activation_function
UpperCamelCase__ : int = init_std
UpperCamelCase__ : int = init_xavier_std
UpperCamelCase__ : Optional[int] = encoder_layerdrop
UpperCamelCase__ : List[Any] = decoder_layerdrop
UpperCamelCase__ : Any = encoder_layers
UpperCamelCase__ : Union[str, Any] = auxiliary_loss
UpperCamelCase__ : Optional[int] = position_embedding_type
UpperCamelCase__ : Any = backbone
UpperCamelCase__ : Optional[int] = use_pretrained_backbone
UpperCamelCase__ : Tuple = dilation
# Hungarian matcher
UpperCamelCase__ : List[Any] = class_cost
UpperCamelCase__ : Any = bbox_cost
UpperCamelCase__ : str = giou_cost
# Loss coefficients
UpperCamelCase__ : List[Any] = mask_loss_coefficient
UpperCamelCase__ : Optional[int] = dice_loss_coefficient
UpperCamelCase__ : str = bbox_loss_coefficient
UpperCamelCase__ : Union[str, Any] = giou_loss_coefficient
UpperCamelCase__ : Any = eos_coefficient
super().__init__(is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Any):
return self.encoder_attention_heads
@property
def __UpperCamelCase ( self : List[Any]):
return self.d_model
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self : List[Any]):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
])
@property
def __UpperCamelCase ( self : Dict):
return 1e-5
@property
def __UpperCamelCase ( self : List[Any]):
return 12
| 716 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str:
UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser')
UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_).find('span').text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 6 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class __lowercase (__lowerCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple):
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.' , UpperCAmelCase_ , )
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_)
| 717 |
'''simple docstring'''
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@slow
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
model.to(UpperCAmelCase_)
from datasets import load_dataset
UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo')
UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB')
UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_)
# forward pass
with torch.no_grad():
UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_)
UpperCamelCase__ : Tuple = outputs.logits
UpperCamelCase__ : str = torch.Size((1, 16))
self.assertEqual(logits.shape , UpperCAmelCase_)
UpperCamelCase__ : Tuple = torch.tensor(
[-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
| 6 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str:
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive')
UpperCamelCase__ : Tuple = str(bin(lowerCamelCase_))[2:] # remove the leading "0b"
UpperCamelCase__ : str = str(bin(lowerCamelCase_))[2:]
UpperCamelCase__ : List[str] = max(len(lowerCamelCase_) , len(lowerCamelCase_))
return "0b" + "".join(
str(int('1' in (char_a, char_b)))
for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_) , b_binary.zfill(lowerCamelCase_)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 718 |
'''simple docstring'''
import argparse
import struct
import unittest
class __lowercase :
def __init__( self : Tuple , UpperCAmelCase_ : bytes):
UpperCamelCase__ : Dict = data
# Initialize hash values
UpperCamelCase__ : Any = [
0X6A_09E_667,
0XBB_67A_E85,
0X3C_6EF_372,
0XA5_4FF_53A,
0X51_0E5_27F,
0X9B_056_88C,
0X1F_83D_9AB,
0X5B_E0C_D19,
]
# Initialize round constants
UpperCamelCase__ : List[Any] = [
0X42_8A2_F98,
0X71_374_491,
0XB5_C0F_BCF,
0XE9_B5D_BA5,
0X39_56C_25B,
0X59_F11_1F1,
0X92_3F8_2A4,
0XAB_1C5_ED5,
0XD8_07A_A98,
0X12_835_B01,
0X24_318_5BE,
0X55_0C7_DC3,
0X72_BE5_D74,
0X80_DEB_1FE,
0X9B_DC0_6A7,
0XC1_9BF_174,
0XE4_9B6_9C1,
0XEF_BE4_786,
0X0F_C19_DC6,
0X24_0CA_1CC,
0X2D_E92_C6F,
0X4A_748_4AA,
0X5C_B0A_9DC,
0X76_F98_8DA,
0X98_3E5_152,
0XA8_31C_66D,
0XB0_032_7C8,
0XBF_597_FC7,
0XC6_E00_BF3,
0XD5_A79_147,
0X06_CA6_351,
0X14_292_967,
0X27_B70_A85,
0X2E_1B2_138,
0X4D_2C6_DFC,
0X53_380_D13,
0X65_0A7_354,
0X76_6A0_ABB,
0X81_C2C_92E,
0X92_722_C85,
0XA2_BFE_8A1,
0XA8_1A6_64B,
0XC2_4B8_B70,
0XC7_6C5_1A3,
0XD1_92E_819,
0XD6_990_624,
0XF4_0E3_585,
0X10_6AA_070,
0X19_A4C_116,
0X1E_376_C08,
0X27_487_74C,
0X34_B0B_CB5,
0X39_1C0_CB3,
0X4E_D8A_A4A,
0X5B_9CC_A4F,
0X68_2E6_FF3,
0X74_8F8_2EE,
0X78_A56_36F,
0X84_C87_814,
0X8C_C70_208,
0X90_BEF_FFA,
0XA4_506_CEB,
0XBE_F9A_3F7,
0XC6_717_8F2,
]
UpperCamelCase__ : Tuple = self.preprocessing(self.data)
self.final_hash()
@staticmethod
def __UpperCamelCase ( UpperCAmelCase_ : bytes):
UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64))
UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8))
return data + padding + big_endian_integer
def __UpperCamelCase ( self : Union[str, Any]):
# Convert into blocks of 64 bytes
UpperCamelCase__ : int = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data) , 64)
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_))
# add 48 0-ed integers
words += [0] * 48
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes
for index in range(0 , 64):
if index > 15:
# modify the zero-ed indexes at the end of the array
UpperCamelCase__ : Dict = (
self.ror(words[index - 15] , 7)
^ self.ror(words[index - 15] , 18)
^ (words[index - 15] >> 3)
)
UpperCamelCase__ : Tuple = (
self.ror(words[index - 2] , 17)
^ self.ror(words[index - 2] , 19)
^ (words[index - 2] >> 10)
)
UpperCamelCase__ : int = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X100_000_000
# Compression
UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25)
UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g)
UpperCamelCase__ : List[Any] = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X100_000_000
UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22)
UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c)
UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = (
g,
f,
e,
((d + tempa) % 0X100_000_000),
c,
b,
a,
((tempa + tempa) % 0X100_000_000),
)
UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h]
# Modify final values
UpperCamelCase__ : Optional[Any] = [
((element + mutated_hash_values[index]) % 0X100_000_000)
for index, element in enumerate(self.hashes)
]
UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes])
def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations)
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : int):
import hashlib
UpperCamelCase__ : str = bytes('Test String' , 'utf-8')
self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest())
def __UpperCAmelCase ( ) -> None:
import doctest
doctest.testmod()
UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file')
UpperCamelCase__ : List[str] = parser.parse_args()
UpperCamelCase__ : str = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb') as f:
UpperCamelCase__ : Any = f.read()
else:
UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8')
print(SHAaaa(lowerCamelCase_).hash)
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowercase :
def __init__( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int=13 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : int=224 , UpperCAmelCase_ : str=1_000 , UpperCAmelCase_ : Any=[3, 3, 6, 4] , UpperCAmelCase_ : Tuple=[48, 56, 112, 220] , ):
UpperCamelCase__ : Optional[Any] = parent
UpperCamelCase__ : Tuple = batch_size
UpperCamelCase__ : Union[str, Any] = num_channels
UpperCamelCase__ : List[str] = is_training
UpperCamelCase__ : Optional[Any] = use_labels
UpperCamelCase__ : Tuple = hidden_dropout_prob
UpperCamelCase__ : Any = attention_probs_dropout_prob
UpperCamelCase__ : Optional[Any] = num_labels
UpperCamelCase__ : Tuple = image_size
UpperCamelCase__ : str = layer_depths
UpperCamelCase__ : str = embed_dims
def __UpperCamelCase ( self : Tuple):
UpperCamelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCamelCase__ : str = None
if self.use_labels:
UpperCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_labels)
UpperCamelCase__ : Optional[int] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self : List[Any]):
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=UpperCAmelCase_ , layer_scale_init_value=1e-5 , )
def __UpperCamelCase ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]):
UpperCamelCase__ : Dict = SwiftFormerModel(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Dict = model(UpperCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7))
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]):
UpperCamelCase__ : Dict = self.num_labels
UpperCamelCase__ : Union[str, Any] = SwiftFormerForImageClassification(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : str = model(UpperCAmelCase_ , labels=UpperCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
UpperCamelCase__ : Union[str, Any] = SwiftFormerForImageClassification(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCamelCase__ : List[str] = model(UpperCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def __UpperCamelCase ( self : List[str]):
(UpperCamelCase__) : Tuple = self.prepare_config_and_inputs()
UpperCamelCase__ : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
_lowerCamelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
_lowerCamelCase = (
{'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Union[str, Any] = SwiftFormerModelTester(self)
UpperCamelCase__ : Optional[int] = ConfigTester(
self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def __UpperCamelCase ( self : Optional[int]):
self.config_tester.run_common_tests()
@unittest.skip(reason='SwiftFormer does not use inputs_embeds')
def __UpperCamelCase ( self : int):
pass
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Dict = model_class(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear))
def __UpperCamelCase ( self : Tuple):
UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_)
UpperCamelCase__ : List[str] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ : Optional[int] = [*signature.parameters.keys()]
UpperCamelCase__ : int = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any]):
UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_)
def __UpperCamelCase ( self : Tuple):
UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_)
@slow
def __UpperCamelCase ( self : List[Any]):
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ : Dict = SwiftFormerModel.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@unittest.skip(reason='SwiftFormer does not output attentions')
def __UpperCamelCase ( self : Optional[Any]):
pass
def __UpperCamelCase ( self : Union[str, Any]):
def check_hidden_states_output(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict):
UpperCamelCase__ : Optional[int] = model_class(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
with torch.no_grad():
UpperCamelCase__ : Any = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_))
UpperCamelCase__ : List[Any] = outputs.hidden_states
UpperCamelCase__ : Any = 8
self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(UpperCAmelCase_)):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
]) , )
UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : str = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase__ : Optional[Any] = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any]):
def _config_zero_init(UpperCAmelCase_ : Any):
UpperCamelCase__ : Optional[Any] = copy.deepcopy(UpperCAmelCase_)
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(UpperCAmelCase_ , UpperCAmelCase_ , 1e-10)
if isinstance(getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_):
UpperCamelCase__ : Optional[int] = _config_zero_init(getattr(UpperCAmelCase_ , UpperCAmelCase_))
setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
return configs_no_init
UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ : Dict = _config_zero_init(UpperCAmelCase_)
for model_class in self.all_model_classes:
UpperCamelCase__ : List[str] = model_class(config=UpperCAmelCase_)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.')
def __UpperCamelCase ( self : List[str]):
pass
def __UpperCAmelCase ( ) -> Dict:
UpperCamelCase__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self : Optional[Any]):
return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs') if is_vision_available() else None
@slow
def __UpperCamelCase ( self : List[str]):
UpperCamelCase__ : Union[str, Any] = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs').to(UpperCAmelCase_)
UpperCamelCase__ : Any = self.default_image_processor
UpperCamelCase__ : Tuple = prepare_img()
UpperCamelCase__ : Dict = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_)
# forward pass
with torch.no_grad():
UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_)
# verify the logits
UpperCamelCase__ : Dict = torch.Size((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase_)
UpperCamelCase__ : Tuple = torch.tensor([[-2.1_703e00, 2.1_107e00, -2.0_811e00]]).to(UpperCAmelCase_)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4)) | 719 |
'''simple docstring'''
from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase__ = 300 # TEMPERATURE (unit = K)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float:
if donor_conc <= 0:
raise ValueError('Donor concentration should be positive')
elif acceptor_conc <= 0:
raise ValueError('Acceptor concentration should be positive')
elif intrinsic_conc <= 0:
raise ValueError('Intrinsic concentration should be positive')
elif donor_conc <= intrinsic_conc:
raise ValueError(
'Donor concentration should be greater than intrinsic concentration')
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
'Acceptor concentration should be greater than intrinsic concentration')
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2)
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__lowerCamelCase )
class __lowercase (__lowerCamelCase ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
_lowerCamelCase = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
_lowerCamelCase = Features({'''text''': Value('''string''' )} )
_lowerCamelCase = Features({'''labels''': ClassLabel} )
_lowerCamelCase = '''text'''
_lowerCamelCase = '''labels'''
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]):
if self.label_column not in features:
raise ValueError(F'Column {self.label_column} is not present in features.')
if not isinstance(features[self.label_column] , UpperCAmelCase_):
raise ValueError(F'Column {self.label_column} is not a ClassLabel.')
UpperCamelCase__ : Dict = copy.deepcopy(self)
UpperCamelCase__ : int = self.label_schema.copy()
UpperCamelCase__ : Union[str, Any] = features[self.label_column]
UpperCamelCase__ : Tuple = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[int]):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 720 |
'''simple docstring'''
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]:
UpperCamelCase__ : int = []
if isinstance(lowerCamelCase_ , lowerCamelCase_):
for v in tree.values():
shapes.extend(_fetch_dims(lowerCamelCase_))
elif isinstance(lowerCamelCase_ , (list, tuple)):
for t in tree:
shapes.extend(_fetch_dims(lowerCamelCase_))
elif isinstance(lowerCamelCase_ , torch.Tensor):
shapes.append(tree.shape)
else:
raise ValueError('Not supported')
return shapes
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]:
UpperCamelCase__ : int = []
for d in reversed(lowerCamelCase_):
idx.append(flat_idx % d)
UpperCamelCase__ : Any = flat_idx // d
return tuple(reversed(lowerCamelCase_))
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]:
# start_edges and end_edges both indicate whether, starting from any given
# dimension, the start/end index is at the top/bottom edge of the
# corresponding tensor, modeled as a tree
def reduce_edge_list(lowerCamelCase_) -> None:
UpperCamelCase__ : Tuple = True
for i in range(len(lowerCamelCase_)):
UpperCamelCase__ : List[Any] = -1 * (i + 1)
l[reversed_idx] &= tally
UpperCamelCase__ : Optional[Any] = l[reversed_idx]
if start_edges is None:
UpperCamelCase__ : int = [s == 0 for s in start]
reduce_edge_list(lowerCamelCase_)
if end_edges is None:
UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)]
reduce_edge_list(lowerCamelCase_)
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(lowerCamelCase_) == 0:
return [()]
elif len(lowerCamelCase_) == 1:
return [(slice(start[0] , end[0] + 1),)]
UpperCamelCase__ : List[Tuple[slice, ...]] = []
UpperCamelCase__ : List[slice] = []
# Dimensions common to start and end can be selected directly
for s, e in zip(lowerCamelCase_ , lowerCamelCase_):
if s == e:
path_list.append(slice(lowerCamelCase_ , s + 1))
else:
break
UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_)
UpperCamelCase__ : Dict = len(lowerCamelCase_)
# start == end, and we're done
if divergence_idx == len(lowerCamelCase_):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ : str = start[divergence_idx]
return tuple(
path + (slice(lowerCamelCase_ , sdi + 1),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ))
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ : Optional[int] = end[divergence_idx]
return tuple(
path + (slice(lowerCamelCase_ , edi + 1),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ))
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),))
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),))
slices.extend(lower())
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper())
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),))
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper())
UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),))
slices.extend(lower())
return slices
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor:
UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims]
UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_))
# _get_minimal_slice_set is inclusive
UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_))
# Get an ordered list of slices to perform
UpperCamelCase__ : int = _get_minimal_slice_set(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , )
UpperCamelCase__ : List[Any] = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any:
if not (len(lowerCamelCase_) > 0):
raise ValueError('Must provide at least one input')
UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)]
UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)])
def _prep_inputs(lowerCamelCase_) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims]) == no_batch_dims:
UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:])
else:
UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
return t
UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_)
UpperCamelCase__ : int = None
if _out is not None:
UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out)
UpperCamelCase__ : Dict = 1
for d in orig_batch_dims:
flat_batch_dim *= d
UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(lowerCamelCase_) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : Optional[Any] = prepped_outputs
for _ in range(lowerCamelCase_):
# Chunk the input
if not low_mem:
UpperCamelCase__ : str = _select_chunk
else:
UpperCamelCase__ : List[Any] = partial(
_chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , )
UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_)
# Run the layer on the chunk
UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_)
# Allocate space for the output
if out is None:
UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_)
# Put the chunk in its pre-allocated space
if isinstance(lowerCamelCase_ , lowerCamelCase_):
def assign(lowerCamelCase_ , lowerCamelCase_) -> None:
for k, v in da.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_):
assign(lowerCamelCase_ , da[k])
else:
if _add_into_out:
v[i : i + chunk_size] += da[k]
else:
UpperCamelCase__ : List[str] = da[k]
assign(lowerCamelCase_ , lowerCamelCase_)
elif isinstance(lowerCamelCase_ , lowerCamelCase_):
for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_):
if _add_into_out:
xa[i : i + chunk_size] += xa
else:
UpperCamelCase__ : int = xa
elif isinstance(lowerCamelCase_ , torch.Tensor):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
UpperCamelCase__ : Dict = output_chunk
else:
raise ValueError('Not supported')
i += chunk_size
UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_)
return out
class __lowercase :
def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ):
UpperCamelCase__ : str = max_chunk_size
UpperCamelCase__ : Optional[int] = None
UpperCamelCase__ : Optional[tuple] = None
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int):
logging.info('Tuning chunk size...')
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)]
UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size]
UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(UpperCAmelCase_ : int) -> bool:
try:
with torch.no_grad():
fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_)
return True
except RuntimeError:
return False
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1
while i > min_viable_chunk_size_index:
UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i])
if not viable:
UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2
else:
UpperCamelCase__ : Optional[int] = i
UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2
return candidates[min_viable_chunk_size_index]
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable):
UpperCamelCase__ : List[str] = True
for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_):
assert type(UpperCAmelCase_) == type(UpperCAmelCase_)
if isinstance(UpperCAmelCase_ , (list, tuple)):
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_)
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])]
UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])]
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_)
else:
consistent &= aa == aa
return consistent
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ):
UpperCamelCase__ : List[Any] = True
UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_)
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data) == len(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_)
else:
# Otherwise, we can reuse the precomputed value
UpperCamelCase__ : Optional[int] = False
if not consistent:
UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )
UpperCamelCase__ : Optional[Any] = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
| 6 | 0 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = '▁'
lowerCAmelCase__ = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
lowerCAmelCase__ = {
'facebook/s2t-small-librispeech-asr': 1024,
}
lowerCAmelCase__ = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
lowerCAmelCase__ = {'mustc': MUSTC_LANGS}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = MAX_MODEL_INPUT_SIZES
_lowerCamelCase = ['''input_ids''', '''attention_mask''']
_lowerCamelCase = []
def __init__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any="<s>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ):
UpperCamelCase__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , do_upper_case=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , lang_codes=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
UpperCamelCase__ : List[str] = do_upper_case
UpperCamelCase__ : Any = do_lower_case
UpperCamelCase__ : Dict = load_json(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()}
UpperCamelCase__ : int = spm_file
UpperCamelCase__ : List[str] = load_spm(UpperCAmelCase_ , self.sp_model_kwargs)
if lang_codes is not None:
UpperCamelCase__ : Union[str, Any] = lang_codes
UpperCamelCase__ : List[Any] = LANGUAGES[lang_codes]
UpperCamelCase__ : List[Any] = [F'<lang:{lang}>' for lang in self.langs]
UpperCamelCase__ : Union[str, Any] = {lang: self.sp_model.PieceToId(F'<lang:{lang}>') for lang in self.langs}
UpperCamelCase__ : int = self.lang_tokens
UpperCamelCase__ : List[Any] = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang)
else:
UpperCamelCase__ : int = {}
@property
def __UpperCamelCase ( self : List[Any]):
return len(self.encoder)
@property
def __UpperCamelCase ( self : Any):
return self._tgt_lang
@tgt_lang.setter
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Any):
UpperCamelCase__ : Optional[Any] = new_tgt_lang
self.set_tgt_lang_special_tokens(UpperCAmelCase_)
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str):
UpperCamelCase__ : List[Any] = self.lang_code_to_id[tgt_lang]
UpperCamelCase__ : Optional[int] = [lang_code_id]
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str):
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_)
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any]):
return self.encoder.get(UpperCAmelCase_ , self.encoder[self.unk_token])
def __UpperCamelCase ( self : str , UpperCAmelCase_ : int):
return self.decoder.get(UpperCAmelCase_ , self.unk_token)
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[str]):
UpperCamelCase__ : str = []
UpperCamelCase__ : int = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
UpperCamelCase__ : int = self.sp_model.decode(UpperCAmelCase_)
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
UpperCamelCase__ : Optional[Any] = []
else:
current_sub_tokens.append(UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.sp_model.decode(UpperCAmelCase_)
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=None):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = [1] * len(self.prefix_tokens)
UpperCamelCase__ : str = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(UpperCAmelCase_)) + suffix_ones
return prefix_ones + ([0] * len(UpperCAmelCase_)) + ([0] * len(UpperCAmelCase_)) + suffix_ones
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : List[Any] = self.encoder.copy()
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : str):
UpperCamelCase__ : int = self.__dict__.copy()
UpperCamelCase__ : Tuple = None
return state
def __setstate__( self : int , UpperCAmelCase_ : Dict):
UpperCamelCase__ : Optional[int] = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs'):
UpperCamelCase__ : Union[str, Any] = {}
UpperCamelCase__ : Any = load_spm(self.spm_file , self.sp_model_kwargs)
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None):
UpperCamelCase__ : List[Any] = Path(UpperCAmelCase_)
assert save_dir.is_dir(), F'{save_directory} should be a directory'
UpperCamelCase__ : Dict = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file']
)
UpperCamelCase__ : str = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file']
)
save_json(self.encoder , UpperCAmelCase_)
if os.path.abspath(self.spm_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.spm_file):
copyfile(self.spm_file , UpperCAmelCase_)
elif not os.path.isfile(self.spm_file):
with open(UpperCAmelCase_ , 'wb') as fi:
UpperCamelCase__ : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_)
return (str(UpperCAmelCase_), str(UpperCAmelCase_))
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> sentencepiece.SentencePieceProcessor:
UpperCamelCase__ : Any = sentencepiece.SentencePieceProcessor(**lowerCamelCase_)
spm.Load(str(lowerCamelCase_))
return spm
def __UpperCAmelCase ( lowerCamelCase_) -> Union[Dict, List]:
with open(lowerCamelCase_ , 'r') as f:
return json.load(lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None:
with open(lowerCamelCase_ , 'w') as f:
json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=2)
| 721 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : int = tempfile.mkdtemp()
# fmt: off
UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'}
UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as fp:
fp.write(json.dumps(UpperCAmelCase_) + '\n')
with open(self.merges_file , 'w' , encoding='utf-8') as fp:
fp.write('\n'.join(UpperCAmelCase_))
UpperCamelCase__ : Dict = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_)
with open(self.image_processor_file , 'w' , encoding='utf-8') as fp:
json.dump(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : str):
shutil.rmtree(self.tmpdirname)
def __UpperCamelCase ( self : Tuple):
UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Union[str, Any] = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer()
UpperCamelCase__ : Any = self.get_image_processor()
UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
processor_slow.save_pretrained(self.tmpdirname)
UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_)
UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
processor_fast.save_pretrained(self.tmpdirname)
UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_)
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_)
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_)
def __UpperCamelCase ( self : List[str]):
UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0)
UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , UpperCAmelCase_)
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Optional[Any] = self.get_image_processor()
UpperCamelCase__ : int = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : int = self.prepare_image_inputs()
UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np')
UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np')
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2)
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Optional[Any] = self.get_image_processor()
UpperCamelCase__ : Dict = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Any = 'lower newer'
UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Optional[int] = self.get_image_processor()
UpperCamelCase__ : List[str] = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'lower newer'
UpperCamelCase__ : List[Any] = self.prepare_image_inputs()
UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_)
self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values'])
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_):
processor()
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Any = self.get_image_processor()
UpperCamelCase__ : Dict = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : str):
UpperCamelCase__ : Union[str, Any] = self.get_image_processor()
UpperCamelCase__ : List[str] = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = 'lower newer'
UpperCamelCase__ : Optional[int] = self.prepare_image_inputs()
UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 6 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'microsoft/unispeech-large-1500h-cv': (
'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''unispeech'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Dict=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=1e-5 , UpperCAmelCase_ : Any="group" , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : int=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[Any]=128 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Tuple=10 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Tuple=320 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=100 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Dict=256 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : int="mean" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Tuple=256 , UpperCAmelCase_ : List[Any]=80 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : List[Any]=0.5 , **UpperCAmelCase_ : Dict , ):
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_)
UpperCamelCase__ : str = hidden_size
UpperCamelCase__ : Tuple = feat_extract_norm
UpperCamelCase__ : Any = feat_extract_activation
UpperCamelCase__ : Any = list(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = list(UpperCAmelCase_)
UpperCamelCase__ : int = list(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = conv_bias
UpperCamelCase__ : Union[str, Any] = num_conv_pos_embeddings
UpperCamelCase__ : str = num_conv_pos_embedding_groups
UpperCamelCase__ : Union[str, Any] = len(self.conv_dim)
UpperCamelCase__ : Any = num_hidden_layers
UpperCamelCase__ : Union[str, Any] = intermediate_size
UpperCamelCase__ : int = hidden_act
UpperCamelCase__ : List[str] = num_attention_heads
UpperCamelCase__ : str = hidden_dropout
UpperCamelCase__ : Optional[int] = attention_dropout
UpperCamelCase__ : List[str] = activation_dropout
UpperCamelCase__ : Any = feat_proj_dropout
UpperCamelCase__ : Any = final_dropout
UpperCamelCase__ : Union[str, Any] = layerdrop
UpperCamelCase__ : Tuple = layer_norm_eps
UpperCamelCase__ : Union[str, Any] = initializer_range
UpperCamelCase__ : Tuple = num_ctc_classes
UpperCamelCase__ : List[str] = vocab_size
UpperCamelCase__ : Optional[int] = do_stable_layer_norm
UpperCamelCase__ : List[Any] = use_weighted_layer_sum
UpperCamelCase__ : int = classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel)}`.')
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase__ : int = apply_spec_augment
UpperCamelCase__ : Tuple = mask_time_prob
UpperCamelCase__ : List[Any] = mask_time_length
UpperCamelCase__ : List[Any] = mask_time_min_masks
UpperCamelCase__ : List[Any] = mask_feature_prob
UpperCamelCase__ : Tuple = mask_feature_length
UpperCamelCase__ : int = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCamelCase__ : Dict = num_codevectors_per_group
UpperCamelCase__ : Tuple = num_codevector_groups
UpperCamelCase__ : List[Any] = contrastive_logits_temperature
UpperCamelCase__ : int = feat_quantizer_dropout
UpperCamelCase__ : Union[str, Any] = num_negatives
UpperCamelCase__ : List[str] = codevector_dim
UpperCamelCase__ : List[Any] = proj_codevector_dim
UpperCamelCase__ : Optional[Any] = diversity_loss_weight
# ctc loss
UpperCamelCase__ : Any = ctc_loss_reduction
UpperCamelCase__ : Optional[int] = ctc_zero_infinity
# pretraining loss
UpperCamelCase__ : List[Any] = replace_prob
@property
def __UpperCamelCase ( self : Any):
return functools.reduce(operator.mul , self.conv_stride , 1)
| 700 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None:
UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_)
for k, v in tqdm(state_dict.items()):
if not isinstance(lowerCamelCase_ , torch.Tensor):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin')
UpperCamelCase__ : int = v.half()
if save_path is None: # overwrite src_path
UpperCamelCase__ : List[Any] = src_path
torch.save(lowerCamelCase_ , lowerCamelCase_)
if __name__ == "__main__":
fire.Fire(convert)
| 6 | 0 |
'''simple docstring'''
import math
import sys
def __UpperCAmelCase ( lowerCamelCase_) -> int:
if number != int(lowerCamelCase_):
raise ValueError('the value of input must be a natural number')
if number < 0:
raise ValueError('the value of input must not be a negative number')
if number == 0:
return 1
UpperCamelCase__ : Optional[int] = [-1] * (number + 1)
UpperCamelCase__ : Any = 0
for i in range(1 , number + 1):
UpperCamelCase__ : Union[str, Any] = sys.maxsize
UpperCamelCase__ : List[str] = int(math.sqrt(lowerCamelCase_))
for j in range(1 , root + 1):
UpperCamelCase__ : str = 1 + answers[i - (j**2)]
UpperCamelCase__ : int = min(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : List[Any] = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 701 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'nvidia/segformer-b0-finetuned-ade-512-512': (
'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json'
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''segformer'''
def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ):
super().__init__(**UpperCAmelCase_)
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , )
UpperCamelCase__ : List[Any] = num_channels
UpperCamelCase__ : Any = num_encoder_blocks
UpperCamelCase__ : Dict = depths
UpperCamelCase__ : int = sr_ratios
UpperCamelCase__ : str = hidden_sizes
UpperCamelCase__ : List[str] = patch_sizes
UpperCamelCase__ : Optional[int] = strides
UpperCamelCase__ : Dict = mlp_ratios
UpperCamelCase__ : List[str] = num_attention_heads
UpperCamelCase__ : int = hidden_act
UpperCamelCase__ : Any = hidden_dropout_prob
UpperCamelCase__ : str = attention_probs_dropout_prob
UpperCamelCase__ : List[str] = classifier_dropout_prob
UpperCamelCase__ : List[Any] = initializer_range
UpperCamelCase__ : Union[str, Any] = drop_path_rate
UpperCamelCase__ : int = layer_norm_eps
UpperCamelCase__ : Dict = decoder_hidden_size
UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_)
UpperCamelCase__ : List[str] = semantic_loss_ignore_index
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self : Optional[Any]):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
])
@property
def __UpperCamelCase ( self : Optional[Any]):
return 1e-4
@property
def __UpperCamelCase ( self : Any):
return 12
| 6 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json',
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''efficientnet'''
def __init__( self : Any , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 600 , UpperCAmelCase_ : float = 2.0 , UpperCAmelCase_ : float = 3.1 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCAmelCase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCAmelCase_ : List[int] = [] , UpperCAmelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase_ : float = 0.25 , UpperCAmelCase_ : str = "swish" , UpperCAmelCase_ : int = 2_560 , UpperCAmelCase_ : str = "mean" , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 0.0_01 , UpperCAmelCase_ : float = 0.99 , UpperCAmelCase_ : float = 0.5 , UpperCAmelCase_ : float = 0.2 , **UpperCAmelCase_ : int , ):
super().__init__(**UpperCAmelCase_)
UpperCamelCase__ : Dict = num_channels
UpperCamelCase__ : List[str] = image_size
UpperCamelCase__ : List[str] = width_coefficient
UpperCamelCase__ : Union[str, Any] = depth_coefficient
UpperCamelCase__ : Tuple = depth_divisor
UpperCamelCase__ : Optional[Any] = kernel_sizes
UpperCamelCase__ : Optional[int] = in_channels
UpperCamelCase__ : Any = out_channels
UpperCamelCase__ : Union[str, Any] = depthwise_padding
UpperCamelCase__ : str = strides
UpperCamelCase__ : Any = num_block_repeats
UpperCamelCase__ : Any = expand_ratios
UpperCamelCase__ : Optional[Any] = squeeze_expansion_ratio
UpperCamelCase__ : Union[str, Any] = hidden_act
UpperCamelCase__ : Union[str, Any] = hidden_dim
UpperCamelCase__ : List[str] = pooling_type
UpperCamelCase__ : List[Any] = initializer_range
UpperCamelCase__ : int = batch_norm_eps
UpperCamelCase__ : List[Any] = batch_norm_momentum
UpperCamelCase__ : Optional[int] = dropout_rate
UpperCamelCase__ : Optional[Any] = drop_connect_rate
UpperCamelCase__ : Union[str, Any] = sum(UpperCAmelCase_) * 4
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self : Tuple):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
])
@property
def __UpperCamelCase ( self : List[Any]):
return 1e-5
| 702 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]:
return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 6 | 0 |
'''simple docstring'''
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowerCAmelCase__ = None
lowerCAmelCase__ = '<' if sys.byteorder == 'little' else '>'
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowerCAmelCase__ = [
np.dtype('|b1'),
np.dtype('|u1'),
np.dtype('<u2'),
np.dtype('>u2'),
np.dtype('<i2'),
np.dtype('>i2'),
np.dtype('<u4'),
np.dtype('>u4'),
np.dtype('<i4'),
np.dtype('>i4'),
np.dtype('<f4'),
np.dtype('>f4'),
np.dtype('<f8'),
np.dtype('>f8'),
]
@dataclass
class __lowercase :
_lowerCamelCase = True
_lowerCamelCase = None
# Automatically constructed
_lowerCamelCase = '''PIL.Image.Image'''
_lowerCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} )
_lowerCamelCase = field(default='''Image''' , init=__lowerCamelCase , repr=__lowerCamelCase )
def __call__( self : Union[str, Any]):
return self.pa_type
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support encoding images, please install \'Pillow\'.')
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
UpperCamelCase__ : int = np.array(UpperCAmelCase_)
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
return {"path": value, "bytes": None}
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
return {"path": None, "bytes": value}
elif isinstance(UpperCAmelCase_ , np.ndarray):
# convert the image array to PNG/TIFF bytes
return encode_np_array(UpperCAmelCase_)
elif isinstance(UpperCAmelCase_ , PIL.Image.Image):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(UpperCAmelCase_)
elif value.get('path') is not None and os.path.isfile(value['path']):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get('path')}
elif value.get('bytes') is not None or value.get('path') is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get('bytes'), "path": value.get('path')}
else:
raise ValueError(
F'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.')
def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : dict , UpperCAmelCase_ : int=None):
if not self.decode:
raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.')
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support decoding images, please install \'Pillow\'.')
if token_per_repo_id is None:
UpperCamelCase__ : int = {}
UpperCamelCase__ : int = value['path'], value['bytes']
if bytes_ is None:
if path is None:
raise ValueError(F'An image should have one of \'path\' or \'bytes\' but both are None in {value}.')
else:
if is_local_path(UpperCAmelCase_):
UpperCamelCase__ : int = PIL.Image.open(UpperCAmelCase_)
else:
UpperCamelCase__ : str = path.split('::')[-1]
try:
UpperCamelCase__ : Union[str, Any] = string_to_dict(UpperCAmelCase_ , config.HUB_DATASETS_URL)['repo_id']
UpperCamelCase__ : Optional[Any] = token_per_repo_id.get(UpperCAmelCase_)
except ValueError:
UpperCamelCase__ : Any = None
with xopen(UpperCAmelCase_ , 'rb' , use_auth_token=UpperCAmelCase_) as f:
UpperCamelCase__ : Optional[int] = BytesIO(f.read())
UpperCamelCase__ : Tuple = PIL.Image.open(bytes_)
else:
UpperCamelCase__ : List[Any] = PIL.Image.open(BytesIO(bytes_))
image.load() # to avoid "Too many open files" errors
return image
def __UpperCamelCase ( self : List[str]):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value('binary'),
"path": Value('string'),
}
)
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray]):
if pa.types.is_string(storage.type):
UpperCamelCase__ : Dict = pa.array([None] * len(UpperCAmelCase_) , type=pa.binary())
UpperCamelCase__ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null())
elif pa.types.is_binary(storage.type):
UpperCamelCase__ : Tuple = pa.array([None] * len(UpperCAmelCase_) , type=pa.string())
UpperCamelCase__ : Optional[int] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null())
elif pa.types.is_struct(storage.type):
if storage.type.get_field_index('bytes') >= 0:
UpperCamelCase__ : Tuple = storage.field('bytes')
else:
UpperCamelCase__ : Tuple = pa.array([None] * len(UpperCAmelCase_) , type=pa.binary())
if storage.type.get_field_index('path') >= 0:
UpperCamelCase__ : int = storage.field('path')
else:
UpperCamelCase__ : List[str] = pa.array([None] * len(UpperCAmelCase_) , type=pa.string())
UpperCamelCase__ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null())
elif pa.types.is_list(storage.type):
UpperCamelCase__ : Optional[Any] = pa.array(
[encode_np_array(np.array(UpperCAmelCase_))['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
UpperCamelCase__ : Optional[Any] = pa.array([None] * len(UpperCAmelCase_) , type=pa.string())
UpperCamelCase__ : Optional[int] = pa.StructArray.from_arrays(
[bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null())
return array_cast(UpperCAmelCase_ , self.pa_type)
def __UpperCamelCase ( self : str , UpperCAmelCase_ : pa.StructArray):
@no_op_if_value_is_null
def path_to_bytes(UpperCAmelCase_ : int):
with xopen(UpperCAmelCase_ , 'rb') as f:
UpperCamelCase__ : List[str] = f.read()
return bytes_
UpperCamelCase__ : Optional[Any] = pa.array(
[
(path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
UpperCamelCase__ : List[Any] = pa.array(
[os.path.basename(UpperCAmelCase_) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , )
UpperCamelCase__ : str = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null())
return array_cast(UpperCAmelCase_ , self.pa_type)
def __UpperCAmelCase ( ) -> List[str]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support encoding images, please install \'Pillow\'.')
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
UpperCamelCase__ : Tuple = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys()))
return _IMAGE_COMPRESSION_FORMATS
def __UpperCAmelCase ( lowerCamelCase_) -> bytes:
UpperCamelCase__ : List[Any] = BytesIO()
if image.format in list_image_compression_formats():
UpperCamelCase__ : Dict = image.format
else:
UpperCamelCase__ : List[str] = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF'
image.save(lowerCamelCase_ , format=lowerCamelCase_)
return buffer.getvalue()
def __UpperCAmelCase ( lowerCamelCase_) -> dict:
if hasattr(lowerCamelCase_ , 'filename') and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(lowerCamelCase_)}
def __UpperCAmelCase ( lowerCamelCase_) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support encoding images, please install \'Pillow\'.')
UpperCamelCase__ : List[Any] = array.dtype
UpperCamelCase__ : Union[str, Any] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER
UpperCamelCase__ : Optional[int] = dtype.kind
UpperCamelCase__ : int = dtype.itemsize
UpperCamelCase__ : List[str] = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
UpperCamelCase__ : Union[str, Any] = np.dtype('|u1')
if dtype_kind not in ["u", "i"]:
raise TypeError(
f'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.')
if dtype is not dest_dtype:
warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'')
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
UpperCamelCase__ : Union[str, Any] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
UpperCamelCase__ : List[str] = dtype_byteorder + dtype_kind + str(lowerCamelCase_)
UpperCamelCase__ : Any = np.dtype(lowerCamelCase_)
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'')
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
f'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}')
UpperCamelCase__ : Optional[int] = PIL.Image.fromarray(array.astype(lowerCamelCase_))
return {"path": None, "bytes": image_to_bytes(lowerCamelCase_)}
def __UpperCAmelCase ( lowerCamelCase_) -> List[dict]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support encoding images, please install \'Pillow\'.')
if objs:
UpperCamelCase__ : str = first_non_null_value(lowerCamelCase_)
if isinstance(lowerCamelCase_ , lowerCamelCase_):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(lowerCamelCase_ , np.ndarray):
UpperCamelCase__ : List[str] = no_op_if_value_is_null(lowerCamelCase_)
return [obj_to_image_dict_func(lowerCamelCase_) for obj in objs]
elif isinstance(lowerCamelCase_ , PIL.Image.Image):
UpperCamelCase__ : Union[str, Any] = no_op_if_value_is_null(lowerCamelCase_)
return [obj_to_image_dict_func(lowerCamelCase_) for obj in objs]
else:
return objs
else:
return objs
| 703 |
'''simple docstring'''
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def __UpperCAmelCase ( lowerCamelCase_) -> float:
return np.dot(lowerCamelCase_ , lowerCamelCase_)
class __lowercase :
def __init__( self : Tuple , *,
UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ):
UpperCamelCase__ : Union[str, Any] = regularization
UpperCamelCase__ : Optional[int] = gamma
if kernel == "linear":
UpperCamelCase__ : List[str] = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('rbf kernel requires gamma')
if not isinstance(self.gamma , (float, int)):
raise ValueError('gamma must be float or int')
if not self.gamma > 0:
raise ValueError('gamma must be > 0')
UpperCamelCase__ : Union[str, Any] = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}'
raise ValueError(UpperCAmelCase_)
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray):
return np.dot(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray):
return np.exp(-(self.gamma * norm_squared(vectora - vectora)))
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray):
UpperCamelCase__ : Any = observations
UpperCamelCase__ : Tuple = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_)
def to_minimize(UpperCAmelCase_ : ndarray) -> float:
UpperCamelCase__ : Union[str, Any] = 0
((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_)
for i in range(UpperCAmelCase_):
for j in range(UpperCAmelCase_):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j])
)
return 1 / 2 * s - sum(UpperCAmelCase_)
UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0)
UpperCamelCase__ : Dict = Bounds(0 , self.regularization)
UpperCamelCase__ : Any = minimize(
UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x
UpperCamelCase__ : str = l_star
# calculating mean offset of separation plane to points
UpperCamelCase__ : Any = 0
for i in range(UpperCAmelCase_):
for j in range(UpperCAmelCase_):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j])
UpperCamelCase__ : List[str] = s / n
def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray):
UpperCamelCase__ : Optional[int] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , UpperCAmelCase_)
for n in range(len(self.classes)))
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
'The `image_to_image.py` script is outdated. Please use directly `from diffusers import'
' StableDiffusionImg2ImgPipeline` instead.'
)
| 704 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def __UpperCAmelCase ( lowerCamelCase_) -> Any:
UpperCamelCase__ : Dict = DPTConfig()
if "large" in checkpoint_url:
UpperCamelCase__ : List[str] = 1_024
UpperCamelCase__ : List[str] = 4_096
UpperCamelCase__ : Optional[int] = 24
UpperCamelCase__ : List[str] = 16
UpperCamelCase__ : List[str] = [5, 11, 17, 23]
UpperCamelCase__ : str = [256, 512, 1_024, 1_024]
UpperCamelCase__ : Union[str, Any] = (1, 384, 384)
if "ade" in checkpoint_url:
UpperCamelCase__ : int = True
UpperCamelCase__ : Optional[Any] = 150
UpperCamelCase__ : int = 'huggingface/label-files'
UpperCamelCase__ : List[Any] = 'ade20k-id2label.json'
UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r'))
UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()}
UpperCamelCase__ : Union[str, Any] = idalabel
UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()}
UpperCamelCase__ : Any = [1, 150, 480, 480]
return config, expected_shape
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias']
for k in ignore_keys:
state_dict.pop(lowerCamelCase_ , lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder')
if "pretrained.model" in name:
UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings')
if "patch_embed" in name:
UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings')
if "pos_embed" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings')
if "attn.proj" in name:
UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense')
if "proj" in name and "project" not in name:
UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection')
if "blocks" in name:
UpperCamelCase__ : int = name.replace('blocks' , 'layer')
if "mlp.fc1" in name:
UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense')
if "mlp.fc2" in name:
UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense')
if "norm1" in name:
UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before')
if "norm2" in name:
UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after')
if "scratch.output_conv" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head')
if "scratch" in name:
UpperCamelCase__ : int = name.replace('scratch' , 'neck')
if "layer1_rn" in name:
UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0')
if "layer2_rn" in name:
UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1')
if "layer3_rn" in name:
UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2')
if "layer4_rn" in name:
UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3')
if "refinenet" in name:
UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}')
if "out_conv" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection')
if "resConfUnit1" in name:
UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1')
if "resConfUnit2" in name:
UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2')
if "conv1" in name:
UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1')
if "conv2" in name:
UpperCamelCase__ : int = name.replace('conv2' , 'convolution2')
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0')
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0')
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0')
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0')
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection')
if "pretrained.act_postprocess1.4" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize')
if "pretrained.act_postprocess2.3" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection')
if "pretrained.act_postprocess2.4" in name:
UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize')
if "pretrained.act_postprocess3.3" in name:
UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection')
if "pretrained.act_postprocess4.3" in name:
UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection')
if "pretrained.act_postprocess4.4" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize')
if "pretrained" in name:
UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt')
if "bn" in name:
UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm')
if "head" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head')
if "encoder.norm" in name:
UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm')
if "auxlayer" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head')
return name
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any:
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight')
UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias')
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :]
UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size]
UpperCamelCase__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCamelCase__ : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCamelCase__ : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :]
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw)
return im
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict:
UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_)
# load original state_dict from URL
UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu')
# remove certain keys
remove_ignore_keys_(lowerCamelCase_)
# rename keys
for key in state_dict.copy().keys():
UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_)
UpperCamelCase__ : List[str] = val
# read in qkv matrices
read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_)
# load HuggingFace model
UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_)
model.load_state_dict(lowerCamelCase_)
model.eval()
# Check outputs on an image
UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384
UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_)
UpperCamelCase__ : int = prepare_img()
UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt')
# forward pass
UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth
# Assert logits
UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]])
if "ade" in checkpoint_url:
UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]])
assert outputs.shape == torch.Size(lowerCamelCase_)
assert (
torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_)
)
Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_)
print(f'Saving model to {pytorch_dump_folder_path}')
model.save_pretrained(lowerCamelCase_)
print(f'Saving image processor to {pytorch_dump_folder_path}')
image_processor.save_pretrained(lowerCamelCase_)
if push_to_hub:
print('Pushing model to hub...')
model.push_to_hub(
repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
lowerCAmelCase__ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 6 | 0 |
'''simple docstring'''
import argparse
import datetime
def __UpperCAmelCase ( lowerCamelCase_) -> str:
UpperCamelCase__ : int = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
UpperCamelCase__ : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowerCamelCase_) < 11:
raise ValueError('Must be 10 characters long')
# Get month
UpperCamelCase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12')
UpperCamelCase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get day
UpperCamelCase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31')
# Get second separator
UpperCamelCase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get year
UpperCamelCase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8_500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?')
# Get datetime obj for validation
UpperCamelCase__ : int = datetime.date(int(lowerCamelCase_) , int(lowerCamelCase_) , int(lowerCamelCase_))
# Start math
if m <= 2:
UpperCamelCase__ : int = y - 1
UpperCamelCase__ : List[Any] = m + 12
# maths var
UpperCamelCase__ : int = int(str(lowerCamelCase_)[:2])
UpperCamelCase__ : int = int(str(lowerCamelCase_)[2:])
UpperCamelCase__ : int = int(2.6 * m - 5.39)
UpperCamelCase__ : int = int(c / 4)
UpperCamelCase__ : int = int(k / 4)
UpperCamelCase__ : int = int(d + k)
UpperCamelCase__ : int = int(t + u + v + x)
UpperCamelCase__ : int = int(z - (2 * c))
UpperCamelCase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.')
# Response
UpperCamelCase__ : str = f'Your date {date_input}, is a {days[str(lowerCamelCase_)]}!'
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
lowerCAmelCase__ = parser.parse_args()
zeller(args.date_input)
| 705 |
'''simple docstring'''
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowercase :
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ):
UpperCamelCase__ : Tuple = parent
UpperCamelCase__ : List[str] = batch_size
UpperCamelCase__ : Optional[Any] = image_size
UpperCamelCase__ : Optional[Any] = patch_size
UpperCamelCase__ : List[str] = num_channels
UpperCamelCase__ : Union[str, Any] = is_training
UpperCamelCase__ : int = use_labels
UpperCamelCase__ : Optional[int] = hidden_size
UpperCamelCase__ : Any = num_hidden_layers
UpperCamelCase__ : str = num_attention_heads
UpperCamelCase__ : str = intermediate_size
UpperCamelCase__ : Union[str, Any] = hidden_act
UpperCamelCase__ : Optional[int] = hidden_dropout_prob
UpperCamelCase__ : Tuple = attention_probs_dropout_prob
UpperCamelCase__ : Any = type_sequence_label_size
UpperCamelCase__ : int = initializer_range
UpperCamelCase__ : Optional[int] = mask_ratio
UpperCamelCase__ : int = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCamelCase__ : str = (image_size // patch_size) ** 2
UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1)))
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCamelCase__ : List[str] = None
if self.use_labels:
UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCamelCase__ : Any = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self : List[Any]):
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]):
UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple):
UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Dict = model(UpperCAmelCase_)
UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2
UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels))
# test greyscale images
UpperCamelCase__ : List[Any] = 1
UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels))
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : List[str] = self.prepare_config_and_inputs()
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs
UpperCamelCase__ : Any = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
_lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
_lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {}
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : List[str] = ViTMAEModelTester(self)
UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37)
def __UpperCamelCase ( self : Any):
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds')
def __UpperCamelCase ( self : Tuple):
pass
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
UpperCamelCase__ : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear))
def __UpperCamelCase ( self : List[str]):
UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_)
UpperCamelCase__ : int = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ : Any = [*signature.parameters.keys()]
UpperCamelCase__ : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_)
def __UpperCamelCase ( self : str):
UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]):
# make masks reproducible
np.random.seed(2)
UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2)
UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_)
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCamelCase__ : List[str] = pt_noise
super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_))
UpperCamelCase__ : Dict = outputs[0].cpu().numpy()
UpperCamelCase__ : Optional[int] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_)
model.to(UpperCAmelCase_)
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_))
# Make sure we don't have nans
UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy()
UpperCamelCase__ : Any = 0
UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a))
self.assertLessEqual(UpperCAmelCase_ , 1e-5)
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def __UpperCamelCase ( self : Tuple):
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def __UpperCamelCase ( self : Optional[int]):
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def __UpperCamelCase ( self : Tuple):
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load')
def __UpperCamelCase ( self : Tuple):
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.')
def __UpperCamelCase ( self : Optional[int]):
pass
@slow
def __UpperCamelCase ( self : Optional[Any]):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self : int):
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None
@slow
def __UpperCamelCase ( self : str):
# make random mask reproducible across the PT and TF model
np.random.seed(2)
UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.default_image_processor
UpperCamelCase__ : Dict = prepare_img()
UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_)
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCamelCase__ : Union[str, Any] = ViTMAEConfig()
UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2)
UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches))
# forward pass
with torch.no_grad():
UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_))
# verify the logits
UpperCamelCase__ : Tuple = torch.Size((1, 196, 768))
self.assertEqual(outputs.logits.shape , UpperCAmelCase_)
UpperCamelCase__ : Any = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]])
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
| 6 | 0 |
'''simple docstring'''
from pathlib import Path
import fire
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
UpperCamelCase__ : List[str] = Path(lowerCamelCase_)
UpperCamelCase__ : Any = Path(lowerCamelCase_)
dest_dir.mkdir(exist_ok=lowerCamelCase_)
for path in src_dir.iterdir():
UpperCamelCase__ : List[str] = [x.rstrip() for x in list(path.open().readlines())][:n]
UpperCamelCase__ : Optional[Any] = dest_dir.joinpath(path.name)
print(lowerCamelCase_)
dest_path.open('w').write('\n'.join(lowerCamelCase_))
if __name__ == "__main__":
fire.Fire(minify)
| 706 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __lowercase (metaclass=__lowerCamelCase ):
_lowerCamelCase = ['''torch''', '''scipy''']
def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int):
requires_backends(self , ['torch', 'scipy'])
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]):
requires_backends(cls , ['torch', 'scipy'])
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any):
requires_backends(cls , ['torch', 'scipy'])
| 6 | 0 |
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase__ = {
'tokenizer_file': {
'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json',
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json',
},
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = ['''input_ids''', '''attention_mask''']
_lowerCamelCase = None
def __init__( self : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]="<unk>" , UpperCAmelCase_ : Union[str, Any]="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Tuple="<pad>" , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[int]=False , **UpperCAmelCase_ : int , ):
super().__init__(
UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , )
UpperCamelCase__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('add_prefix_space' , UpperCAmelCase_) != add_prefix_space:
UpperCamelCase__ : List[str] = getattr(UpperCAmelCase_ , pre_tok_state.pop('type'))
UpperCamelCase__ : int = add_prefix_space
UpperCamelCase__ : List[str] = pre_tok_class(**UpperCAmelCase_)
UpperCamelCase__ : List[str] = add_prefix_space
def __UpperCamelCase ( self : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple):
UpperCamelCase__ : int = kwargs.get('is_split_into_words' , UpperCAmelCase_)
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'
' pretokenized inputs.')
return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict):
UpperCamelCase__ : Any = kwargs.get('is_split_into_words' , UpperCAmelCase_)
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'
' pretokenized inputs.')
return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None):
UpperCamelCase__ : Any = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : "Conversation"):
UpperCamelCase__ : str = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) + [self.eos_token_id])
if len(UpperCAmelCase_) > self.model_max_length:
UpperCamelCase__ : Tuple = input_ids[-self.model_max_length :]
return input_ids | 707 |
'''simple docstring'''
class __lowercase :
def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False):
# Mapping from the first character of the prefix of the node
UpperCamelCase__ : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
UpperCamelCase__ : List[Any] = is_leaf
UpperCamelCase__ : Optional[Any] = prefix
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str):
UpperCamelCase__ : Optional[int] = 0
for q, w in zip(self.prefix , UpperCAmelCase_):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]):
for word in words:
self.insert(UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str):
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
UpperCamelCase__ : Optional[Any] = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_)
else:
UpperCamelCase__ : int = self.nodes[word[0]]
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match(
UpperCAmelCase_)
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(UpperCAmelCase_)
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
UpperCamelCase__ : Tuple = remaining_prefix
UpperCamelCase__ : str = self.nodes[matching_string[0]]
UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_)
UpperCamelCase__ : str = aux_node
if remaining_word == "":
UpperCamelCase__ : int = True
else:
self.nodes[matching_string[0]].insert(UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str):
UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_)
if not incoming_node:
return False
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match(
UpperCAmelCase_)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(UpperCAmelCase_)
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str):
UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_)
if not incoming_node:
return False
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match(
UpperCAmelCase_)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(UpperCAmelCase_)
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
UpperCamelCase__ : List[str] = list(self.nodes.values())[0]
UpperCamelCase__ : Tuple = merging_node.is_leaf
self.prefix += merging_node.prefix
UpperCamelCase__ : Tuple = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes) > 1:
UpperCamelCase__ : str = False
# If there is 1 edge, we merge it with its child
else:
UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0]
UpperCamelCase__ : Optional[Any] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
UpperCamelCase__ : Union[str, Any] = merging_node.nodes
return True
def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0):
if self.prefix != "":
print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '')
for value in self.nodes.values():
value.print_tree(height + 1)
def __UpperCAmelCase ( ) -> bool:
UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split()
UpperCamelCase__ : List[Any] = RadixNode()
root.insert_many(lowerCamelCase_)
assert all(root.find(lowerCamelCase_) for word in words)
assert not root.find('bandanas')
assert not root.find('apps')
root.delete('all')
assert not root.find('all')
root.delete('banana')
assert not root.find('banana')
assert root.find('bananas')
return True
def __UpperCAmelCase ( ) -> None:
assert test_trie()
def __UpperCAmelCase ( ) -> None:
UpperCamelCase__ : List[Any] = RadixNode()
UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split()
root.insert_many(lowerCamelCase_)
print('Words:' , lowerCamelCase_)
print('Tree:')
root.print_tree()
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1_337 , num_examples=42 , dataset_name='my_dataset')}),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1_337 , num_examples=42)}),
SplitDict({'train': SplitInfo()}),
] , )
def __UpperCAmelCase ( lowerCamelCase_) -> List[str]:
UpperCamelCase__ : Any = split_dict._to_yaml_list()
assert len(lowerCamelCase_) == len(lowerCamelCase_)
UpperCamelCase__ : Union[str, Any] = SplitDict._from_yaml_list(lowerCamelCase_)
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
UpperCamelCase__ : Dict = None
# the split name of split_dict takes over the name of the split info object
UpperCamelCase__ : List[str] = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=lowerCamelCase_), SplitInfo(dataset_name='my_dataset')])
def __UpperCAmelCase ( lowerCamelCase_) -> Any:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
UpperCamelCase__ : List[str] = asdict(SplitDict({'train': split_info}))
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 708 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase__ = False
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Optional[Any]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __UpperCamelCase ( self : int):
return 12
@property
def __UpperCamelCase ( self : Tuple):
return 12
@property
def __UpperCamelCase ( self : Dict):
return 32
@property
def __UpperCamelCase ( self : Optional[int]):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
return tokenizer
@property
def __UpperCamelCase ( self : List[str]):
torch.manual_seed(0)
UpperCamelCase__ : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Optional[int]):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = 12
UpperCamelCase__ : Dict = 12
UpperCamelCase__ : Union[str, Any] = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_)
return model
def __UpperCamelCase ( self : int):
UpperCamelCase__ : List[Any] = 'cpu'
UpperCamelCase__ : List[str] = self.dummy_vqvae
UpperCamelCase__ : List[str] = self.dummy_text_encoder
UpperCamelCase__ : Optional[int] = self.dummy_tokenizer
UpperCamelCase__ : List[str] = self.dummy_transformer
UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed)
UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_)
UpperCamelCase__ : int = VQDiffusionPipeline(
vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , )
UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool'
UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : Optional[Any] = output.images
UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Any = pipe(
[prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0]
UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Optional[int] = 'cpu'
UpperCamelCase__ : str = self.dummy_vqvae
UpperCamelCase__ : Any = self.dummy_text_encoder
UpperCamelCase__ : List[Any] = self.dummy_tokenizer
UpperCamelCase__ : Dict = self.dummy_transformer
UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed)
UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings(
learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length)
UpperCamelCase__ : str = VQDiffusionPipeline(
vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , )
UpperCamelCase__ : str = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool'
UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : int = output.images
UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Optional[Any] = pipe(
[prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0]
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88])
assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Any):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Optional[Any] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy')
UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq')
UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_)
pipeline.set_progress_bar_config(disable=UpperCAmelCase_)
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : int = pipeline(
'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , )
UpperCamelCase__ : int = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).max() < 2.0
| 6 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def __UpperCAmelCase ( lowerCamelCase_) -> str:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
UpperCamelCase__ : Union[str, Any] = k.replace(lowerCamelCase_ , lowerCamelCase_)
if k.startswith('encoder'):
UpperCamelCase__ : Any = k.replace('.attn' , '.self_attn')
UpperCamelCase__ : Optional[Any] = k.replace('norm1' , 'self_attn_layer_norm')
UpperCamelCase__ : List[Any] = k.replace('norm2' , 'final_layer_norm')
elif k.startswith('decoder'):
UpperCamelCase__ : int = k.replace('norm1' , 'self_attn_layer_norm')
UpperCamelCase__ : List[Any] = k.replace('norm2' , 'encoder_attn_layer_norm')
UpperCamelCase__ : List[Any] = k.replace('norm3' , 'final_layer_norm')
return k
def __UpperCAmelCase ( lowerCamelCase_) -> int:
UpperCamelCase__ : Tuple = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
UpperCamelCase__ : Optional[int] = sd.pop(lowerCamelCase_)
UpperCamelCase__ : List[str] = k.replace('layernorm_embedding' , 'layer_norm')
assert new_k not in sd
UpperCamelCase__ : Union[str, Any] = v
lowerCAmelCase__ = ['START']
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]:
UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location='cpu')
UpperCamelCase__ : int = model['model']
UpperCamelCase__ : Optional[int] = BlenderbotConfig.from_json_file(lowerCamelCase_)
UpperCamelCase__ : Dict = BlenderbotForConditionalGeneration(lowerCamelCase_)
UpperCamelCase__ : int = m.model.state_dict().keys()
UpperCamelCase__ : Tuple = []
UpperCamelCase__ : Tuple = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
UpperCamelCase__ : List[Any] = rename_state_dict_key(lowerCamelCase_)
if new_k not in valid_keys:
failures.append([k, new_k])
else:
UpperCamelCase__ : Dict = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowerCamelCase_)
m.model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_)
m.half()
m.save_pretrained(lowerCamelCase_)
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowerCAmelCase__ = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 709 |
'''simple docstring'''
import numpy as np
from PIL import Image
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray:
UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : int = 0
UpperCamelCase__ : Optional[int] = 0
UpperCamelCase__ : str = 0
# compute the shape of the output matrix
UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape))
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size])
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : Optional[int] = 0
return updated_arr
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray:
UpperCamelCase__ : Tuple = np.array(lowerCamelCase_)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
UpperCamelCase__ : Optional[int] = 0
UpperCamelCase__ : int = 0
UpperCamelCase__ : List[str] = 0
UpperCamelCase__ : List[Any] = 0
# compute the shape of the output matrix
UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape))
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size]))
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ : Union[str, Any] = 0
UpperCamelCase__ : Optional[Any] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='avgpooling', verbose=True)
# Loading the image
lowerCAmelCase__ = Image.open('path_to_image')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 6 | 0 |
from __future__ import annotations
def __UpperCAmelCase ( lowerCamelCase_) -> None:
create_state_space_tree(lowerCamelCase_ , [] , 0 , [0 for i in range(len(lowerCamelCase_))])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> None:
if index == len(lowerCamelCase_):
print(lowerCamelCase_)
return
for i in range(len(lowerCamelCase_)):
if not index_used[i]:
current_sequence.append(sequence[i])
UpperCamelCase__ : List[str] = True
create_state_space_tree(lowerCamelCase_ , lowerCamelCase_ , index + 1 , lowerCamelCase_)
current_sequence.pop()
UpperCamelCase__ : Dict = False
lowerCAmelCase__ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase__ = ['A', 'B', 'C']
generate_all_permutations(sequence_a)
| 710 |
'''simple docstring'''
from __future__ import annotations
class __lowercase :
def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]):
UpperCamelCase__ : int = TypeError(
'Matrices must be formed from a list of zero or more lists containing at '
'least one and the same number of values, each of which must be of type '
'int or float.')
if len(UpperCAmelCase_) != 0:
UpperCamelCase__ : str = len(rows[0])
if cols == 0:
raise error
for row in rows:
if len(UpperCAmelCase_) != cols:
raise error
for value in row:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise error
UpperCamelCase__ : Optional[int] = rows
else:
UpperCamelCase__ : Optional[Any] = []
def __UpperCamelCase ( self : Union[str, Any]):
return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))]
@property
def __UpperCamelCase ( self : Dict):
return len(self.rows)
@property
def __UpperCamelCase ( self : Tuple):
return len(self.rows[0])
@property
def __UpperCamelCase ( self : List[Any]):
return (self.num_rows, self.num_columns)
@property
def __UpperCamelCase ( self : Any):
return self.order[0] == self.order[1]
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Optional[int] = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows)]
for row_num in range(self.num_rows)
]
return Matrix(UpperCAmelCase_)
def __UpperCamelCase ( self : Dict):
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0])
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]))
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns))
def __UpperCamelCase ( self : str):
return bool(self.determinant())
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
UpperCamelCase__ : Optional[Any] = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns)
if other_column != column
]
for other_row in range(self.num_rows)
if other_row != row
]
return Matrix(UpperCAmelCase_).determinant()
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
if (row + column) % 2 == 0:
return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_)
return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : List[Any]):
return Matrix(
[
[self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)]
for row in range(self.num_rows)
])
def __UpperCamelCase ( self : Optional[int]):
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns)
]
for row in range(self.minors().num_rows)
])
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Dict = [
[self.cofactors().rows[column][row] for column in range(self.num_columns)]
for row in range(self.num_rows)
]
return Matrix(UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__ : List[Any] = self.determinant()
if not determinant:
raise TypeError('Only matrices with a non-zero determinant have an inverse')
return self.adjugate() * (1 / determinant)
def __repr__( self : Any):
return str(self.rows)
def __str__( self : List[Any]):
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0])) + "]]"
return (
"["
+ "\n ".join(
[
'[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]'
for row in self.rows
])
+ "]"
)
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None):
UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats')
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise type_error
for value in row:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise type_error
if len(UpperCAmelCase_) != self.num_columns:
raise ValueError(
'Row must be equal in length to the other rows in the matrix')
if position is None:
self.rows.append(UpperCAmelCase_)
else:
UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:]
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None):
UpperCamelCase__ : int = TypeError(
'Column must be a list containing all ints and/or floats')
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise type_error
for value in column:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise type_error
if len(UpperCAmelCase_) != self.num_rows:
raise ValueError(
'Column must be equal in length to the other columns in the matrix')
if position is None:
UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)]
else:
UpperCamelCase__ : str = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows)
]
def __eq__( self : List[Any] , UpperCAmelCase_ : object):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
return NotImplemented
return self.rows == other.rows
def __ne__( self : Any , UpperCAmelCase_ : object):
return not self == other
def __neg__( self : Union[str, Any]):
return self * -1
def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix):
if self.order != other.order:
raise ValueError('Addition requires matrices of the same order')
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
])
def __sub__( self : Tuple , UpperCAmelCase_ : Matrix):
if self.order != other.order:
raise ValueError('Subtraction requires matrices of the same order')
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
])
def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float):
if isinstance(UpperCAmelCase_ , (int, float)):
return Matrix(
[[int(element * other) for element in row] for row in self.rows])
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
if self.num_columns != other.num_rows:
raise ValueError(
'The number of columns in the first matrix must '
'be equal to the number of rows in the second')
return Matrix(
[
[Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()]
for row in self.rows
])
else:
raise TypeError(
'A Matrix can only be multiplied by an int, float, or another matrix')
def __pow__( self : Dict , UpperCAmelCase_ : int):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise TypeError('A Matrix can only be raised to the power of an int')
if not self.is_square:
raise ValueError('Only square matrices can be raised to a power')
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
'Only invertable matrices can be raised to a negative power')
UpperCamelCase__ : str = self
for _ in range(other - 1):
result *= self
return result
@classmethod
def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]):
return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
'''simple docstring'''
class __lowercase :
def __init__( self : Dict , UpperCAmelCase_ : int):
UpperCamelCase__ : str = n
UpperCamelCase__ : List[str] = [None] * self.n
UpperCamelCase__ : Optional[int] = 0 # index of the first element
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : Union[str, Any] = 0
def __len__( self : List[Any]):
return self.size
def __UpperCamelCase ( self : int):
return self.size == 0
def __UpperCamelCase ( self : Tuple):
return False if self.is_empty() else self.array[self.front]
def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple):
if self.size >= self.n:
raise Exception('QUEUE IS FULL')
UpperCamelCase__ : int = data
UpperCamelCase__ : Union[str, Any] = (self.rear + 1) % self.n
self.size += 1
return self
def __UpperCamelCase ( self : List[str]):
if self.size == 0:
raise Exception('UNDERFLOW')
UpperCamelCase__ : str = self.array[self.front]
UpperCamelCase__ : Optional[Any] = None
UpperCamelCase__ : str = (self.front + 1) % self.n
self.size -= 1
return temp
| 711 |
'''simple docstring'''
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class __lowercase :
def __UpperCamelCase ( self : Union[str, Any]):
torch.manual_seed(0)
UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : List[str] = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , )
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
UpperCamelCase__ : Optional[Any] = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __UpperCamelCase ( self : Dict):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Any = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
UpperCamelCase__ : str = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0)
UpperCamelCase__ : List[str] = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , )
torch.manual_seed(0)
UpperCamelCase__ : Optional[Any] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Dict = self.get_dummy_components()
UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_)
pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = inputs['prompt']
UpperCamelCase__ : List[Any] = inputs['generator']
UpperCamelCase__ : Tuple = inputs['num_inference_steps']
UpperCamelCase__ : List[Any] = inputs['output_type']
if "image" in inputs:
UpperCamelCase__ : Tuple = inputs['image']
else:
UpperCamelCase__ : Union[str, Any] = None
if "mask_image" in inputs:
UpperCamelCase__ : Optional[int] = inputs['mask_image']
else:
UpperCamelCase__ : int = None
if "original_image" in inputs:
UpperCamelCase__ : List[Any] = inputs['original_image']
else:
UpperCamelCase__ : Optional[Any] = None
UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_)
# inputs with prompt converted to embeddings
UpperCamelCase__ : List[Any] = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
UpperCamelCase__ : Dict = image
if mask_image is not None:
UpperCamelCase__ : Optional[int] = mask_image
if original_image is not None:
UpperCamelCase__ : Union[str, Any] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_)
pipe_loaded.to(UpperCAmelCase_)
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , )
UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = inputs['generator']
UpperCamelCase__ : List[Any] = inputs['num_inference_steps']
UpperCamelCase__ : Optional[int] = inputs['output_type']
# inputs with prompt converted to embeddings
UpperCamelCase__ : Any = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
UpperCamelCase__ : Tuple = image
if mask_image is not None:
UpperCamelCase__ : Union[str, Any] = mask_image
if original_image is not None:
UpperCamelCase__ : str = original_image
UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0]
UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max()
self.assertLess(UpperCAmelCase_ , 1e-4)
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Any = self.get_dummy_components()
UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_)
pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_)
pipe_loaded.to(UpperCAmelCase_)
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0]
UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max()
self.assertLess(UpperCAmelCase_ , 1e-4)
| 6 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''vit_mae'''
def __init__( self : List[Any] , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Dict=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : str=1e-12 , UpperCAmelCase_ : List[Any]=224 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : int=8 , UpperCAmelCase_ : Any=2_048 , UpperCAmelCase_ : List[Any]=0.75 , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : str , ):
super().__init__(**UpperCAmelCase_)
UpperCamelCase__ : Tuple = hidden_size
UpperCamelCase__ : Optional[int] = num_hidden_layers
UpperCamelCase__ : Optional[Any] = num_attention_heads
UpperCamelCase__ : List[str] = intermediate_size
UpperCamelCase__ : List[str] = hidden_act
UpperCamelCase__ : int = hidden_dropout_prob
UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob
UpperCamelCase__ : int = initializer_range
UpperCamelCase__ : Optional[Any] = layer_norm_eps
UpperCamelCase__ : Optional[int] = image_size
UpperCamelCase__ : List[Any] = patch_size
UpperCamelCase__ : str = num_channels
UpperCamelCase__ : Dict = qkv_bias
UpperCamelCase__ : Tuple = decoder_num_attention_heads
UpperCamelCase__ : int = decoder_hidden_size
UpperCamelCase__ : Any = decoder_num_hidden_layers
UpperCamelCase__ : Optional[int] = decoder_intermediate_size
UpperCamelCase__ : List[str] = mask_ratio
UpperCamelCase__ : Dict = norm_pix_loss
| 712 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
lowerCAmelCase__ = 3
def __UpperCAmelCase ( lowerCamelCase_) -> int:
print('Generating primitive root of p')
while True:
UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_)
if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1:
continue
if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1:
continue
return g
def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print('Generating prime p...')
UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number.
UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p.
UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety.
UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_)
UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p)
UpperCamelCase__ : Optional[Any] = (key_size, d)
return public_key, private_key
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None:
if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'):
print('\nWARNING:')
print(
f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
'Use a different name or delete these files and re-run this program.')
sys.exit()
UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_)
print(f'\nWriting public key to file {name}_pubkey.txt...')
with open(f'{name}_pubkey.txt' , 'w') as fo:
fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}')
print(f'Writing private key to file {name}_privkey.txt...')
with open(f'{name}_privkey.txt' , 'w') as fo:
fo.write(f'{private_key[0]},{private_key[1]}')
def __UpperCAmelCase ( ) -> None:
print('Making key files...')
make_key_files('elgamal' , 2_048)
print('Key files generation successful')
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> tuple[float, float]:
# Check if the input is valid
if not len(lowerCamelCase_) == len(lowerCamelCase_) == 3:
raise ValueError('Please enter a valid equation.')
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError('Both a & b of two equations can\'t be zero.')
# Extract the coefficients
UpperCamelCase__ : str = equationa
UpperCamelCase__ : List[Any] = equationa
# Calculate the determinants of the matrices
UpperCamelCase__ : Optional[int] = aa * ba - aa * ba
UpperCamelCase__ : Union[str, Any] = ca * ba - ca * ba
UpperCamelCase__ : Union[str, Any] = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError('Infinite solutions. (Consistent system)')
else:
raise ValueError('No solution. (Inconsistent system)')
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
UpperCamelCase__ : Tuple = determinant_x / determinant
UpperCamelCase__ : Optional[int] = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 713 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'ctc_proj',
'mask_emb': 'masked_spec_embed',
}
lowerCAmelCase__ = [
'ctc_proj',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str:
for attribute in key.split('.'):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
UpperCamelCase__ : str = 'lm_head'
UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_)
if weight_type is not None:
UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape
else:
UpperCamelCase__ : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
UpperCamelCase__ : Optional[Any] = value
elif weight_type == "weight_g":
UpperCamelCase__ : Union[str, Any] = value
elif weight_type == "weight_v":
UpperCamelCase__ : List[Any] = value
elif weight_type == "bias":
UpperCamelCase__ : Any = value
else:
UpperCamelCase__ : Optional[int] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.')
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]:
UpperCamelCase__ : List[Any] = []
UpperCamelCase__ : int = fairseq_model.state_dict()
UpperCamelCase__ : int = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase__ : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase__ : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]:
UpperCamelCase__ : Any = True
if "*" in mapped_key:
UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2]
UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_)
if "weight_g" in name:
UpperCamelCase__ : int = 'weight_g'
elif "weight_v" in name:
UpperCamelCase__ : Any = 'weight_v'
elif "bias" in name:
UpperCamelCase__ : Union[str, Any] = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase__ : Any = 'weight'
else:
UpperCamelCase__ : Tuple = None
set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
continue
if not is_used:
unused_weights.append(lowerCamelCase_)
logger.warning(f'Unused weights: {unused_weights}')
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1]
UpperCamelCase__ : List[Any] = name.split('.')
UpperCamelCase__ : Any = int(items[0])
UpperCamelCase__ : int = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
UpperCamelCase__ : Tuple = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
UpperCamelCase__ : int = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
UpperCamelCase__ : Optional[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
UpperCamelCase__ : List[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.')
else:
unused_weights.append(lowerCamelCase_)
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple:
if config_path is not None:
UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_)
else:
UpperCamelCase__ : int = UniSpeechConfig()
if is_finetuned:
if dict_path:
UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase__ : List[Any] = target_dict.pad_index
UpperCamelCase__ : Dict = target_dict.bos_index
UpperCamelCase__ : Union[str, Any] = target_dict.eos_index
UpperCamelCase__ : Tuple = len(target_dict.symbols)
UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json')
if not os.path.isdir(lowerCamelCase_):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_))
return
os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_)
UpperCamelCase__ : Optional[int] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase__ : Any = 42
UpperCamelCase__ : List[str] = 43
with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle:
json.dump(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer(
lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , )
UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , )
UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_)
processor.save_pretrained(lowerCamelCase_)
UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_)
else:
UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_)
if is_finetuned:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path})
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path])
UpperCamelCase__ : int = model[0].eval()
recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
hf_unispeech.save_pretrained(lowerCamelCase_)
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
lowerCAmelCase__ = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 6 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> list:
UpperCamelCase__ : Tuple = len(lowerCamelCase_)
UpperCamelCase__ : int = [[0] * n for i in range(lowerCamelCase_)]
for i in range(lowerCamelCase_):
UpperCamelCase__ : Dict = y_points[i]
for i in range(2 , lowerCamelCase_):
for j in range(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase__ : Tuple = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 714 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : List[str]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Union[str, Any] = 1
UpperCamelCase__ : Union[str, Any] = 3
UpperCamelCase__ : Dict = (32, 32)
UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_)
return image
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def __UpperCamelCase ( self : str):
torch.manual_seed(0)
UpperCamelCase__ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Optional[Any]):
def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict):
class __lowercase :
def __init__( self : List[Any]):
UpperCamelCase__ : Optional[Any] = torch.ones([0])
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int):
self.pixel_values.to(UpperCAmelCase_)
return self
return Out()
return extract
def __UpperCamelCase ( self : str):
UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ : Any = self.dummy_cond_unet
UpperCamelCase__ : Any = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , )
UpperCamelCase__ : List[str] = self.dummy_vae
UpperCamelCase__ : str = self.dummy_text_encoder
UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : Tuple = output.images
UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Tuple = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ : int = self.dummy_cond_unet
UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = self.dummy_vae
UpperCamelCase__ : Optional[int] = self.dummy_text_encoder
UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Dict = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : List[str] = output.images
UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Optional[Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1]
UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_)
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_)
assert isinstance(pipe.scheduler , UpperCAmelCase_)
assert pipe.safety_checker is None
UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU')
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Dict = self.dummy_cond_unet
UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_)
UpperCamelCase__ : Any = self.dummy_vae
UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder
UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# put models in fp16
UpperCamelCase__ : Any = unet.half()
UpperCamelCase__ : Tuple = vae.half()
UpperCamelCase__ : Optional[int] = bert.half()
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Optional[int] = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Optional[int]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = (
'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'
' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'
' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'
' children from bahnhof zoo, detailed '
)
UpperCamelCase__ : Any = 4_003_660_346
UpperCamelCase__ : Any = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : str = output.images
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# without safety guidance (strong configuration)
UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : str = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Dict = output.images
UpperCamelCase__ : str = image[0, -3:, -3:, -1]
UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_)
UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity'
UpperCamelCase__ : Tuple = 2_734_971_755
UpperCamelCase__ : Tuple = 7
UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : int = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : int = output.images
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Tuple = output.images
UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5')
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : int = (
'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'
' leyendecker'
)
UpperCamelCase__ : Any = 1_044_355_234
UpperCamelCase__ : Optional[int] = 12
UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : str = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : List[str] = output.images
UpperCamelCase__ : Any = image[0, -3:, -3:, -1]
UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7
UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : List[str] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Optional[Any] = output.images
UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 6 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@slow
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
model.to(UpperCAmelCase_)
from datasets import load_dataset
UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo')
UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB')
UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_)
# forward pass
with torch.no_grad():
UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_)
UpperCamelCase__ : Tuple = outputs.logits
UpperCamelCase__ : str = torch.Size((1, 16))
self.assertEqual(logits.shape , UpperCAmelCase_)
UpperCamelCase__ : Tuple = torch.tensor(
[-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
| 715 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
lowerCAmelCase__ = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
lowerCAmelCase__ = {'facebook/blenderbot-3B': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __UpperCAmelCase ( ) -> Union[str, Any]:
UpperCamelCase__ : Optional[Any] = (
list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1))
)
UpperCamelCase__ : List[Any] = bs[:]
UpperCamelCase__ : Optional[int] = 0
for b in range(2**8):
if b not in bs:
bs.append(lowerCamelCase_)
cs.append(2**8 + n)
n += 1
UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs]
return dict(zip(lowerCamelCase_ , lowerCamelCase_))
def __UpperCAmelCase ( lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Any = set()
UpperCamelCase__ : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
UpperCamelCase__ : str = char
return pairs
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ):
UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token
UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token
UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token
UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token
UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token
UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token
super().__init__(
errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , )
with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle:
UpperCamelCase__ : Any = json.load(UpperCAmelCase_)
UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()}
UpperCamelCase__ : Any = errors # how to handle errors in decoding
UpperCamelCase__ : Tuple = bytes_to_unicode()
UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle:
UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1]
UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges]
UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
UpperCamelCase__ : Dict = {}
UpperCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+')
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def __UpperCamelCase ( self : Tuple):
return len(self.encoder)
def __UpperCamelCase ( self : Tuple):
return dict(self.encoder , **self.added_tokens_encoder)
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]):
if token in self.cache:
return self.cache[token]
UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_)
UpperCamelCase__ : int = get_pairs(UpperCAmelCase_)
if not pairs:
return token
while True:
UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf')))
if bigram not in self.bpe_ranks:
break
UpperCamelCase__, UpperCamelCase__ : Tuple = bigram
UpperCamelCase__ : Dict = []
UpperCamelCase__ : Optional[int] = 0
while i < len(UpperCAmelCase_):
try:
UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
UpperCamelCase__ : Any = j
if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_)
UpperCamelCase__ : Dict = new_word
if len(UpperCAmelCase_) == 1:
break
else:
UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_)
UpperCamelCase__ : List[Any] = word
return word
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any):
UpperCamelCase__ : Optional[Any] = []
for token in re.findall(self.pat , UpperCAmelCase_):
UpperCamelCase__ : Optional[int] = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' '))
return bpe_tokens
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]):
return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token))
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]):
return self.decoder.get(UpperCAmelCase_)
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int):
UpperCamelCase__ : int = ''.join(UpperCAmelCase_)
UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors)
return text
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None):
if not os.path.isdir(UpperCAmelCase_):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
UpperCamelCase__ : str = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
UpperCamelCase__ : Optional[Any] = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n')
UpperCamelCase__ : str = 0
with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!')
UpperCamelCase__ : List[Any] = token_index
writer.write(' '.join(UpperCAmelCase_) + '\n')
index += 1
return vocab_file, merge_file
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase_)) + [1]
return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1]
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
UpperCamelCase__ : Any = [self.sep_token_id]
UpperCamelCase__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]):
UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()):
UpperCamelCase__ : str = ' ' + text
return (text, kwargs)
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
return token_ids_a + [self.eos_token_id]
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"):
UpperCamelCase__ : List[str] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text)
else:
# Generated responses should contain them already.
inputs.append(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_)
UpperCamelCase__ : int = self.encode(UpperCAmelCase_)
if len(UpperCAmelCase_) > self.model_max_length:
UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :]
logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.')
return input_ids
| 6 | 0 |
'''simple docstring'''
import os
def __UpperCAmelCase ( lowerCamelCase_ = "input.txt") -> int:
with open(os.path.join(os.path.dirname(lowerCamelCase_) , lowerCamelCase_)) as input_file:
UpperCamelCase__ : Tuple = [
[int(lowerCamelCase_) for element in line.split(',')]
for line in input_file.readlines()
]
UpperCamelCase__ : Union[str, Any] = len(lowerCamelCase_)
UpperCamelCase__ : str = len(matrix[0])
UpperCamelCase__ : str = [[-1 for _ in range(lowerCamelCase_)] for _ in range(lowerCamelCase_)]
for i in range(lowerCamelCase_):
UpperCamelCase__ : Dict = matrix[i][0]
for j in range(1 , lowerCamelCase_):
for i in range(lowerCamelCase_):
UpperCamelCase__ : List[Any] = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , lowerCamelCase_):
UpperCamelCase__ : Optional[int] = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j])
for i in range(rows - 2 , -1 , -1):
UpperCamelCase__ : List[Any] = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j])
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums)
if __name__ == "__main__":
print(f'''{solution() = }''')
| 716 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str:
UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser')
UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_).find('span').text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 6 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 717 |
'''simple docstring'''
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@slow
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
model.to(UpperCAmelCase_)
from datasets import load_dataset
UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo')
UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB')
UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_)
# forward pass
with torch.no_grad():
UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_)
UpperCamelCase__ : Tuple = outputs.logits
UpperCamelCase__ : str = torch.Size((1, 16))
self.assertEqual(logits.shape , UpperCAmelCase_)
UpperCamelCase__ : Tuple = torch.tensor(
[-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
| 6 | 0 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
lowerCAmelCase__ = logging.get_logger(__name__)
@dataclass
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__( self : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any]):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
UpperCamelCase__ : List[str] = deprecated_arg[3:]
UpperCamelCase__ : str = not kwargs.pop(UpperCAmelCase_)
logger.warning(
F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or'
F' {positive_arg}={kwargs[positive_arg]}')
UpperCamelCase__ : Optional[int] = kwargs.pop('tpu_name' , self.tpu_name)
UpperCamelCase__ : Union[str, Any] = kwargs.pop('device_idx' , self.device_idx)
UpperCamelCase__ : int = kwargs.pop('eager_mode' , self.eager_mode)
UpperCamelCase__ : str = kwargs.pop('use_xla' , self.use_xla)
super().__init__(**UpperCAmelCase_)
_lowerCamelCase = field(
default=__lowerCamelCase , metadata={'''help''': '''Name of TPU'''} , )
_lowerCamelCase = field(
default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , )
_lowerCamelCase = field(default=__lowerCamelCase , metadata={'''help''': '''Benchmark models in eager model.'''} )
_lowerCamelCase = field(
default=__lowerCamelCase , metadata={
'''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.'''
} , )
@cached_property
def __UpperCamelCase ( self : Dict):
requires_backends(self , ['tf'])
UpperCamelCase__ : Dict = None
if self.tpu:
try:
if self.tpu_name:
UpperCamelCase__ : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name)
else:
UpperCamelCase__ : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
UpperCamelCase__ : int = None
return tpu
@cached_property
def __UpperCamelCase ( self : Union[str, Any]):
requires_backends(self , ['tf'])
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu)
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu)
UpperCamelCase__ : Optional[int] = tf.distribute.TPUStrategy(self._setup_tpu)
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU')
UpperCamelCase__ : int = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}')
else:
tf.config.set_visible_devices([] , 'GPU') # disable GPU
UpperCamelCase__ : List[Any] = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}')
return strategy
@property
def __UpperCamelCase ( self : Any):
requires_backends(self , ['tf'])
return self._setup_tpu is not None
@property
def __UpperCamelCase ( self : Any):
requires_backends(self , ['tf'])
return self._setup_strategy
@property
def __UpperCamelCase ( self : int):
requires_backends(self , ['tf'])
return tf.config.list_physical_devices('GPU')
@property
def __UpperCamelCase ( self : Optional[int]):
requires_backends(self , ['tf'])
if self.cuda:
return len(self.gpu_list)
return 0
@property
def __UpperCamelCase ( self : List[Any]):
return self.n_gpu > 0
| 718 |
'''simple docstring'''
import argparse
import struct
import unittest
class __lowercase :
def __init__( self : Tuple , UpperCAmelCase_ : bytes):
UpperCamelCase__ : Dict = data
# Initialize hash values
UpperCamelCase__ : Any = [
0X6A_09E_667,
0XBB_67A_E85,
0X3C_6EF_372,
0XA5_4FF_53A,
0X51_0E5_27F,
0X9B_056_88C,
0X1F_83D_9AB,
0X5B_E0C_D19,
]
# Initialize round constants
UpperCamelCase__ : List[Any] = [
0X42_8A2_F98,
0X71_374_491,
0XB5_C0F_BCF,
0XE9_B5D_BA5,
0X39_56C_25B,
0X59_F11_1F1,
0X92_3F8_2A4,
0XAB_1C5_ED5,
0XD8_07A_A98,
0X12_835_B01,
0X24_318_5BE,
0X55_0C7_DC3,
0X72_BE5_D74,
0X80_DEB_1FE,
0X9B_DC0_6A7,
0XC1_9BF_174,
0XE4_9B6_9C1,
0XEF_BE4_786,
0X0F_C19_DC6,
0X24_0CA_1CC,
0X2D_E92_C6F,
0X4A_748_4AA,
0X5C_B0A_9DC,
0X76_F98_8DA,
0X98_3E5_152,
0XA8_31C_66D,
0XB0_032_7C8,
0XBF_597_FC7,
0XC6_E00_BF3,
0XD5_A79_147,
0X06_CA6_351,
0X14_292_967,
0X27_B70_A85,
0X2E_1B2_138,
0X4D_2C6_DFC,
0X53_380_D13,
0X65_0A7_354,
0X76_6A0_ABB,
0X81_C2C_92E,
0X92_722_C85,
0XA2_BFE_8A1,
0XA8_1A6_64B,
0XC2_4B8_B70,
0XC7_6C5_1A3,
0XD1_92E_819,
0XD6_990_624,
0XF4_0E3_585,
0X10_6AA_070,
0X19_A4C_116,
0X1E_376_C08,
0X27_487_74C,
0X34_B0B_CB5,
0X39_1C0_CB3,
0X4E_D8A_A4A,
0X5B_9CC_A4F,
0X68_2E6_FF3,
0X74_8F8_2EE,
0X78_A56_36F,
0X84_C87_814,
0X8C_C70_208,
0X90_BEF_FFA,
0XA4_506_CEB,
0XBE_F9A_3F7,
0XC6_717_8F2,
]
UpperCamelCase__ : Tuple = self.preprocessing(self.data)
self.final_hash()
@staticmethod
def __UpperCamelCase ( UpperCAmelCase_ : bytes):
UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64))
UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8))
return data + padding + big_endian_integer
def __UpperCamelCase ( self : Union[str, Any]):
# Convert into blocks of 64 bytes
UpperCamelCase__ : int = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data) , 64)
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_))
# add 48 0-ed integers
words += [0] * 48
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes
for index in range(0 , 64):
if index > 15:
# modify the zero-ed indexes at the end of the array
UpperCamelCase__ : Dict = (
self.ror(words[index - 15] , 7)
^ self.ror(words[index - 15] , 18)
^ (words[index - 15] >> 3)
)
UpperCamelCase__ : Tuple = (
self.ror(words[index - 2] , 17)
^ self.ror(words[index - 2] , 19)
^ (words[index - 2] >> 10)
)
UpperCamelCase__ : int = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X100_000_000
# Compression
UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25)
UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g)
UpperCamelCase__ : List[Any] = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X100_000_000
UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22)
UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c)
UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = (
g,
f,
e,
((d + tempa) % 0X100_000_000),
c,
b,
a,
((tempa + tempa) % 0X100_000_000),
)
UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h]
# Modify final values
UpperCamelCase__ : Optional[Any] = [
((element + mutated_hash_values[index]) % 0X100_000_000)
for index, element in enumerate(self.hashes)
]
UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes])
def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations)
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : int):
import hashlib
UpperCamelCase__ : str = bytes('Test String' , 'utf-8')
self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest())
def __UpperCAmelCase ( ) -> None:
import doctest
doctest.testmod()
UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file')
UpperCamelCase__ : List[str] = parser.parse_args()
UpperCamelCase__ : str = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb') as f:
UpperCamelCase__ : Any = f.read()
else:
UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8')
print(SHAaaa(lowerCamelCase_).hash)
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
lowerCAmelCase__ = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''tapas'''
def __init__( self : Any , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[Any]=1_024 , UpperCAmelCase_ : Dict=[3, 256, 256, 2, 256, 256, 10] , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : List[Any]=10.0 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str=1.0 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=1.0 , UpperCAmelCase_ : str=1.0 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]="ratio" , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=64 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Dict , ):
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCamelCase__ : List[str] = vocab_size
UpperCamelCase__ : str = hidden_size
UpperCamelCase__ : str = num_hidden_layers
UpperCamelCase__ : Tuple = num_attention_heads
UpperCamelCase__ : str = hidden_act
UpperCamelCase__ : Optional[int] = intermediate_size
UpperCamelCase__ : Any = hidden_dropout_prob
UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob
UpperCamelCase__ : Union[str, Any] = max_position_embeddings
UpperCamelCase__ : Tuple = type_vocab_sizes
UpperCamelCase__ : Dict = initializer_range
UpperCamelCase__ : Optional[int] = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCamelCase__ : Optional[int] = positive_label_weight
UpperCamelCase__ : str = num_aggregation_labels
UpperCamelCase__ : Union[str, Any] = aggregation_loss_weight
UpperCamelCase__ : List[str] = use_answer_as_supervision
UpperCamelCase__ : List[str] = answer_loss_importance
UpperCamelCase__ : Tuple = use_normalized_answer_loss
UpperCamelCase__ : Optional[int] = huber_loss_delta
UpperCamelCase__ : Any = temperature
UpperCamelCase__ : int = aggregation_temperature
UpperCamelCase__ : str = use_gumbel_for_cells
UpperCamelCase__ : Dict = use_gumbel_for_aggregation
UpperCamelCase__ : List[Any] = average_approximation_function
UpperCamelCase__ : Dict = cell_selection_preference
UpperCamelCase__ : Any = answer_loss_cutoff
UpperCamelCase__ : str = max_num_rows
UpperCamelCase__ : Optional[Any] = max_num_columns
UpperCamelCase__ : Tuple = average_logits_per_cell
UpperCamelCase__ : Optional[int] = select_one_column
UpperCamelCase__ : Union[str, Any] = allow_empty_column_selection
UpperCamelCase__ : Tuple = init_cell_selection_weights_to_zero
UpperCamelCase__ : Dict = reset_position_index_per_cell
UpperCamelCase__ : Union[str, Any] = disable_per_token_loss
# Aggregation hyperparameters
UpperCamelCase__ : Dict = aggregation_labels
UpperCamelCase__ : Optional[int] = no_aggregation_label_index
if isinstance(self.aggregation_labels , UpperCAmelCase_):
UpperCamelCase__ : Optional[int] = {int(UpperCAmelCase_): v for k, v in aggregation_labels.items()} | 719 |
'''simple docstring'''
from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase__ = 300 # TEMPERATURE (unit = K)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float:
if donor_conc <= 0:
raise ValueError('Donor concentration should be positive')
elif acceptor_conc <= 0:
raise ValueError('Acceptor concentration should be positive')
elif intrinsic_conc <= 0:
raise ValueError('Intrinsic concentration should be positive')
elif donor_conc <= intrinsic_conc:
raise ValueError(
'Donor concentration should be greater than intrinsic concentration')
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
'Acceptor concentration should be greater than intrinsic concentration')
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2)
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]:
UpperCamelCase__ : Dict = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
UpperCamelCase__ : str = 0
while b > 0:
if b & 1:
UpperCamelCase__ : Tuple = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 720 |
'''simple docstring'''
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]:
UpperCamelCase__ : int = []
if isinstance(lowerCamelCase_ , lowerCamelCase_):
for v in tree.values():
shapes.extend(_fetch_dims(lowerCamelCase_))
elif isinstance(lowerCamelCase_ , (list, tuple)):
for t in tree:
shapes.extend(_fetch_dims(lowerCamelCase_))
elif isinstance(lowerCamelCase_ , torch.Tensor):
shapes.append(tree.shape)
else:
raise ValueError('Not supported')
return shapes
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]:
UpperCamelCase__ : int = []
for d in reversed(lowerCamelCase_):
idx.append(flat_idx % d)
UpperCamelCase__ : Any = flat_idx // d
return tuple(reversed(lowerCamelCase_))
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]:
# start_edges and end_edges both indicate whether, starting from any given
# dimension, the start/end index is at the top/bottom edge of the
# corresponding tensor, modeled as a tree
def reduce_edge_list(lowerCamelCase_) -> None:
UpperCamelCase__ : Tuple = True
for i in range(len(lowerCamelCase_)):
UpperCamelCase__ : List[Any] = -1 * (i + 1)
l[reversed_idx] &= tally
UpperCamelCase__ : Optional[Any] = l[reversed_idx]
if start_edges is None:
UpperCamelCase__ : int = [s == 0 for s in start]
reduce_edge_list(lowerCamelCase_)
if end_edges is None:
UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)]
reduce_edge_list(lowerCamelCase_)
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(lowerCamelCase_) == 0:
return [()]
elif len(lowerCamelCase_) == 1:
return [(slice(start[0] , end[0] + 1),)]
UpperCamelCase__ : List[Tuple[slice, ...]] = []
UpperCamelCase__ : List[slice] = []
# Dimensions common to start and end can be selected directly
for s, e in zip(lowerCamelCase_ , lowerCamelCase_):
if s == e:
path_list.append(slice(lowerCamelCase_ , s + 1))
else:
break
UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_)
UpperCamelCase__ : Dict = len(lowerCamelCase_)
# start == end, and we're done
if divergence_idx == len(lowerCamelCase_):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ : str = start[divergence_idx]
return tuple(
path + (slice(lowerCamelCase_ , sdi + 1),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ))
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ : Optional[int] = end[divergence_idx]
return tuple(
path + (slice(lowerCamelCase_ , edi + 1),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ))
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),))
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),))
slices.extend(lower())
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper())
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),))
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper())
UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),))
slices.extend(lower())
return slices
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor:
UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims]
UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_))
# _get_minimal_slice_set is inclusive
UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_))
# Get an ordered list of slices to perform
UpperCamelCase__ : int = _get_minimal_slice_set(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , )
UpperCamelCase__ : List[Any] = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any:
if not (len(lowerCamelCase_) > 0):
raise ValueError('Must provide at least one input')
UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)]
UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)])
def _prep_inputs(lowerCamelCase_) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims]) == no_batch_dims:
UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:])
else:
UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
return t
UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_)
UpperCamelCase__ : int = None
if _out is not None:
UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out)
UpperCamelCase__ : Dict = 1
for d in orig_batch_dims:
flat_batch_dim *= d
UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(lowerCamelCase_) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : Optional[Any] = prepped_outputs
for _ in range(lowerCamelCase_):
# Chunk the input
if not low_mem:
UpperCamelCase__ : str = _select_chunk
else:
UpperCamelCase__ : List[Any] = partial(
_chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , )
UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_)
# Run the layer on the chunk
UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_)
# Allocate space for the output
if out is None:
UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_)
# Put the chunk in its pre-allocated space
if isinstance(lowerCamelCase_ , lowerCamelCase_):
def assign(lowerCamelCase_ , lowerCamelCase_) -> None:
for k, v in da.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_):
assign(lowerCamelCase_ , da[k])
else:
if _add_into_out:
v[i : i + chunk_size] += da[k]
else:
UpperCamelCase__ : List[str] = da[k]
assign(lowerCamelCase_ , lowerCamelCase_)
elif isinstance(lowerCamelCase_ , lowerCamelCase_):
for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_):
if _add_into_out:
xa[i : i + chunk_size] += xa
else:
UpperCamelCase__ : int = xa
elif isinstance(lowerCamelCase_ , torch.Tensor):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
UpperCamelCase__ : Dict = output_chunk
else:
raise ValueError('Not supported')
i += chunk_size
UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_)
return out
class __lowercase :
def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ):
UpperCamelCase__ : str = max_chunk_size
UpperCamelCase__ : Optional[int] = None
UpperCamelCase__ : Optional[tuple] = None
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int):
logging.info('Tuning chunk size...')
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)]
UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size]
UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(UpperCAmelCase_ : int) -> bool:
try:
with torch.no_grad():
fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_)
return True
except RuntimeError:
return False
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1
while i > min_viable_chunk_size_index:
UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i])
if not viable:
UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2
else:
UpperCamelCase__ : Optional[int] = i
UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2
return candidates[min_viable_chunk_size_index]
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable):
UpperCamelCase__ : List[str] = True
for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_):
assert type(UpperCAmelCase_) == type(UpperCAmelCase_)
if isinstance(UpperCAmelCase_ , (list, tuple)):
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_)
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])]
UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])]
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_)
else:
consistent &= aa == aa
return consistent
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ):
UpperCamelCase__ : List[Any] = True
UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_)
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data) == len(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_)
else:
# Otherwise, we can reuse the precomputed value
UpperCamelCase__ : Optional[int] = False
if not consistent:
UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )
UpperCamelCase__ : Optional[Any] = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
| 6 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False) -> Tuple:
UpperCamelCase__ : Optional[int] = []
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight'))
rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias'))
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight'))
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias'))
rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight'))
rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias'))
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight'))
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias'))
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight'))
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias'))
# projection layer + position embeddings
rename_keys.extend(
[
('cls_token', 'deit.embeddings.cls_token'),
('dist_token', 'deit.embeddings.distillation_token'),
('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'),
('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'),
('pos_embed', 'deit.embeddings.position_embeddings'),
])
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
('pre_logits.fc.weight', 'pooler.dense.weight'),
('pre_logits.fc.bias', 'pooler.dense.bias'),
])
# if just the base model, we should remove "deit" from all keys that start with "deit"
UpperCamelCase__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('deit') else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
('norm.weight', 'deit.layernorm.weight'),
('norm.bias', 'deit.layernorm.bias'),
('head.weight', 'cls_classifier.weight'),
('head.bias', 'cls_classifier.bias'),
('head_dist.weight', 'distillation_classifier.weight'),
('head_dist.bias', 'distillation_classifier.bias'),
])
return rename_keys
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any:
for i in range(config.num_hidden_layers):
if base_model:
UpperCamelCase__ : int = ''
else:
UpperCamelCase__ : int = 'deit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCamelCase__ : Optional[int] = state_dict.pop(f'blocks.{i}.attn.qkv.weight')
UpperCamelCase__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias')
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase__ : str = in_proj_weight[
: config.hidden_size, :
]
UpperCamelCase__ : List[str] = in_proj_bias[: config.hidden_size]
UpperCamelCase__ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCamelCase__ : Tuple = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCamelCase__ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCamelCase__ : Any = in_proj_bias[-config.hidden_size :]
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int:
UpperCamelCase__ : Union[str, Any] = dct.pop(lowerCamelCase_)
UpperCamelCase__ : Optional[Any] = val
def __UpperCAmelCase ( ) -> str:
UpperCamelCase__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase__ : List[str] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw)
return im
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[Any]:
UpperCamelCase__ : Optional[int] = DeiTConfig()
# all deit models have fine-tuned heads
UpperCamelCase__ : Tuple = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
UpperCamelCase__ : Tuple = 1_000
UpperCamelCase__ : List[Any] = 'huggingface/label-files'
UpperCamelCase__ : Any = 'imagenet-1k-id2label.json'
UpperCamelCase__ : int = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset') , 'r'))
UpperCamelCase__ : str = {int(lowerCamelCase_): v for k, v in idalabel.items()}
UpperCamelCase__ : Tuple = idalabel
UpperCamelCase__ : int = {v: k for k, v in idalabel.items()}
UpperCamelCase__ : int = int(deit_name[-6:-4])
UpperCamelCase__ : int = int(deit_name[-3:])
# size of the architecture
if deit_name[9:].startswith('tiny'):
UpperCamelCase__ : Union[str, Any] = 192
UpperCamelCase__ : int = 768
UpperCamelCase__ : List[str] = 12
UpperCamelCase__ : Union[str, Any] = 3
elif deit_name[9:].startswith('small'):
UpperCamelCase__ : str = 384
UpperCamelCase__ : Union[str, Any] = 1_536
UpperCamelCase__ : List[str] = 12
UpperCamelCase__ : List[Any] = 6
if deit_name[9:].startswith('base'):
pass
elif deit_name[4:].startswith('large'):
UpperCamelCase__ : List[Any] = 1_024
UpperCamelCase__ : Union[str, Any] = 4_096
UpperCamelCase__ : List[Any] = 24
UpperCamelCase__ : str = 16
# load original model from timm
UpperCamelCase__ : Optional[Any] = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_)
timm_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCamelCase__ : List[Any] = timm_model.state_dict()
UpperCamelCase__ : List[Any] = create_rename_keys(lowerCamelCase_ , lowerCamelCase_)
for src, dest in rename_keys:
rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
# load HuggingFace model
UpperCamelCase__ : List[str] = DeiTForImageClassificationWithTeacher(lowerCamelCase_).eval()
model.load_state_dict(lowerCamelCase_)
# Check outputs on an image, prepared by DeiTImageProcessor
UpperCamelCase__ : Dict = int(
(256 / 224) * config.image_size) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
UpperCamelCase__ : int = DeiTImageProcessor(size=lowerCamelCase_ , crop_size=config.image_size)
UpperCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='pt')
UpperCamelCase__ : Optional[Any] = encoding['pixel_values']
UpperCamelCase__ : str = model(lowerCamelCase_)
UpperCamelCase__ : List[str] = timm_model(lowerCamelCase_)
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowerCamelCase_ , outputs.logits , atol=1e-3)
Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_)
print(f'Saving model {deit_name} to {pytorch_dump_folder_path}')
model.save_pretrained(lowerCamelCase_)
print(f'Saving image processor to {pytorch_dump_folder_path}')
image_processor.save_pretrained(lowerCamelCase_)
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--deit_name',
default='vit_deit_base_distilled_patch16_224',
type=str,
help='Name of the DeiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
lowerCAmelCase__ = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 721 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : int = tempfile.mkdtemp()
# fmt: off
UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'}
UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as fp:
fp.write(json.dumps(UpperCAmelCase_) + '\n')
with open(self.merges_file , 'w' , encoding='utf-8') as fp:
fp.write('\n'.join(UpperCAmelCase_))
UpperCamelCase__ : Dict = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_)
with open(self.image_processor_file , 'w' , encoding='utf-8') as fp:
json.dump(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : str):
shutil.rmtree(self.tmpdirname)
def __UpperCamelCase ( self : Tuple):
UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Union[str, Any] = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer()
UpperCamelCase__ : Any = self.get_image_processor()
UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
processor_slow.save_pretrained(self.tmpdirname)
UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_)
UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
processor_fast.save_pretrained(self.tmpdirname)
UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_)
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_)
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_)
def __UpperCamelCase ( self : List[str]):
UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0)
UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , UpperCAmelCase_)
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Optional[Any] = self.get_image_processor()
UpperCamelCase__ : int = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : int = self.prepare_image_inputs()
UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np')
UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np')
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2)
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Optional[Any] = self.get_image_processor()
UpperCamelCase__ : Dict = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Any = 'lower newer'
UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Optional[int] = self.get_image_processor()
UpperCamelCase__ : List[str] = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'lower newer'
UpperCamelCase__ : List[Any] = self.prepare_image_inputs()
UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_)
self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values'])
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_):
processor()
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Any = self.get_image_processor()
UpperCamelCase__ : Dict = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : str):
UpperCamelCase__ : Union[str, Any] = self.get_image_processor()
UpperCamelCase__ : List[str] = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = 'lower newer'
UpperCamelCase__ : Optional[int] = self.prepare_image_inputs()
UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 6 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = 42
class __lowercase (__lowerCamelCase , __lowerCamelCase ):
@register_to_config
def __init__( self : List[Any] , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase_ : Tuple[int] = (64,) , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "silu" , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : float = 0.1_82_15 , UpperCAmelCase_ : str = "group" , ):
super().__init__()
# pass init params to Encoder
UpperCamelCase__ : List[Any] = Encoder(
in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , down_block_types=UpperCAmelCase_ , block_out_channels=UpperCAmelCase_ , layers_per_block=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , norm_num_groups=UpperCAmelCase_ , double_z=UpperCAmelCase_ , )
UpperCamelCase__ : Tuple = vq_embed_dim if vq_embed_dim is not None else latent_channels
UpperCamelCase__ : str = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1)
UpperCamelCase__ : Tuple = VectorQuantizer(UpperCAmelCase_ , UpperCAmelCase_ , beta=0.25 , remap=UpperCAmelCase_ , sane_index_shape=UpperCAmelCase_)
UpperCamelCase__ : Any = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1)
# pass init params to Decoder
UpperCamelCase__ : List[str] = Decoder(
in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , up_block_types=UpperCAmelCase_ , block_out_channels=UpperCAmelCase_ , layers_per_block=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , norm_num_groups=UpperCAmelCase_ , norm_type=UpperCAmelCase_ , )
@apply_forward_hook
def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True):
UpperCamelCase__ : Dict = self.encoder(UpperCAmelCase_)
UpperCamelCase__ : Dict = self.quant_conv(UpperCAmelCase_)
if not return_dict:
return (h,)
return VQEncoderOutput(latents=UpperCAmelCase_)
@apply_forward_hook
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True):
# also go through quantization layer
if not force_not_quantize:
UpperCamelCase__ : List[str] = self.quantize(UpperCAmelCase_)
else:
UpperCamelCase__ : Tuple = h
UpperCamelCase__ : Union[str, Any] = self.post_quant_conv(UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.decoder(UpperCAmelCase_ , quant if self.config.norm_type == 'spatial' else None)
if not return_dict:
return (dec,)
return DecoderOutput(sample=UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True):
UpperCamelCase__ : str = sample
UpperCamelCase__ : int = self.encode(UpperCAmelCase_).latents
UpperCamelCase__ : Union[str, Any] = self.decode(UpperCAmelCase_).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=UpperCAmelCase_)
| 700 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None:
UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_)
for k, v in tqdm(state_dict.items()):
if not isinstance(lowerCamelCase_ , torch.Tensor):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin')
UpperCamelCase__ : int = v.half()
if save_path is None: # overwrite src_path
UpperCamelCase__ : List[Any] = src_path
torch.save(lowerCamelCase_ , lowerCamelCase_)
if __name__ == "__main__":
fire.Fire(convert)
| 6 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Optional[Any]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : Tuple):
UpperCamelCase__ : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4')
UpperCamelCase__ : Optional[int] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
sd_pipe.set_scheduler('sample_euler')
UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : List[Any] = torch.manual_seed(0)
UpperCamelCase__ : Dict = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np')
UpperCamelCase__ : Dict = output.images
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase__ : List[str] = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : str):
UpperCamelCase__ : Union[str, Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base')
UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
sd_pipe.set_scheduler('sample_euler')
UpperCamelCase__ : Tuple = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Union[str, Any] = torch.manual_seed(0)
UpperCamelCase__ : Any = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np')
UpperCamelCase__ : Optional[int] = output.images
UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase__ : str = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base')
UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
sd_pipe.set_scheduler('sample_dpmpp_2m')
UpperCamelCase__ : int = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Union[str, Any] = torch.manual_seed(0)
UpperCamelCase__ : Union[str, Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=UpperCAmelCase_ , )
UpperCamelCase__ : List[Any] = output.images
UpperCamelCase__ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase__ : Union[str, Any] = np.array(
[0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 701 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'nvidia/segformer-b0-finetuned-ade-512-512': (
'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json'
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''segformer'''
def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ):
super().__init__(**UpperCAmelCase_)
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , )
UpperCamelCase__ : List[Any] = num_channels
UpperCamelCase__ : Any = num_encoder_blocks
UpperCamelCase__ : Dict = depths
UpperCamelCase__ : int = sr_ratios
UpperCamelCase__ : str = hidden_sizes
UpperCamelCase__ : List[str] = patch_sizes
UpperCamelCase__ : Optional[int] = strides
UpperCamelCase__ : Dict = mlp_ratios
UpperCamelCase__ : List[str] = num_attention_heads
UpperCamelCase__ : int = hidden_act
UpperCamelCase__ : Any = hidden_dropout_prob
UpperCamelCase__ : str = attention_probs_dropout_prob
UpperCamelCase__ : List[str] = classifier_dropout_prob
UpperCamelCase__ : List[Any] = initializer_range
UpperCamelCase__ : Union[str, Any] = drop_path_rate
UpperCamelCase__ : int = layer_norm_eps
UpperCamelCase__ : Dict = decoder_hidden_size
UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_)
UpperCamelCase__ : List[str] = semantic_loss_ignore_index
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self : Optional[Any]):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
])
@property
def __UpperCamelCase ( self : Optional[Any]):
return 1e-4
@property
def __UpperCamelCase ( self : Any):
return 12
| 6 | 0 |
'''simple docstring'''
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''facebook/bart-large-mnli'''
_lowerCamelCase = (
'''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '''
'''should be the text to classify, and `labels`, which should be the list of labels to use for classification. '''
'''It returns the most likely label in the list of provided `labels` for the input text.'''
)
_lowerCamelCase = '''text_classifier'''
_lowerCamelCase = AutoTokenizer
_lowerCamelCase = AutoModelForSequenceClassification
_lowerCamelCase = ['''text''', ['''text''']]
_lowerCamelCase = ['''text''']
def __UpperCamelCase ( self : List[str]):
super().setup()
UpperCamelCase__ : List[str] = self.model.config
UpperCamelCase__ : List[str] = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('entail'):
UpperCamelCase__ : int = int(UpperCAmelCase_)
if self.entailment_id == -1:
raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.')
def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int):
UpperCamelCase__ : List[Any] = labels
return self.pre_processor(
[text] * len(UpperCAmelCase_) , [F'This example is {label}' for label in labels] , return_tensors='pt' , padding='max_length' , )
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple):
UpperCamelCase__ : Tuple = outputs.logits
UpperCamelCase__ : Union[str, Any] = torch.argmax(logits[:, 2]).item()
return self._labels[label_id]
| 702 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]:
return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 6 | 0 |
'''simple docstring'''
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class __lowercase (yaml.SafeLoader ):
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int]):
UpperCamelCase__ : Union[str, Any] = [self.constructed_objects[key_node] for key_node, _ in node.value]
UpperCamelCase__ : str = [tuple(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else key for key in keys]
UpperCamelCase__ : int = Counter(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}')
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False):
UpperCamelCase__ : Union[str, Any] = super().construct_mapping(UpperCAmelCase_ , deep=UpperCAmelCase_)
self._check_no_duplicates_on_constructed_node(UpperCAmelCase_)
return mapping
def __UpperCAmelCase ( lowerCamelCase_) -> Tuple[Optional[str], str]:
UpperCamelCase__ : str = list(readme_content.splitlines())
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
UpperCamelCase__ : Dict = full_content[1:].index('---') + 1
UpperCamelCase__ : Any = '\n'.join(full_content[1:sep_idx])
return yamlblock, "\n".join(full_content[sep_idx + 1 :])
return None, "\n".join(lowerCamelCase_)
class __lowercase (__lowerCamelCase ):
# class attributes
_lowerCamelCase = {'''train_eval_index'''} # train-eval-index in the YAML metadata
@classmethod
def __UpperCamelCase ( cls : List[str] , UpperCAmelCase_ : Path):
with open(UpperCAmelCase_ , encoding='utf-8') as readme_file:
UpperCamelCase__ : Any = _split_yaml_from_readme(readme_file.read())
if yaml_string is not None:
return cls.from_yaml_string(UpperCAmelCase_)
else:
return cls()
def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Path):
if path.exists():
with open(UpperCAmelCase_ , encoding='utf-8') as readme_file:
UpperCamelCase__ : Tuple = readme_file.read()
else:
UpperCamelCase__ : List[Any] = None
UpperCamelCase__ : List[Any] = self._to_readme(UpperCAmelCase_)
with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as readme_file:
readme_file.write(UpperCAmelCase_)
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[str] = None):
if readme_content is not None:
UpperCamelCase__ : Any = _split_yaml_from_readme(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content
else:
UpperCamelCase__ : List[str] = '---\n' + self.to_yaml_string() + '---\n'
return full_content
@classmethod
def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : str):
UpperCamelCase__ : Any = yaml.load(UpperCAmelCase_ , Loader=_NoDuplicateSafeLoader) or {}
# Convert the YAML keys to DatasetMetadata fields
UpperCamelCase__ : int = {
(key.replace('-' , '_') if key.replace('-' , '_') in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**UpperCAmelCase_)
def __UpperCamelCase ( self : Any):
return yaml.safe_dump(
{
(key.replace('_' , '-') if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ , encoding='utf-8' , ).decode('utf-8')
lowerCAmelCase__ = {
'image-classification': [],
'translation': [],
'image-segmentation': [],
'fill-mask': [],
'automatic-speech-recognition': [],
'token-classification': [],
'sentence-similarity': [],
'audio-classification': [],
'question-answering': [],
'summarization': [],
'zero-shot-classification': [],
'table-to-text': [],
'feature-extraction': [],
'other': [],
'multiple-choice': [],
'text-classification': [],
'text-to-image': [],
'text2text-generation': [],
'zero-shot-image-classification': [],
'tabular-classification': [],
'tabular-regression': [],
'image-to-image': [],
'tabular-to-text': [],
'unconditional-image-generation': [],
'text-retrieval': [],
'text-to-speech': [],
'object-detection': [],
'audio-to-audio': [],
'text-generation': [],
'conversational': [],
'table-question-answering': [],
'visual-question-answering': [],
'image-to-text': [],
'reinforcement-learning': [],
'voice-activity-detection': [],
'time-series-forecasting': [],
'document-question-answering': [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
lowerCAmelCase__ = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.')
ap.add_argument('readme_filepath')
lowerCAmelCase__ = ap.parse_args()
lowerCAmelCase__ = Path(args.readme_filepath)
lowerCAmelCase__ = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 703 |
'''simple docstring'''
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def __UpperCAmelCase ( lowerCamelCase_) -> float:
return np.dot(lowerCamelCase_ , lowerCamelCase_)
class __lowercase :
def __init__( self : Tuple , *,
UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ):
UpperCamelCase__ : Union[str, Any] = regularization
UpperCamelCase__ : Optional[int] = gamma
if kernel == "linear":
UpperCamelCase__ : List[str] = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('rbf kernel requires gamma')
if not isinstance(self.gamma , (float, int)):
raise ValueError('gamma must be float or int')
if not self.gamma > 0:
raise ValueError('gamma must be > 0')
UpperCamelCase__ : Union[str, Any] = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}'
raise ValueError(UpperCAmelCase_)
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray):
return np.dot(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray):
return np.exp(-(self.gamma * norm_squared(vectora - vectora)))
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray):
UpperCamelCase__ : Any = observations
UpperCamelCase__ : Tuple = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_)
def to_minimize(UpperCAmelCase_ : ndarray) -> float:
UpperCamelCase__ : Union[str, Any] = 0
((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_)
for i in range(UpperCAmelCase_):
for j in range(UpperCAmelCase_):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j])
)
return 1 / 2 * s - sum(UpperCAmelCase_)
UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0)
UpperCamelCase__ : Dict = Bounds(0 , self.regularization)
UpperCamelCase__ : Any = minimize(
UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x
UpperCamelCase__ : str = l_star
# calculating mean offset of separation plane to points
UpperCamelCase__ : Any = 0
for i in range(UpperCAmelCase_):
for j in range(UpperCAmelCase_):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j])
UpperCamelCase__ : List[str] = s / n
def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray):
UpperCamelCase__ : Optional[int] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , UpperCAmelCase_)
for n in range(len(self.classes)))
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
import math
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int:
UpperCamelCase__ : List[str] = len(lowerCamelCase_)
UpperCamelCase__ : Optional[int] = int(math.floor(math.sqrt(lowerCamelCase_)))
UpperCamelCase__ : List[str] = 0
while arr[min(lowerCamelCase_ , lowerCamelCase_) - 1] < x:
UpperCamelCase__ : Tuple = step
step += int(math.floor(math.sqrt(lowerCamelCase_)))
if prev >= n:
return -1
while arr[prev] < x:
UpperCamelCase__ : int = prev + 1
if prev == min(lowerCamelCase_ , lowerCamelCase_):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
lowerCAmelCase__ = input('Enter numbers separated by a comma:\n').strip()
lowerCAmelCase__ = [int(item) for item in user_input.split(',')]
lowerCAmelCase__ = int(input('Enter the number to be searched:\n'))
lowerCAmelCase__ = jump_search(arr, x)
if res == -1:
print('Number not found!')
else:
print(f'''Number {x} is at index {res}''')
| 704 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def __UpperCAmelCase ( lowerCamelCase_) -> Any:
UpperCamelCase__ : Dict = DPTConfig()
if "large" in checkpoint_url:
UpperCamelCase__ : List[str] = 1_024
UpperCamelCase__ : List[str] = 4_096
UpperCamelCase__ : Optional[int] = 24
UpperCamelCase__ : List[str] = 16
UpperCamelCase__ : List[str] = [5, 11, 17, 23]
UpperCamelCase__ : str = [256, 512, 1_024, 1_024]
UpperCamelCase__ : Union[str, Any] = (1, 384, 384)
if "ade" in checkpoint_url:
UpperCamelCase__ : int = True
UpperCamelCase__ : Optional[Any] = 150
UpperCamelCase__ : int = 'huggingface/label-files'
UpperCamelCase__ : List[Any] = 'ade20k-id2label.json'
UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r'))
UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()}
UpperCamelCase__ : Union[str, Any] = idalabel
UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()}
UpperCamelCase__ : Any = [1, 150, 480, 480]
return config, expected_shape
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias']
for k in ignore_keys:
state_dict.pop(lowerCamelCase_ , lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder')
if "pretrained.model" in name:
UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings')
if "patch_embed" in name:
UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings')
if "pos_embed" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings')
if "attn.proj" in name:
UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense')
if "proj" in name and "project" not in name:
UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection')
if "blocks" in name:
UpperCamelCase__ : int = name.replace('blocks' , 'layer')
if "mlp.fc1" in name:
UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense')
if "mlp.fc2" in name:
UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense')
if "norm1" in name:
UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before')
if "norm2" in name:
UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after')
if "scratch.output_conv" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head')
if "scratch" in name:
UpperCamelCase__ : int = name.replace('scratch' , 'neck')
if "layer1_rn" in name:
UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0')
if "layer2_rn" in name:
UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1')
if "layer3_rn" in name:
UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2')
if "layer4_rn" in name:
UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3')
if "refinenet" in name:
UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}')
if "out_conv" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection')
if "resConfUnit1" in name:
UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1')
if "resConfUnit2" in name:
UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2')
if "conv1" in name:
UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1')
if "conv2" in name:
UpperCamelCase__ : int = name.replace('conv2' , 'convolution2')
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0')
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0')
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0')
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0')
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection')
if "pretrained.act_postprocess1.4" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize')
if "pretrained.act_postprocess2.3" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection')
if "pretrained.act_postprocess2.4" in name:
UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize')
if "pretrained.act_postprocess3.3" in name:
UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection')
if "pretrained.act_postprocess4.3" in name:
UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection')
if "pretrained.act_postprocess4.4" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize')
if "pretrained" in name:
UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt')
if "bn" in name:
UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm')
if "head" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head')
if "encoder.norm" in name:
UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm')
if "auxlayer" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head')
return name
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any:
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight')
UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias')
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :]
UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size]
UpperCamelCase__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCamelCase__ : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCamelCase__ : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :]
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw)
return im
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict:
UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_)
# load original state_dict from URL
UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu')
# remove certain keys
remove_ignore_keys_(lowerCamelCase_)
# rename keys
for key in state_dict.copy().keys():
UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_)
UpperCamelCase__ : List[str] = val
# read in qkv matrices
read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_)
# load HuggingFace model
UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_)
model.load_state_dict(lowerCamelCase_)
model.eval()
# Check outputs on an image
UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384
UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_)
UpperCamelCase__ : int = prepare_img()
UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt')
# forward pass
UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth
# Assert logits
UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]])
if "ade" in checkpoint_url:
UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]])
assert outputs.shape == torch.Size(lowerCamelCase_)
assert (
torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_)
)
Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_)
print(f'Saving model to {pytorch_dump_folder_path}')
model.save_pretrained(lowerCamelCase_)
print(f'Saving image processor to {pytorch_dump_folder_path}')
image_processor.save_pretrained(lowerCamelCase_)
if push_to_hub:
print('Pushing model to hub...')
model.push_to_hub(
repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
lowerCAmelCase__ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 6 | 0 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
lowerCAmelCase__ = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n'
lowerCAmelCase__ = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n'
lowerCAmelCase__ = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}'
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Union[str, Any]:
if label_map is not None:
for old_id, new_id in label_map.items():
UpperCamelCase__ : Optional[Any] = new_id
# turn into Numpy arrays
UpperCamelCase__ : str = np.array(lowerCamelCase_)
UpperCamelCase__ : Dict = np.array(lowerCamelCase_)
if reduce_labels:
UpperCamelCase__ : List[str] = 255
UpperCamelCase__ : Union[str, Any] = label - 1
UpperCamelCase__ : Optional[Any] = 255
UpperCamelCase__ : Dict = label != ignore_index
UpperCamelCase__ : List[Any] = np.not_equal(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : int = pred_label[mask]
UpperCamelCase__ : Optional[Any] = np.array(lowerCamelCase_)[mask]
UpperCamelCase__ : Union[str, Any] = pred_label[pred_label == label]
UpperCamelCase__ : int = np.histogram(lowerCamelCase_ , bins=lowerCamelCase_ , range=(0, num_labels - 1))[0]
UpperCamelCase__ : Optional[int] = np.histogram(lowerCamelCase_ , bins=lowerCamelCase_ , range=(0, num_labels - 1))[0]
UpperCamelCase__ : Optional[int] = np.histogram(lowerCamelCase_ , bins=lowerCamelCase_ , range=(0, num_labels - 1))[0]
UpperCamelCase__ : int = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> List[Any]:
UpperCamelCase__ : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa)
UpperCamelCase__ : Dict = np.zeros((num_labels,) , dtype=np.floataa)
UpperCamelCase__ : int = np.zeros((num_labels,) , dtype=np.floataa)
UpperCamelCase__ : Tuple = np.zeros((num_labels,) , dtype=np.floataa)
for result, gt_seg_map in zip(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase__ : Tuple = intersect_and_union(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Optional[Any]:
UpperCamelCase__ : Dict = total_intersect_and_union(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
# compute metrics
UpperCamelCase__ : Optional[int] = {}
UpperCamelCase__ : List[Any] = total_area_intersect.sum() / total_area_label.sum()
UpperCamelCase__ : Tuple = total_area_intersect / total_area_union
UpperCamelCase__ : str = total_area_intersect / total_area_label
UpperCamelCase__ : Union[str, Any] = np.nanmean(lowerCamelCase_)
UpperCamelCase__ : List[Any] = np.nanmean(lowerCamelCase_)
UpperCamelCase__ : Any = all_acc
UpperCamelCase__ : Optional[int] = iou
UpperCamelCase__ : Union[str, Any] = acc
if nan_to_num is not None:
UpperCamelCase__ : Optional[int] = {metric: np.nan_to_num(lowerCamelCase_ , nan=lowerCamelCase_) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowercase (datasets.Metric ):
def __UpperCamelCase ( self : Optional[int]):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16'))),
'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16'))),
}) , reference_urls=[
'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'
] , )
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ):
UpperCamelCase__ : Tuple = mean_iou(
results=UpperCAmelCase_ , gt_seg_maps=UpperCAmelCase_ , num_labels=UpperCAmelCase_ , ignore_index=UpperCAmelCase_ , nan_to_num=UpperCAmelCase_ , label_map=UpperCAmelCase_ , reduce_labels=UpperCAmelCase_ , )
return iou_result
| 705 |
'''simple docstring'''
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowercase :
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ):
UpperCamelCase__ : Tuple = parent
UpperCamelCase__ : List[str] = batch_size
UpperCamelCase__ : Optional[Any] = image_size
UpperCamelCase__ : Optional[Any] = patch_size
UpperCamelCase__ : List[str] = num_channels
UpperCamelCase__ : Union[str, Any] = is_training
UpperCamelCase__ : int = use_labels
UpperCamelCase__ : Optional[int] = hidden_size
UpperCamelCase__ : Any = num_hidden_layers
UpperCamelCase__ : str = num_attention_heads
UpperCamelCase__ : str = intermediate_size
UpperCamelCase__ : Union[str, Any] = hidden_act
UpperCamelCase__ : Optional[int] = hidden_dropout_prob
UpperCamelCase__ : Tuple = attention_probs_dropout_prob
UpperCamelCase__ : Any = type_sequence_label_size
UpperCamelCase__ : int = initializer_range
UpperCamelCase__ : Optional[int] = mask_ratio
UpperCamelCase__ : int = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCamelCase__ : str = (image_size // patch_size) ** 2
UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1)))
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCamelCase__ : List[str] = None
if self.use_labels:
UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCamelCase__ : Any = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self : List[Any]):
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]):
UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple):
UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Dict = model(UpperCAmelCase_)
UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2
UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels))
# test greyscale images
UpperCamelCase__ : List[Any] = 1
UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels))
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : List[str] = self.prepare_config_and_inputs()
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs
UpperCamelCase__ : Any = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
_lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
_lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {}
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : List[str] = ViTMAEModelTester(self)
UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37)
def __UpperCamelCase ( self : Any):
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds')
def __UpperCamelCase ( self : Tuple):
pass
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
UpperCamelCase__ : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear))
def __UpperCamelCase ( self : List[str]):
UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_)
UpperCamelCase__ : int = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ : Any = [*signature.parameters.keys()]
UpperCamelCase__ : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_)
def __UpperCamelCase ( self : str):
UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]):
# make masks reproducible
np.random.seed(2)
UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2)
UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_)
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCamelCase__ : List[str] = pt_noise
super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_))
UpperCamelCase__ : Dict = outputs[0].cpu().numpy()
UpperCamelCase__ : Optional[int] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_)
model.to(UpperCAmelCase_)
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_))
# Make sure we don't have nans
UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy()
UpperCamelCase__ : Any = 0
UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a))
self.assertLessEqual(UpperCAmelCase_ , 1e-5)
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def __UpperCamelCase ( self : Tuple):
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def __UpperCamelCase ( self : Optional[int]):
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def __UpperCamelCase ( self : Tuple):
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load')
def __UpperCamelCase ( self : Tuple):
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.')
def __UpperCamelCase ( self : Optional[int]):
pass
@slow
def __UpperCamelCase ( self : Optional[Any]):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self : int):
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None
@slow
def __UpperCamelCase ( self : str):
# make random mask reproducible across the PT and TF model
np.random.seed(2)
UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.default_image_processor
UpperCamelCase__ : Dict = prepare_img()
UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_)
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCamelCase__ : Union[str, Any] = ViTMAEConfig()
UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2)
UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches))
# forward pass
with torch.no_grad():
UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_))
# verify the logits
UpperCamelCase__ : Tuple = torch.Size((1, 196, 768))
self.assertEqual(outputs.logits.shape , UpperCAmelCase_)
UpperCamelCase__ : Any = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]])
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
| 6 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''imagegpt'''
_lowerCamelCase = ['''past_key_values''']
_lowerCamelCase = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , UpperCAmelCase_ : Dict=512 + 1 , UpperCAmelCase_ : int=32 * 32 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : List[Any]=24 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]="quick_gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=1e-5 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Any=False , **UpperCAmelCase_ : List[str] , ):
UpperCamelCase__ : int = vocab_size
UpperCamelCase__ : int = n_positions
UpperCamelCase__ : List[str] = n_embd
UpperCamelCase__ : Tuple = n_layer
UpperCamelCase__ : Dict = n_head
UpperCamelCase__ : Any = n_inner
UpperCamelCase__ : Union[str, Any] = activation_function
UpperCamelCase__ : Tuple = resid_pdrop
UpperCamelCase__ : str = embd_pdrop
UpperCamelCase__ : List[Any] = attn_pdrop
UpperCamelCase__ : str = layer_norm_epsilon
UpperCamelCase__ : Optional[int] = initializer_range
UpperCamelCase__ : Dict = scale_attn_weights
UpperCamelCase__ : Dict = use_cache
UpperCamelCase__ : Union[str, Any] = scale_attn_by_inverse_layer_idx
UpperCamelCase__ : int = reorder_and_upcast_attn
UpperCamelCase__ : List[Any] = tie_word_embeddings
super().__init__(tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_)
class __lowercase (__lowerCamelCase ):
@property
def __UpperCamelCase ( self : Optional[Any]):
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
])
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : "FeatureExtractionMixin" , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 32 , ):
UpperCamelCase__ : str = self._generate_dummy_images(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
UpperCamelCase__ : List[str] = dict(preprocessor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_))
return inputs
| 706 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __lowercase (metaclass=__lowerCamelCase ):
_lowerCamelCase = ['''torch''', '''scipy''']
def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int):
requires_backends(self , ['torch', 'scipy'])
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]):
requires_backends(cls , ['torch', 'scipy'])
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any):
requires_backends(cls , ['torch', 'scipy'])
| 6 | 0 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
UpperCamelCase__ : int = 384
if "tiny" in model_name:
UpperCamelCase__ : List[str] = [3, 3, 9, 3]
UpperCamelCase__ : int = [96, 192, 384, 768]
if "small" in model_name:
UpperCamelCase__ : Tuple = [3, 3, 27, 3]
UpperCamelCase__ : List[Any] = [96, 192, 384, 768]
if "base" in model_name:
UpperCamelCase__ : List[str] = [3, 3, 27, 3]
UpperCamelCase__ : Any = [128, 256, 512, 1_024]
UpperCamelCase__ : Optional[int] = 512
if "large" in model_name:
UpperCamelCase__ : str = [3, 3, 27, 3]
UpperCamelCase__ : str = [192, 384, 768, 1_536]
UpperCamelCase__ : str = 768
if "xlarge" in model_name:
UpperCamelCase__ : Optional[int] = [3, 3, 27, 3]
UpperCamelCase__ : Optional[int] = [256, 512, 1_024, 2_048]
UpperCamelCase__ : List[str] = 1_024
# set label information
UpperCamelCase__ : Optional[Any] = 150
UpperCamelCase__ : Union[str, Any] = 'huggingface/label-files'
UpperCamelCase__ : Tuple = 'ade20k-id2label.json'
UpperCamelCase__ : List[Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset') , 'r'))
UpperCamelCase__ : Union[str, Any] = {int(lowerCamelCase_): v for k, v in idalabel.items()}
UpperCamelCase__ : int = {v: k for k, v in idalabel.items()}
UpperCamelCase__ : int = ConvNextConfig(
depths=lowerCamelCase_ , hidden_sizes=lowerCamelCase_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'])
UpperCamelCase__ : List[Any] = UperNetConfig(
backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , )
return config
def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]:
UpperCamelCase__ : str = []
# fmt: off
# stem
rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight'))
rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias'))
rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight'))
rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias'))
# stages
for i in range(len(config.backbone_config.depths)):
for j in range(config.backbone_config.depths[i]):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter'))
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight'))
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias'))
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight'))
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias'))
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight'))
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias'))
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight'))
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias'))
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight'))
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias'))
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight'))
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias'))
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight'))
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias'))
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
])
# fmt: on
return rename_keys
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Tuple = dct.pop(lowerCamelCase_)
UpperCamelCase__ : Optional[Any] = val
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]:
UpperCamelCase__ : Optional[int] = {
'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth',
'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth',
'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth',
'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth',
'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth',
}
UpperCamelCase__ : Optional[int] = model_name_to_url[model_name]
UpperCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu')['state_dict']
UpperCamelCase__ : Tuple = get_upernet_config(lowerCamelCase_)
UpperCamelCase__ : List[Any] = UperNetForSemanticSegmentation(lowerCamelCase_)
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
UpperCamelCase__ : Optional[Any] = state_dict.pop(lowerCamelCase_)
if "bn" in key:
UpperCamelCase__ : Tuple = key.replace('bn' , 'batch_norm')
UpperCamelCase__ : List[Any] = val
# rename keys
UpperCamelCase__ : Union[str, Any] = create_rename_keys(lowerCamelCase_)
for src, dest in rename_keys:
rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
model.load_state_dict(lowerCamelCase_)
# verify on image
UpperCamelCase__ : Union[str, Any] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
UpperCamelCase__ : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw).convert('RGB')
UpperCamelCase__ : List[Any] = SegformerImageProcessor()
UpperCamelCase__ : Tuple = processor(lowerCamelCase_ , return_tensors='pt').pixel_values
with torch.no_grad():
UpperCamelCase__ : Union[str, Any] = model(lowerCamelCase_)
if model_name == "upernet-convnext-tiny":
UpperCamelCase__ : List[Any] = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]])
elif model_name == "upernet-convnext-small":
UpperCamelCase__ : str = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]])
elif model_name == "upernet-convnext-base":
UpperCamelCase__ : Optional[int] = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]])
elif model_name == "upernet-convnext-large":
UpperCamelCase__ : Union[str, Any] = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]])
elif model_name == "upernet-convnext-xlarge":
UpperCamelCase__ : Optional[int] = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]])
print('Logits:' , outputs.logits[0, 0, :3, :3])
assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4)
print('Looks ok!')
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}')
model.save_pretrained(lowerCamelCase_)
print(f'Saving processor to {pytorch_dump_folder_path}')
processor.save_pretrained(lowerCamelCase_)
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub')
model.push_to_hub(f'openmmlab/{model_name}')
processor.push_to_hub(f'openmmlab/{model_name}')
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-convnext-tiny',
type=str,
choices=[f'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']],
help='Name of the ConvNext UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
lowerCAmelCase__ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 707 |
'''simple docstring'''
class __lowercase :
def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False):
# Mapping from the first character of the prefix of the node
UpperCamelCase__ : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
UpperCamelCase__ : List[Any] = is_leaf
UpperCamelCase__ : Optional[Any] = prefix
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str):
UpperCamelCase__ : Optional[int] = 0
for q, w in zip(self.prefix , UpperCAmelCase_):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]):
for word in words:
self.insert(UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str):
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
UpperCamelCase__ : Optional[Any] = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_)
else:
UpperCamelCase__ : int = self.nodes[word[0]]
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match(
UpperCAmelCase_)
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(UpperCAmelCase_)
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
UpperCamelCase__ : Tuple = remaining_prefix
UpperCamelCase__ : str = self.nodes[matching_string[0]]
UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_)
UpperCamelCase__ : str = aux_node
if remaining_word == "":
UpperCamelCase__ : int = True
else:
self.nodes[matching_string[0]].insert(UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str):
UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_)
if not incoming_node:
return False
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match(
UpperCAmelCase_)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(UpperCAmelCase_)
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str):
UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_)
if not incoming_node:
return False
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match(
UpperCAmelCase_)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(UpperCAmelCase_)
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
UpperCamelCase__ : List[str] = list(self.nodes.values())[0]
UpperCamelCase__ : Tuple = merging_node.is_leaf
self.prefix += merging_node.prefix
UpperCamelCase__ : Tuple = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes) > 1:
UpperCamelCase__ : str = False
# If there is 1 edge, we merge it with its child
else:
UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0]
UpperCamelCase__ : Optional[Any] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
UpperCamelCase__ : Union[str, Any] = merging_node.nodes
return True
def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0):
if self.prefix != "":
print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '')
for value in self.nodes.values():
value.print_tree(height + 1)
def __UpperCAmelCase ( ) -> bool:
UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split()
UpperCamelCase__ : List[Any] = RadixNode()
root.insert_many(lowerCamelCase_)
assert all(root.find(lowerCamelCase_) for word in words)
assert not root.find('bandanas')
assert not root.find('apps')
root.delete('all')
assert not root.find('all')
root.delete('banana')
assert not root.find('banana')
assert root.find('bananas')
return True
def __UpperCAmelCase ( ) -> None:
assert test_trie()
def __UpperCAmelCase ( ) -> None:
UpperCamelCase__ : List[Any] = RadixNode()
UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split()
root.insert_many(lowerCamelCase_)
print('Words:' , lowerCamelCase_)
print('Tree:')
root.print_tree()
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_ = 10 , lowerCamelCase_ = 1_000 , lowerCamelCase_ = True) -> int:
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_)
and isinstance(lowerCamelCase_ , lowerCamelCase_)
and isinstance(lowerCamelCase_ , lowerCamelCase_)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError('Invalid value for min_val or max_val (min_value < max_value)')
return min_val if option else max_val
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int:
return int((number_a + number_a) / 2)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> None:
assert (
isinstance(lowerCamelCase_ , lowerCamelCase_) and isinstance(lowerCamelCase_ , lowerCamelCase_) and isinstance(lowerCamelCase_ , lowerCamelCase_)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError('argument value for lower and higher must be(lower > higher)')
if not lower < to_guess < higher:
raise ValueError(
'guess value must be within the range of lower and higher value')
def answer(lowerCamelCase_) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print('started...')
UpperCamelCase__ : Dict = lower
UpperCamelCase__ : Optional[Any] = higher
UpperCamelCase__ : Optional[int] = []
while True:
UpperCamelCase__ : List[Any] = get_avg(lowerCamelCase_ , lowerCamelCase_)
last_numbers.append(lowerCamelCase_)
if answer(lowerCamelCase_) == "low":
UpperCamelCase__ : Any = number
elif answer(lowerCamelCase_) == "high":
UpperCamelCase__ : Optional[Any] = number
else:
break
print(f'guess the number : {last_numbers[-1]}')
print(f'details : {last_numbers!s}')
def __UpperCAmelCase ( ) -> None:
UpperCamelCase__ : Dict = int(input('Enter lower value : ').strip())
UpperCamelCase__ : Union[str, Any] = int(input('Enter high value : ').strip())
UpperCamelCase__ : Optional[int] = int(input('Enter value to guess : ').strip())
guess_the_number(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
if __name__ == "__main__":
main()
| 708 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase__ = False
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Optional[Any]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __UpperCamelCase ( self : int):
return 12
@property
def __UpperCamelCase ( self : Tuple):
return 12
@property
def __UpperCamelCase ( self : Dict):
return 32
@property
def __UpperCamelCase ( self : Optional[int]):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
return tokenizer
@property
def __UpperCamelCase ( self : List[str]):
torch.manual_seed(0)
UpperCamelCase__ : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Optional[int]):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = 12
UpperCamelCase__ : Dict = 12
UpperCamelCase__ : Union[str, Any] = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_)
return model
def __UpperCamelCase ( self : int):
UpperCamelCase__ : List[Any] = 'cpu'
UpperCamelCase__ : List[str] = self.dummy_vqvae
UpperCamelCase__ : List[str] = self.dummy_text_encoder
UpperCamelCase__ : Optional[int] = self.dummy_tokenizer
UpperCamelCase__ : List[str] = self.dummy_transformer
UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed)
UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_)
UpperCamelCase__ : int = VQDiffusionPipeline(
vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , )
UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool'
UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : Optional[Any] = output.images
UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Any = pipe(
[prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0]
UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Optional[int] = 'cpu'
UpperCamelCase__ : str = self.dummy_vqvae
UpperCamelCase__ : Any = self.dummy_text_encoder
UpperCamelCase__ : List[Any] = self.dummy_tokenizer
UpperCamelCase__ : Dict = self.dummy_transformer
UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed)
UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings(
learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length)
UpperCamelCase__ : str = VQDiffusionPipeline(
vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , )
UpperCamelCase__ : str = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool'
UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : int = output.images
UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Optional[Any] = pipe(
[prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0]
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88])
assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Any):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Optional[Any] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy')
UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq')
UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_)
pipeline.set_progress_bar_config(disable=UpperCAmelCase_)
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : int = pipeline(
'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , )
UpperCamelCase__ : int = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).max() < 2.0
| 6 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase__ = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 709 |
'''simple docstring'''
import numpy as np
from PIL import Image
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray:
UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : int = 0
UpperCamelCase__ : Optional[int] = 0
UpperCamelCase__ : str = 0
# compute the shape of the output matrix
UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape))
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size])
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : Optional[int] = 0
return updated_arr
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray:
UpperCamelCase__ : Tuple = np.array(lowerCamelCase_)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
UpperCamelCase__ : Optional[int] = 0
UpperCamelCase__ : int = 0
UpperCamelCase__ : List[str] = 0
UpperCamelCase__ : List[Any] = 0
# compute the shape of the output matrix
UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape))
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size]))
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ : Union[str, Any] = 0
UpperCamelCase__ : Optional[Any] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='avgpooling', verbose=True)
# Loading the image
lowerCAmelCase__ = Image.open('path_to_image')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 6 | 0 |
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str:
# Initialise PyTorch model
UpperCamelCase__ : Optional[int] = BertConfig.from_json_file(lowerCamelCase_)
print(f'Building PyTorch model from configuration: {config}')
UpperCamelCase__ : str = BertForPreTraining(lowerCamelCase_)
# Load weights from tf checkpoint
load_tf_weights_in_bert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}')
torch.save(model.state_dict() , lowerCamelCase_)
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--bert_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
lowerCAmelCase__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 710 |
'''simple docstring'''
from __future__ import annotations
class __lowercase :
def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]):
UpperCamelCase__ : int = TypeError(
'Matrices must be formed from a list of zero or more lists containing at '
'least one and the same number of values, each of which must be of type '
'int or float.')
if len(UpperCAmelCase_) != 0:
UpperCamelCase__ : str = len(rows[0])
if cols == 0:
raise error
for row in rows:
if len(UpperCAmelCase_) != cols:
raise error
for value in row:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise error
UpperCamelCase__ : Optional[int] = rows
else:
UpperCamelCase__ : Optional[Any] = []
def __UpperCamelCase ( self : Union[str, Any]):
return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))]
@property
def __UpperCamelCase ( self : Dict):
return len(self.rows)
@property
def __UpperCamelCase ( self : Tuple):
return len(self.rows[0])
@property
def __UpperCamelCase ( self : List[Any]):
return (self.num_rows, self.num_columns)
@property
def __UpperCamelCase ( self : Any):
return self.order[0] == self.order[1]
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Optional[int] = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows)]
for row_num in range(self.num_rows)
]
return Matrix(UpperCAmelCase_)
def __UpperCamelCase ( self : Dict):
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0])
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]))
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns))
def __UpperCamelCase ( self : str):
return bool(self.determinant())
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
UpperCamelCase__ : Optional[Any] = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns)
if other_column != column
]
for other_row in range(self.num_rows)
if other_row != row
]
return Matrix(UpperCAmelCase_).determinant()
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
if (row + column) % 2 == 0:
return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_)
return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : List[Any]):
return Matrix(
[
[self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)]
for row in range(self.num_rows)
])
def __UpperCamelCase ( self : Optional[int]):
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns)
]
for row in range(self.minors().num_rows)
])
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Dict = [
[self.cofactors().rows[column][row] for column in range(self.num_columns)]
for row in range(self.num_rows)
]
return Matrix(UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__ : List[Any] = self.determinant()
if not determinant:
raise TypeError('Only matrices with a non-zero determinant have an inverse')
return self.adjugate() * (1 / determinant)
def __repr__( self : Any):
return str(self.rows)
def __str__( self : List[Any]):
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0])) + "]]"
return (
"["
+ "\n ".join(
[
'[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]'
for row in self.rows
])
+ "]"
)
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None):
UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats')
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise type_error
for value in row:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise type_error
if len(UpperCAmelCase_) != self.num_columns:
raise ValueError(
'Row must be equal in length to the other rows in the matrix')
if position is None:
self.rows.append(UpperCAmelCase_)
else:
UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:]
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None):
UpperCamelCase__ : int = TypeError(
'Column must be a list containing all ints and/or floats')
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise type_error
for value in column:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise type_error
if len(UpperCAmelCase_) != self.num_rows:
raise ValueError(
'Column must be equal in length to the other columns in the matrix')
if position is None:
UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)]
else:
UpperCamelCase__ : str = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows)
]
def __eq__( self : List[Any] , UpperCAmelCase_ : object):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
return NotImplemented
return self.rows == other.rows
def __ne__( self : Any , UpperCAmelCase_ : object):
return not self == other
def __neg__( self : Union[str, Any]):
return self * -1
def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix):
if self.order != other.order:
raise ValueError('Addition requires matrices of the same order')
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
])
def __sub__( self : Tuple , UpperCAmelCase_ : Matrix):
if self.order != other.order:
raise ValueError('Subtraction requires matrices of the same order')
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
])
def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float):
if isinstance(UpperCAmelCase_ , (int, float)):
return Matrix(
[[int(element * other) for element in row] for row in self.rows])
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
if self.num_columns != other.num_rows:
raise ValueError(
'The number of columns in the first matrix must '
'be equal to the number of rows in the second')
return Matrix(
[
[Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()]
for row in self.rows
])
else:
raise TypeError(
'A Matrix can only be multiplied by an int, float, or another matrix')
def __pow__( self : Dict , UpperCAmelCase_ : int):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise TypeError('A Matrix can only be raised to the power of an int')
if not self.is_square:
raise ValueError('Only square matrices can be raised to a power')
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
'Only invertable matrices can be raised to a negative power')
UpperCamelCase__ : str = self
for _ in range(other - 1):
result *= self
return result
@classmethod
def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]):
return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
'''simple docstring'''
class __lowercase :
def __init__( self : str):
UpperCamelCase__ : Union[str, Any] = 0
UpperCamelCase__ : Any = 0
UpperCamelCase__ : int = {}
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : int):
if vertex not in self.adjacency:
UpperCamelCase__ : Tuple = {}
self.num_vertices += 1
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple):
self.add_vertex(UpperCAmelCase_)
self.add_vertex(UpperCAmelCase_)
if head == tail:
return
UpperCamelCase__ : Tuple = weight
UpperCamelCase__ : Optional[int] = weight
def __UpperCamelCase ( self : Union[str, Any]):
UpperCamelCase__ : List[Any] = self.get_edges()
for edge in edges:
UpperCamelCase__ : str = edge
edges.remove((tail, head, weight))
for i in range(len(UpperCAmelCase_)):
UpperCamelCase__ : Any = list(edges[i])
edges.sort(key=lambda UpperCAmelCase_: e[2])
for i in range(len(UpperCAmelCase_) - 1):
if edges[i][2] >= edges[i + 1][2]:
UpperCamelCase__ : Optional[int] = edges[i][2] + 1
for edge in edges:
UpperCamelCase__ : List[Any] = edge
UpperCamelCase__ : Dict = weight
UpperCamelCase__ : List[Any] = weight
def __str__( self : Any):
UpperCamelCase__ : List[Any] = ''
for tail in self.adjacency:
for head in self.adjacency[tail]:
UpperCamelCase__ : Union[str, Any] = self.adjacency[head][tail]
string += F'{head} -> {tail} == {weight}\n'
return string.rstrip('\n')
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : Optional[Any] = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]))
return output
def __UpperCamelCase ( self : List[str]):
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None):
UpperCamelCase__ : Tuple = Graph()
if vertices is None:
UpperCamelCase__ : Tuple = []
if edges is None:
UpperCamelCase__ : List[str] = []
for vertex in vertices:
g.add_vertex(UpperCAmelCase_)
for edge in edges:
g.add_edge(*UpperCAmelCase_)
return g
class __lowercase :
def __init__( self : Tuple):
UpperCamelCase__ : int = {}
UpperCamelCase__ : List[str] = {}
def __len__( self : Any):
return len(self.parent)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]):
if item in self.parent:
return self.find(UpperCAmelCase_)
UpperCamelCase__ : List[Any] = item
UpperCamelCase__ : Dict = 0
return item
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[int]):
if item not in self.parent:
return self.make_set(UpperCAmelCase_)
if item != self.parent[item]:
UpperCamelCase__ : List[str] = self.find(self.parent[item])
return self.parent[item]
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int):
UpperCamelCase__ : List[str] = self.find(UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.find(UpperCAmelCase_)
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
UpperCamelCase__ : Union[str, Any] = roota
return roota
if self.rank[roota] < self.rank[roota]:
UpperCamelCase__ : Any = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
UpperCamelCase__ : Dict = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( UpperCAmelCase_ : Optional[Any]):
UpperCamelCase__ : Optional[Any] = graph.num_vertices
UpperCamelCase__ : Tuple = Graph.UnionFind()
UpperCamelCase__ : Optional[int] = []
while num_components > 1:
UpperCamelCase__ : Tuple = {}
for vertex in graph.get_vertices():
UpperCamelCase__ : Optional[Any] = -1
UpperCamelCase__ : int = graph.get_edges()
for edge in edges:
UpperCamelCase__ : str = edge
edges.remove((tail, head, weight))
for edge in edges:
UpperCamelCase__ : Optional[Any] = edge
UpperCamelCase__ : Union[str, Any] = union_find.find(UpperCAmelCase_)
UpperCamelCase__ : List[Any] = union_find.find(UpperCAmelCase_)
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
UpperCamelCase__ : Optional[Any] = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
UpperCamelCase__ : Tuple = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
UpperCamelCase__ : Union[str, Any] = cheap_edge[vertex]
if union_find.find(UpperCAmelCase_) != union_find.find(UpperCAmelCase_):
union_find.union(UpperCAmelCase_ , UpperCAmelCase_)
mst_edges.append(cheap_edge[vertex])
UpperCamelCase__ : int = num_components - 1
UpperCamelCase__ : Dict = Graph.build(edges=UpperCAmelCase_)
return mst
| 711 |
'''simple docstring'''
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class __lowercase :
def __UpperCamelCase ( self : Union[str, Any]):
torch.manual_seed(0)
UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : List[str] = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , )
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
UpperCamelCase__ : Optional[Any] = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __UpperCamelCase ( self : Dict):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Any = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
UpperCamelCase__ : str = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0)
UpperCamelCase__ : List[str] = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , )
torch.manual_seed(0)
UpperCamelCase__ : Optional[Any] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Dict = self.get_dummy_components()
UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_)
pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = inputs['prompt']
UpperCamelCase__ : List[Any] = inputs['generator']
UpperCamelCase__ : Tuple = inputs['num_inference_steps']
UpperCamelCase__ : List[Any] = inputs['output_type']
if "image" in inputs:
UpperCamelCase__ : Tuple = inputs['image']
else:
UpperCamelCase__ : Union[str, Any] = None
if "mask_image" in inputs:
UpperCamelCase__ : Optional[int] = inputs['mask_image']
else:
UpperCamelCase__ : int = None
if "original_image" in inputs:
UpperCamelCase__ : List[Any] = inputs['original_image']
else:
UpperCamelCase__ : Optional[Any] = None
UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_)
# inputs with prompt converted to embeddings
UpperCamelCase__ : List[Any] = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
UpperCamelCase__ : Dict = image
if mask_image is not None:
UpperCamelCase__ : Optional[int] = mask_image
if original_image is not None:
UpperCamelCase__ : Union[str, Any] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_)
pipe_loaded.to(UpperCAmelCase_)
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , )
UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = inputs['generator']
UpperCamelCase__ : List[Any] = inputs['num_inference_steps']
UpperCamelCase__ : Optional[int] = inputs['output_type']
# inputs with prompt converted to embeddings
UpperCamelCase__ : Any = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
UpperCamelCase__ : Tuple = image
if mask_image is not None:
UpperCamelCase__ : Union[str, Any] = mask_image
if original_image is not None:
UpperCamelCase__ : str = original_image
UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0]
UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max()
self.assertLess(UpperCAmelCase_ , 1e-4)
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Any = self.get_dummy_components()
UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_)
pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_)
pipe_loaded.to(UpperCAmelCase_)
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0]
UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max()
self.assertLess(UpperCAmelCase_ , 1e-4)
| 6 | 0 |
'''simple docstring'''
from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase__ = 300 # TEMPERATURE (unit = K)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ):
if donor_conc <= 0:
raise ValueError('Donor concentration should be positive')
elif acceptor_conc <= 0:
raise ValueError('Acceptor concentration should be positive')
elif intrinsic_conc <= 0:
raise ValueError('Intrinsic concentration should be positive')
elif donor_conc <= intrinsic_conc:
raise ValueError(
'Donor concentration should be greater than intrinsic concentration')
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
'Acceptor concentration should be greater than intrinsic concentration')
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2)
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 712 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
lowerCAmelCase__ = 3
def __UpperCAmelCase ( lowerCamelCase_) -> int:
print('Generating primitive root of p')
while True:
UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_)
if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1:
continue
if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1:
continue
return g
def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print('Generating prime p...')
UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number.
UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p.
UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety.
UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_)
UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p)
UpperCamelCase__ : Optional[Any] = (key_size, d)
return public_key, private_key
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None:
if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'):
print('\nWARNING:')
print(
f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
'Use a different name or delete these files and re-run this program.')
sys.exit()
UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_)
print(f'\nWriting public key to file {name}_pubkey.txt...')
with open(f'{name}_pubkey.txt' , 'w') as fo:
fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}')
print(f'Writing private key to file {name}_privkey.txt...')
with open(f'{name}_privkey.txt' , 'w') as fo:
fo.write(f'{private_key[0]},{private_key[1]}')
def __UpperCAmelCase ( ) -> None:
print('Making key files...')
make_key_files('elgamal' , 2_048)
print('Key files generation successful')
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
lowerCAmelCase__ = logging.getLogger(__name__)
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=3_0522, type=int)
lowerCAmelCase__ = parser.parse_args()
logger.info(f'''Loading data from {args.data_file}''')
with open(args.data_file, 'rb') as fp:
lowerCAmelCase__ = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
lowerCAmelCase__ = Counter()
for tk_ids in data:
counter.update(tk_ids)
lowerCAmelCase__ = [0] * args.vocab_size
for k, v in counter.items():
lowerCAmelCase__ = v
logger.info(f'''Dump to {args.token_counts_dump}''')
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
| 713 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'ctc_proj',
'mask_emb': 'masked_spec_embed',
}
lowerCAmelCase__ = [
'ctc_proj',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str:
for attribute in key.split('.'):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
UpperCamelCase__ : str = 'lm_head'
UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_)
if weight_type is not None:
UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape
else:
UpperCamelCase__ : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
UpperCamelCase__ : Optional[Any] = value
elif weight_type == "weight_g":
UpperCamelCase__ : Union[str, Any] = value
elif weight_type == "weight_v":
UpperCamelCase__ : List[Any] = value
elif weight_type == "bias":
UpperCamelCase__ : Any = value
else:
UpperCamelCase__ : Optional[int] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.')
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]:
UpperCamelCase__ : List[Any] = []
UpperCamelCase__ : int = fairseq_model.state_dict()
UpperCamelCase__ : int = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase__ : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase__ : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]:
UpperCamelCase__ : Any = True
if "*" in mapped_key:
UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2]
UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_)
if "weight_g" in name:
UpperCamelCase__ : int = 'weight_g'
elif "weight_v" in name:
UpperCamelCase__ : Any = 'weight_v'
elif "bias" in name:
UpperCamelCase__ : Union[str, Any] = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase__ : Any = 'weight'
else:
UpperCamelCase__ : Tuple = None
set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
continue
if not is_used:
unused_weights.append(lowerCamelCase_)
logger.warning(f'Unused weights: {unused_weights}')
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1]
UpperCamelCase__ : List[Any] = name.split('.')
UpperCamelCase__ : Any = int(items[0])
UpperCamelCase__ : int = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
UpperCamelCase__ : Tuple = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
UpperCamelCase__ : int = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
UpperCamelCase__ : Optional[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
UpperCamelCase__ : List[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.')
else:
unused_weights.append(lowerCamelCase_)
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple:
if config_path is not None:
UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_)
else:
UpperCamelCase__ : int = UniSpeechConfig()
if is_finetuned:
if dict_path:
UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase__ : List[Any] = target_dict.pad_index
UpperCamelCase__ : Dict = target_dict.bos_index
UpperCamelCase__ : Union[str, Any] = target_dict.eos_index
UpperCamelCase__ : Tuple = len(target_dict.symbols)
UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json')
if not os.path.isdir(lowerCamelCase_):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_))
return
os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_)
UpperCamelCase__ : Optional[int] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase__ : Any = 42
UpperCamelCase__ : List[str] = 43
with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle:
json.dump(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer(
lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , )
UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , )
UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_)
processor.save_pretrained(lowerCamelCase_)
UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_)
else:
UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_)
if is_finetuned:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path})
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path])
UpperCamelCase__ : int = model[0].eval()
recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
hf_unispeech.save_pretrained(lowerCamelCase_)
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
lowerCAmelCase__ = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 6 | 0 |
'''simple docstring'''
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple:
assert isinstance(lowerCamelCase_ , lowerCamelCase_)
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int:
UpperCamelCase__ : List[str] = tmp_path / 'cache'
UpperCamelCase__ : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase__ : Union[str, Any] = JsonDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_).read()
_check_json_dataset(lowerCamelCase_ , lowerCamelCase_)
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int:
UpperCamelCase__ : Optional[int] = tmp_path / 'cache'
UpperCamelCase__ : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ : Optional[int] = features.copy() if features else default_expected_features
UpperCamelCase__ : Tuple = (
Features({feature: Value(lowerCamelCase_) for feature, dtype in features.items()}) if features is not None else None
)
UpperCamelCase__ : Dict = JsonDatasetReader(lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_).read()
_check_json_dataset(lowerCamelCase_ , lowerCamelCase_)
@pytest.mark.parametrize(
'features' , [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
] , )
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict:
UpperCamelCase__ : int = tmp_path / 'cache'
UpperCamelCase__ : str = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
UpperCamelCase__ : Any = features.copy() if features else default_expected_features
UpperCamelCase__ : Optional[int] = (
Features({feature: Value(lowerCamelCase_) for feature, dtype in features.items()}) if features is not None else None
)
UpperCamelCase__ : Dict = JsonDatasetReader(lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_).read()
assert isinstance(lowerCamelCase_ , lowerCamelCase_)
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
UpperCamelCase__ : Optional[Any] = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
UpperCamelCase__ : Union[str, Any] = features.copy()
UpperCamelCase__ : Union[str, Any] = (
Features({feature: Value(lowerCamelCase_) for feature, dtype in features.items()}) if features is not None else None
)
UpperCamelCase__ : str = tmp_path / 'cache'
UpperCamelCase__ : Optional[int] = JsonDatasetReader(lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_).read()
assert isinstance(lowerCamelCase_ , lowerCamelCase_)
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split' , [None, NamedSplit('train'), 'train', 'test'])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any:
UpperCamelCase__ : int = tmp_path / 'cache'
UpperCamelCase__ : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ : Optional[Any] = JsonDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , split=lowerCamelCase_).read()
_check_json_dataset(lowerCamelCase_ , lowerCamelCase_)
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any:
if issubclass(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase__ : Optional[Any] = jsonl_path
elif issubclass(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase__ : Tuple = [jsonl_path]
UpperCamelCase__ : Tuple = tmp_path / 'cache'
UpperCamelCase__ : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ : Optional[Any] = JsonDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_).read()
_check_json_dataset(lowerCamelCase_ , lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=("train",)) -> Optional[int]:
assert isinstance(lowerCamelCase_ , lowerCamelCase_)
for split in splits:
UpperCamelCase__ : Tuple = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int:
UpperCamelCase__ : List[Any] = tmp_path / 'cache'
UpperCamelCase__ : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase__ : Optional[Any] = JsonDatasetReader({'train': jsonl_path} , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_).read()
_check_json_datasetdict(lowerCamelCase_ , lowerCamelCase_)
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]:
UpperCamelCase__ : List[str] = tmp_path / 'cache'
UpperCamelCase__ : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ : Optional[Any] = features.copy() if features else default_expected_features
UpperCamelCase__ : List[str] = (
Features({feature: Value(lowerCamelCase_) for feature, dtype in features.items()}) if features is not None else None
)
UpperCamelCase__ : str = JsonDatasetReader({'train': jsonl_path} , features=lowerCamelCase_ , cache_dir=lowerCamelCase_).read()
_check_json_datasetdict(lowerCamelCase_ , lowerCamelCase_)
@pytest.mark.parametrize('split' , [None, NamedSplit('train'), 'train', 'test'])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int:
if split:
UpperCamelCase__ : Tuple = {split: jsonl_path}
else:
UpperCamelCase__ : int = 'train'
UpperCamelCase__ : List[str] = {'train': jsonl_path, 'test': jsonl_path}
UpperCamelCase__ : Tuple = tmp_path / 'cache'
UpperCamelCase__ : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ : int = JsonDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_).read()
_check_json_datasetdict(lowerCamelCase_ , lowerCamelCase_ , splits=list(path.keys()))
assert all(dataset[split].split == split for split in path.keys())
def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]:
return json.load(lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]:
return [json.loads(lowerCamelCase_) for line in buffer]
class __lowercase :
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)])
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]):
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , lines=UpperCAmelCase_).write()
buffer.seek(0)
UpperCamelCase__ : Optional[Any] = load_json_function(UpperCAmelCase_)
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_)
assert isinstance(exported_content[0] , UpperCAmelCase_)
assert len(UpperCAmelCase_) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789'), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]):
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , lines=UpperCAmelCase_ , orient=UpperCAmelCase_).write()
buffer.seek(0)
UpperCamelCase__ : Optional[int] = load_json(UpperCAmelCase_)
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_)
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(UpperCAmelCase_ , 'keys') and not hasattr(exported_content[0] , 'keys')
if len_at:
assert len(exported_content[len_at]) == 10
else:
assert len(UpperCAmelCase_) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)])
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str):
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , lines=UpperCAmelCase_ , num_proc=2).write()
buffer.seek(0)
UpperCamelCase__ : str = load_json_function(UpperCAmelCase_)
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_)
assert isinstance(exported_content[0] , UpperCAmelCase_)
assert len(UpperCAmelCase_) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789'), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str):
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , lines=UpperCAmelCase_ , orient=UpperCAmelCase_ , num_proc=2).write()
buffer.seek(0)
UpperCamelCase__ : Union[str, Any] = load_json(UpperCAmelCase_)
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_)
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(UpperCAmelCase_ , 'keys') and not hasattr(exported_content[0] , 'keys')
if len_at:
assert len(exported_content[len_at]) == 10
else:
assert len(UpperCAmelCase_) == 10
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int]):
with pytest.raises(UpperCAmelCase_):
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=0)
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')])
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any):
UpperCamelCase__ : int = tmp_path_factory.mktemp('data') / F'test.json.{extension}'
UpperCamelCase__ : Dict = str(shared_datadir / F'test_file.json.{extension}')
JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , compression=UpperCAmelCase_).write()
with fsspec.open(UpperCAmelCase_ , 'rb' , compression='infer') as f:
UpperCamelCase__ : Optional[int] = f.read()
with fsspec.open(UpperCAmelCase_ , 'rb' , compression='infer') as f:
UpperCamelCase__ : int = f.read()
assert exported_content == original_content
| 714 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : List[str]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Union[str, Any] = 1
UpperCamelCase__ : Union[str, Any] = 3
UpperCamelCase__ : Dict = (32, 32)
UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_)
return image
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def __UpperCamelCase ( self : str):
torch.manual_seed(0)
UpperCamelCase__ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Optional[Any]):
def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict):
class __lowercase :
def __init__( self : List[Any]):
UpperCamelCase__ : Optional[Any] = torch.ones([0])
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int):
self.pixel_values.to(UpperCAmelCase_)
return self
return Out()
return extract
def __UpperCamelCase ( self : str):
UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ : Any = self.dummy_cond_unet
UpperCamelCase__ : Any = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , )
UpperCamelCase__ : List[str] = self.dummy_vae
UpperCamelCase__ : str = self.dummy_text_encoder
UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : Tuple = output.images
UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Tuple = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ : int = self.dummy_cond_unet
UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = self.dummy_vae
UpperCamelCase__ : Optional[int] = self.dummy_text_encoder
UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Dict = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : List[str] = output.images
UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Optional[Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1]
UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_)
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_)
assert isinstance(pipe.scheduler , UpperCAmelCase_)
assert pipe.safety_checker is None
UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU')
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Dict = self.dummy_cond_unet
UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_)
UpperCamelCase__ : Any = self.dummy_vae
UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder
UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# put models in fp16
UpperCamelCase__ : Any = unet.half()
UpperCamelCase__ : Tuple = vae.half()
UpperCamelCase__ : Optional[int] = bert.half()
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Optional[int] = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Optional[int]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = (
'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'
' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'
' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'
' children from bahnhof zoo, detailed '
)
UpperCamelCase__ : Any = 4_003_660_346
UpperCamelCase__ : Any = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : str = output.images
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# without safety guidance (strong configuration)
UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : str = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Dict = output.images
UpperCamelCase__ : str = image[0, -3:, -3:, -1]
UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_)
UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity'
UpperCamelCase__ : Tuple = 2_734_971_755
UpperCamelCase__ : Tuple = 7
UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : int = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : int = output.images
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Tuple = output.images
UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5')
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : int = (
'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'
' leyendecker'
)
UpperCamelCase__ : Any = 1_044_355_234
UpperCamelCase__ : Optional[int] = 12
UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : str = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : List[str] = output.images
UpperCamelCase__ : Any = image[0, -3:, -3:, -1]
UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7
UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : List[str] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Optional[Any] = output.images
UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 6 | 0 |
'''simple docstring'''
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def __UpperCAmelCase ( lowerCamelCase_) -> float:
return np.dot(lowerCamelCase_ , lowerCamelCase_)
class __lowercase :
def __init__( self : Tuple , *,
UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ):
UpperCamelCase__ : Union[str, Any] = regularization
UpperCamelCase__ : Optional[int] = gamma
if kernel == "linear":
UpperCamelCase__ : List[str] = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('rbf kernel requires gamma')
if not isinstance(self.gamma , (float, int)):
raise ValueError('gamma must be float or int')
if not self.gamma > 0:
raise ValueError('gamma must be > 0')
UpperCamelCase__ : Union[str, Any] = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}'
raise ValueError(UpperCAmelCase_)
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray):
return np.dot(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray):
return np.exp(-(self.gamma * norm_squared(vectora - vectora)))
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray):
UpperCamelCase__ : Any = observations
UpperCamelCase__ : Tuple = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
(UpperCamelCase__ ) : Optional[Any] = np.shape(UpperCAmelCase_)
def to_minimize(UpperCAmelCase_ : ndarray) -> float:
UpperCamelCase__ : Union[str, Any] = 0
(UpperCamelCase__ ) : int = np.shape(UpperCAmelCase_)
for i in range(UpperCAmelCase_):
for j in range(UpperCAmelCase_):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j])
)
return 1 / 2 * s - sum(UpperCAmelCase_)
UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0)
UpperCamelCase__ : Dict = Bounds(0 , self.regularization)
UpperCamelCase__ : Any = minimize(
UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x
UpperCamelCase__ : str = l_star
# calculating mean offset of separation plane to points
UpperCamelCase__ : Any = 0
for i in range(UpperCAmelCase_):
for j in range(UpperCAmelCase_):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j])
UpperCamelCase__ : List[str] = s / n
def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray):
UpperCamelCase__ : Optional[int] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , UpperCAmelCase_)
for n in range(len(self.classes)))
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
lowerCAmelCase__ = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
lowerCAmelCase__ = {'facebook/blenderbot-3B': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __UpperCAmelCase ( ) -> Union[str, Any]:
UpperCamelCase__ : Optional[Any] = (
list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1))
)
UpperCamelCase__ : List[Any] = bs[:]
UpperCamelCase__ : Optional[int] = 0
for b in range(2**8):
if b not in bs:
bs.append(lowerCamelCase_)
cs.append(2**8 + n)
n += 1
UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs]
return dict(zip(lowerCamelCase_ , lowerCamelCase_))
def __UpperCAmelCase ( lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Any = set()
UpperCamelCase__ : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
UpperCamelCase__ : str = char
return pairs
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ):
UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token
UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token
UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token
UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token
UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token
UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token
super().__init__(
errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , )
with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle:
UpperCamelCase__ : Any = json.load(UpperCAmelCase_)
UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()}
UpperCamelCase__ : Any = errors # how to handle errors in decoding
UpperCamelCase__ : Tuple = bytes_to_unicode()
UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle:
UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1]
UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges]
UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
UpperCamelCase__ : Dict = {}
UpperCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+')
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def __UpperCamelCase ( self : Tuple):
return len(self.encoder)
def __UpperCamelCase ( self : Tuple):
return dict(self.encoder , **self.added_tokens_encoder)
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]):
if token in self.cache:
return self.cache[token]
UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_)
UpperCamelCase__ : int = get_pairs(UpperCAmelCase_)
if not pairs:
return token
while True:
UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf')))
if bigram not in self.bpe_ranks:
break
UpperCamelCase__, UpperCamelCase__ : Tuple = bigram
UpperCamelCase__ : Dict = []
UpperCamelCase__ : Optional[int] = 0
while i < len(UpperCAmelCase_):
try:
UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
UpperCamelCase__ : Any = j
if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_)
UpperCamelCase__ : Dict = new_word
if len(UpperCAmelCase_) == 1:
break
else:
UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_)
UpperCamelCase__ : List[Any] = word
return word
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any):
UpperCamelCase__ : Optional[Any] = []
for token in re.findall(self.pat , UpperCAmelCase_):
UpperCamelCase__ : Optional[int] = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' '))
return bpe_tokens
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]):
return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token))
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]):
return self.decoder.get(UpperCAmelCase_)
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int):
UpperCamelCase__ : int = ''.join(UpperCAmelCase_)
UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors)
return text
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None):
if not os.path.isdir(UpperCAmelCase_):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
UpperCamelCase__ : str = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
UpperCamelCase__ : Optional[Any] = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n')
UpperCamelCase__ : str = 0
with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!')
UpperCamelCase__ : List[Any] = token_index
writer.write(' '.join(UpperCAmelCase_) + '\n')
index += 1
return vocab_file, merge_file
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase_)) + [1]
return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1]
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
UpperCamelCase__ : Any = [self.sep_token_id]
UpperCamelCase__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]):
UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()):
UpperCamelCase__ : str = ' ' + text
return (text, kwargs)
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
return token_ids_a + [self.eos_token_id]
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"):
UpperCamelCase__ : List[str] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text)
else:
# Generated responses should contain them already.
inputs.append(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_)
UpperCamelCase__ : int = self.encode(UpperCAmelCase_)
if len(UpperCAmelCase_) > self.model_max_length:
UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :]
logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.')
return input_ids
| 6 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json',
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''open-llama'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Any=100_000 , UpperCAmelCase_ : Union[str, Any]=4_096 , UpperCAmelCase_ : int=11_008 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : Optional[int]="silu" , UpperCAmelCase_ : Optional[int]=2_048 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-6 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : Dict , ):
UpperCamelCase__ : int = vocab_size
UpperCamelCase__ : Optional[int] = max_position_embeddings
UpperCamelCase__ : Dict = hidden_size
UpperCamelCase__ : Dict = intermediate_size
UpperCamelCase__ : List[Any] = num_hidden_layers
UpperCamelCase__ : Union[str, Any] = num_attention_heads
UpperCamelCase__ : Optional[int] = hidden_act
UpperCamelCase__ : List[Any] = initializer_range
UpperCamelCase__ : List[Any] = rms_norm_eps
UpperCamelCase__ : Optional[int] = use_cache
UpperCamelCase__ : Any = kwargs.pop(
'use_memorry_efficient_attention' , UpperCAmelCase_)
UpperCamelCase__ : int = hidden_dropout_prob
UpperCamelCase__ : Tuple = attention_dropout_prob
UpperCamelCase__ : Optional[Any] = use_stable_embedding
UpperCamelCase__ : Optional[Any] = shared_input_output_embedding
UpperCamelCase__ : Dict = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_ , )
def __UpperCamelCase ( self : List[str]):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , UpperCAmelCase_) or len(self.rope_scaling) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
F'got {self.rope_scaling}')
UpperCamelCase__ : Optional[Any] = self.rope_scaling.get('type' , UpperCAmelCase_)
UpperCamelCase__ : Any = self.rope_scaling.get('factor' , UpperCAmelCase_)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}')
if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or rope_scaling_factor <= 1.0:
raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
| 716 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str:
UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser')
UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_).find('span').text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 6 | 0 |
'''simple docstring'''
import operator
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None) -> list:
UpperCamelCase__ : Union[str, Any] = operator.lt if reverse else operator.gt
UpperCamelCase__ : List[str] = solution or []
if not arr:
return solution
UpperCamelCase__ : Tuple = [arr.pop(0)]
for i, item in enumerate(lowerCamelCase_):
if _operator(lowerCamelCase_ , sublist[-1]):
sublist.append(lowerCamelCase_)
arr.pop(lowerCamelCase_)
# merging sublist into solution list
if not solution:
solution.extend(lowerCamelCase_)
else:
while sublist:
UpperCamelCase__ : List[Any] = sublist.pop(0)
for i, xx in enumerate(lowerCamelCase_):
if not _operator(lowerCamelCase_ , lowerCamelCase_):
solution.insert(lowerCamelCase_ , lowerCamelCase_)
break
else:
solution.append(lowerCamelCase_)
strand_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 717 |
'''simple docstring'''
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@slow
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
model.to(UpperCAmelCase_)
from datasets import load_dataset
UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo')
UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB')
UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_)
# forward pass
with torch.no_grad():
UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_)
UpperCamelCase__ : Tuple = outputs.logits
UpperCamelCase__ : str = torch.Size((1, 16))
self.assertEqual(logits.shape , UpperCAmelCase_)
UpperCamelCase__ : Tuple = torch.tensor(
[-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
| 6 | 0 |
'''simple docstring'''
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
lowerCAmelCase__ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'
def __UpperCAmelCase ( ) -> List[str]:
UpperCamelCase__ : int = _ask_options(
'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
UpperCamelCase__ : Any = get_sagemaker_input()
else:
UpperCamelCase__ : Optional[Any] = get_cluster_input()
return config
def __UpperCAmelCase ( lowerCamelCase_=None) -> int:
if subparsers is not None:
UpperCamelCase__ : Tuple = subparsers.add_parser('config' , description=lowerCamelCase_)
else:
UpperCamelCase__ : Tuple = argparse.ArgumentParser('Accelerate config command' , description=lowerCamelCase_)
parser.add_argument(
'--config_file' , default=lowerCamelCase_ , help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
) , )
if subparsers is not None:
parser.set_defaults(func=lowerCamelCase_)
return parser
def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]:
UpperCamelCase__ : Optional[Any] = get_user_input()
if args.config_file is not None:
UpperCamelCase__ : int = args.config_file
else:
if not os.path.isdir(lowerCamelCase_):
os.makedirs(lowerCamelCase_)
UpperCamelCase__ : Tuple = default_yaml_config_file
if config_file.endswith('.json'):
config.to_json_file(lowerCamelCase_)
else:
config.to_yaml_file(lowerCamelCase_)
print(f'accelerate configuration saved at {config_file}')
def __UpperCAmelCase ( ) -> Dict:
UpperCamelCase__ : Dict = config_command_parser()
UpperCamelCase__ : Optional[Any] = parser.parse_args()
config_command(lowerCamelCase_)
if __name__ == "__main__":
main()
| 718 |
'''simple docstring'''
import argparse
import struct
import unittest
class __lowercase :
def __init__( self : Tuple , UpperCAmelCase_ : bytes):
UpperCamelCase__ : Dict = data
# Initialize hash values
UpperCamelCase__ : Any = [
0X6A_09E_667,
0XBB_67A_E85,
0X3C_6EF_372,
0XA5_4FF_53A,
0X51_0E5_27F,
0X9B_056_88C,
0X1F_83D_9AB,
0X5B_E0C_D19,
]
# Initialize round constants
UpperCamelCase__ : List[Any] = [
0X42_8A2_F98,
0X71_374_491,
0XB5_C0F_BCF,
0XE9_B5D_BA5,
0X39_56C_25B,
0X59_F11_1F1,
0X92_3F8_2A4,
0XAB_1C5_ED5,
0XD8_07A_A98,
0X12_835_B01,
0X24_318_5BE,
0X55_0C7_DC3,
0X72_BE5_D74,
0X80_DEB_1FE,
0X9B_DC0_6A7,
0XC1_9BF_174,
0XE4_9B6_9C1,
0XEF_BE4_786,
0X0F_C19_DC6,
0X24_0CA_1CC,
0X2D_E92_C6F,
0X4A_748_4AA,
0X5C_B0A_9DC,
0X76_F98_8DA,
0X98_3E5_152,
0XA8_31C_66D,
0XB0_032_7C8,
0XBF_597_FC7,
0XC6_E00_BF3,
0XD5_A79_147,
0X06_CA6_351,
0X14_292_967,
0X27_B70_A85,
0X2E_1B2_138,
0X4D_2C6_DFC,
0X53_380_D13,
0X65_0A7_354,
0X76_6A0_ABB,
0X81_C2C_92E,
0X92_722_C85,
0XA2_BFE_8A1,
0XA8_1A6_64B,
0XC2_4B8_B70,
0XC7_6C5_1A3,
0XD1_92E_819,
0XD6_990_624,
0XF4_0E3_585,
0X10_6AA_070,
0X19_A4C_116,
0X1E_376_C08,
0X27_487_74C,
0X34_B0B_CB5,
0X39_1C0_CB3,
0X4E_D8A_A4A,
0X5B_9CC_A4F,
0X68_2E6_FF3,
0X74_8F8_2EE,
0X78_A56_36F,
0X84_C87_814,
0X8C_C70_208,
0X90_BEF_FFA,
0XA4_506_CEB,
0XBE_F9A_3F7,
0XC6_717_8F2,
]
UpperCamelCase__ : Tuple = self.preprocessing(self.data)
self.final_hash()
@staticmethod
def __UpperCamelCase ( UpperCAmelCase_ : bytes):
UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64))
UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8))
return data + padding + big_endian_integer
def __UpperCamelCase ( self : Union[str, Any]):
# Convert into blocks of 64 bytes
UpperCamelCase__ : int = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data) , 64)
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_))
# add 48 0-ed integers
words += [0] * 48
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes
for index in range(0 , 64):
if index > 15:
# modify the zero-ed indexes at the end of the array
UpperCamelCase__ : Dict = (
self.ror(words[index - 15] , 7)
^ self.ror(words[index - 15] , 18)
^ (words[index - 15] >> 3)
)
UpperCamelCase__ : Tuple = (
self.ror(words[index - 2] , 17)
^ self.ror(words[index - 2] , 19)
^ (words[index - 2] >> 10)
)
UpperCamelCase__ : int = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X100_000_000
# Compression
UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25)
UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g)
UpperCamelCase__ : List[Any] = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X100_000_000
UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22)
UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c)
UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = (
g,
f,
e,
((d + tempa) % 0X100_000_000),
c,
b,
a,
((tempa + tempa) % 0X100_000_000),
)
UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h]
# Modify final values
UpperCamelCase__ : Optional[Any] = [
((element + mutated_hash_values[index]) % 0X100_000_000)
for index, element in enumerate(self.hashes)
]
UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes])
def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations)
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : int):
import hashlib
UpperCamelCase__ : str = bytes('Test String' , 'utf-8')
self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest())
def __UpperCAmelCase ( ) -> None:
import doctest
doctest.testmod()
UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file')
UpperCamelCase__ : List[str] = parser.parse_args()
UpperCamelCase__ : str = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb') as f:
UpperCamelCase__ : Any = f.read()
else:
UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8')
print(SHAaaa(lowerCamelCase_).hash)
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class __lowercase (__lowerCamelCase ):
def __init__( self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str):
warnings.warn(
'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DonutImageProcessor instead.' , UpperCAmelCase_ , )
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) | 719 |
'''simple docstring'''
from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase__ = 300 # TEMPERATURE (unit = K)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float:
if donor_conc <= 0:
raise ValueError('Donor concentration should be positive')
elif acceptor_conc <= 0:
raise ValueError('Acceptor concentration should be positive')
elif intrinsic_conc <= 0:
raise ValueError('Intrinsic concentration should be positive')
elif donor_conc <= intrinsic_conc:
raise ValueError(
'Donor concentration should be greater than intrinsic concentration')
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
'Acceptor concentration should be greater than intrinsic concentration')
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2)
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def __UpperCAmelCase ( lowerCamelCase_) -> Any:
UpperCamelCase__ : Dict = DPTConfig()
if "large" in checkpoint_url:
UpperCamelCase__ : List[str] = 1_024
UpperCamelCase__ : List[str] = 4_096
UpperCamelCase__ : Optional[int] = 24
UpperCamelCase__ : List[str] = 16
UpperCamelCase__ : List[str] = [5, 11, 17, 23]
UpperCamelCase__ : str = [256, 512, 1_024, 1_024]
UpperCamelCase__ : Union[str, Any] = (1, 384, 384)
if "ade" in checkpoint_url:
UpperCamelCase__ : int = True
UpperCamelCase__ : Optional[Any] = 150
UpperCamelCase__ : int = 'huggingface/label-files'
UpperCamelCase__ : List[Any] = 'ade20k-id2label.json'
UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r'))
UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()}
UpperCamelCase__ : Union[str, Any] = idalabel
UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()}
UpperCamelCase__ : Any = [1, 150, 480, 480]
return config, expected_shape
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias']
for k in ignore_keys:
state_dict.pop(lowerCamelCase_ , lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder')
if "pretrained.model" in name:
UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings')
if "patch_embed" in name:
UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings')
if "pos_embed" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings')
if "attn.proj" in name:
UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense')
if "proj" in name and "project" not in name:
UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection')
if "blocks" in name:
UpperCamelCase__ : int = name.replace('blocks' , 'layer')
if "mlp.fc1" in name:
UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense')
if "mlp.fc2" in name:
UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense')
if "norm1" in name:
UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before')
if "norm2" in name:
UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after')
if "scratch.output_conv" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head')
if "scratch" in name:
UpperCamelCase__ : int = name.replace('scratch' , 'neck')
if "layer1_rn" in name:
UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0')
if "layer2_rn" in name:
UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1')
if "layer3_rn" in name:
UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2')
if "layer4_rn" in name:
UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3')
if "refinenet" in name:
UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}')
if "out_conv" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection')
if "resConfUnit1" in name:
UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1')
if "resConfUnit2" in name:
UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2')
if "conv1" in name:
UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1')
if "conv2" in name:
UpperCamelCase__ : int = name.replace('conv2' , 'convolution2')
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0')
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0')
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0')
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0')
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection')
if "pretrained.act_postprocess1.4" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize')
if "pretrained.act_postprocess2.3" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection')
if "pretrained.act_postprocess2.4" in name:
UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize')
if "pretrained.act_postprocess3.3" in name:
UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection')
if "pretrained.act_postprocess4.3" in name:
UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection')
if "pretrained.act_postprocess4.4" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize')
if "pretrained" in name:
UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt')
if "bn" in name:
UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm')
if "head" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head')
if "encoder.norm" in name:
UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm')
if "auxlayer" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head')
return name
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any:
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight')
UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias')
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :]
UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size]
UpperCamelCase__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCamelCase__ : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCamelCase__ : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :]
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw)
return im
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict:
UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_)
# load original state_dict from URL
UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu')
# remove certain keys
remove_ignore_keys_(lowerCamelCase_)
# rename keys
for key in state_dict.copy().keys():
UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_)
UpperCamelCase__ : List[str] = val
# read in qkv matrices
read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_)
# load HuggingFace model
UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_)
model.load_state_dict(lowerCamelCase_)
model.eval()
# Check outputs on an image
UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384
UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_)
UpperCamelCase__ : int = prepare_img()
UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt')
# forward pass
UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth
# Assert logits
UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]])
if "ade" in checkpoint_url:
UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]])
assert outputs.shape == torch.Size(lowerCamelCase_)
assert (
torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_)
)
Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_)
print(f'Saving model to {pytorch_dump_folder_path}')
model.save_pretrained(lowerCamelCase_)
print(f'Saving image processor to {pytorch_dump_folder_path}')
image_processor.save_pretrained(lowerCamelCase_)
if push_to_hub:
print('Pushing model to hub...')
model.push_to_hub(
repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
lowerCAmelCase__ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 720 |
'''simple docstring'''
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]:
UpperCamelCase__ : int = []
if isinstance(lowerCamelCase_ , lowerCamelCase_):
for v in tree.values():
shapes.extend(_fetch_dims(lowerCamelCase_))
elif isinstance(lowerCamelCase_ , (list, tuple)):
for t in tree:
shapes.extend(_fetch_dims(lowerCamelCase_))
elif isinstance(lowerCamelCase_ , torch.Tensor):
shapes.append(tree.shape)
else:
raise ValueError('Not supported')
return shapes
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]:
UpperCamelCase__ : int = []
for d in reversed(lowerCamelCase_):
idx.append(flat_idx % d)
UpperCamelCase__ : Any = flat_idx // d
return tuple(reversed(lowerCamelCase_))
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]:
# start_edges and end_edges both indicate whether, starting from any given
# dimension, the start/end index is at the top/bottom edge of the
# corresponding tensor, modeled as a tree
def reduce_edge_list(lowerCamelCase_) -> None:
UpperCamelCase__ : Tuple = True
for i in range(len(lowerCamelCase_)):
UpperCamelCase__ : List[Any] = -1 * (i + 1)
l[reversed_idx] &= tally
UpperCamelCase__ : Optional[Any] = l[reversed_idx]
if start_edges is None:
UpperCamelCase__ : int = [s == 0 for s in start]
reduce_edge_list(lowerCamelCase_)
if end_edges is None:
UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)]
reduce_edge_list(lowerCamelCase_)
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(lowerCamelCase_) == 0:
return [()]
elif len(lowerCamelCase_) == 1:
return [(slice(start[0] , end[0] + 1),)]
UpperCamelCase__ : List[Tuple[slice, ...]] = []
UpperCamelCase__ : List[slice] = []
# Dimensions common to start and end can be selected directly
for s, e in zip(lowerCamelCase_ , lowerCamelCase_):
if s == e:
path_list.append(slice(lowerCamelCase_ , s + 1))
else:
break
UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_)
UpperCamelCase__ : Dict = len(lowerCamelCase_)
# start == end, and we're done
if divergence_idx == len(lowerCamelCase_):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ : str = start[divergence_idx]
return tuple(
path + (slice(lowerCamelCase_ , sdi + 1),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ))
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ : Optional[int] = end[divergence_idx]
return tuple(
path + (slice(lowerCamelCase_ , edi + 1),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ))
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),))
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),))
slices.extend(lower())
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper())
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),))
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper())
UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),))
slices.extend(lower())
return slices
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor:
UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims]
UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_))
# _get_minimal_slice_set is inclusive
UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_))
# Get an ordered list of slices to perform
UpperCamelCase__ : int = _get_minimal_slice_set(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , )
UpperCamelCase__ : List[Any] = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any:
if not (len(lowerCamelCase_) > 0):
raise ValueError('Must provide at least one input')
UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)]
UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)])
def _prep_inputs(lowerCamelCase_) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims]) == no_batch_dims:
UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:])
else:
UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
return t
UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_)
UpperCamelCase__ : int = None
if _out is not None:
UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out)
UpperCamelCase__ : Dict = 1
for d in orig_batch_dims:
flat_batch_dim *= d
UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(lowerCamelCase_) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : Optional[Any] = prepped_outputs
for _ in range(lowerCamelCase_):
# Chunk the input
if not low_mem:
UpperCamelCase__ : str = _select_chunk
else:
UpperCamelCase__ : List[Any] = partial(
_chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , )
UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_)
# Run the layer on the chunk
UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_)
# Allocate space for the output
if out is None:
UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_)
# Put the chunk in its pre-allocated space
if isinstance(lowerCamelCase_ , lowerCamelCase_):
def assign(lowerCamelCase_ , lowerCamelCase_) -> None:
for k, v in da.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_):
assign(lowerCamelCase_ , da[k])
else:
if _add_into_out:
v[i : i + chunk_size] += da[k]
else:
UpperCamelCase__ : List[str] = da[k]
assign(lowerCamelCase_ , lowerCamelCase_)
elif isinstance(lowerCamelCase_ , lowerCamelCase_):
for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_):
if _add_into_out:
xa[i : i + chunk_size] += xa
else:
UpperCamelCase__ : int = xa
elif isinstance(lowerCamelCase_ , torch.Tensor):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
UpperCamelCase__ : Dict = output_chunk
else:
raise ValueError('Not supported')
i += chunk_size
UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_)
return out
class __lowercase :
def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ):
UpperCamelCase__ : str = max_chunk_size
UpperCamelCase__ : Optional[int] = None
UpperCamelCase__ : Optional[tuple] = None
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int):
logging.info('Tuning chunk size...')
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)]
UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size]
UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(UpperCAmelCase_ : int) -> bool:
try:
with torch.no_grad():
fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_)
return True
except RuntimeError:
return False
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1
while i > min_viable_chunk_size_index:
UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i])
if not viable:
UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2
else:
UpperCamelCase__ : Optional[int] = i
UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2
return candidates[min_viable_chunk_size_index]
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable):
UpperCamelCase__ : List[str] = True
for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_):
assert type(UpperCAmelCase_) == type(UpperCAmelCase_)
if isinstance(UpperCAmelCase_ , (list, tuple)):
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_)
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])]
UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])]
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_)
else:
consistent &= aa == aa
return consistent
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ):
UpperCamelCase__ : List[Any] = True
UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_)
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data) == len(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_)
else:
# Otherwise, we can reuse the precomputed value
UpperCamelCase__ : Optional[int] = False
if not consistent:
UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )
UpperCamelCase__ : Optional[Any] = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
| 6 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 721 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : int = tempfile.mkdtemp()
# fmt: off
UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'}
UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as fp:
fp.write(json.dumps(UpperCAmelCase_) + '\n')
with open(self.merges_file , 'w' , encoding='utf-8') as fp:
fp.write('\n'.join(UpperCAmelCase_))
UpperCamelCase__ : Dict = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_)
with open(self.image_processor_file , 'w' , encoding='utf-8') as fp:
json.dump(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : str):
shutil.rmtree(self.tmpdirname)
def __UpperCamelCase ( self : Tuple):
UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Union[str, Any] = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer()
UpperCamelCase__ : Any = self.get_image_processor()
UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
processor_slow.save_pretrained(self.tmpdirname)
UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_)
UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
processor_fast.save_pretrained(self.tmpdirname)
UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_)
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_)
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_)
def __UpperCamelCase ( self : List[str]):
UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0)
UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , UpperCAmelCase_)
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Optional[Any] = self.get_image_processor()
UpperCamelCase__ : int = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : int = self.prepare_image_inputs()
UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np')
UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np')
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2)
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Optional[Any] = self.get_image_processor()
UpperCamelCase__ : Dict = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Any = 'lower newer'
UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Optional[int] = self.get_image_processor()
UpperCamelCase__ : List[str] = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'lower newer'
UpperCamelCase__ : List[Any] = self.prepare_image_inputs()
UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_)
self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values'])
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_):
processor()
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Any = self.get_image_processor()
UpperCamelCase__ : Dict = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : str):
UpperCamelCase__ : Union[str, Any] = self.get_image_processor()
UpperCamelCase__ : List[str] = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = 'lower newer'
UpperCamelCase__ : Optional[int] = self.prepare_image_inputs()
UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 6 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_) -> bool:
if not isinstance(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase__ : Optional[int] = f'Input value of [number={number}] must be an integer'
raise TypeError(lowerCamelCase_)
if number < 0:
return False
UpperCamelCase__ : List[Any] = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 700 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None:
UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_)
for k, v in tqdm(state_dict.items()):
if not isinstance(lowerCamelCase_ , torch.Tensor):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin')
UpperCamelCase__ : int = v.half()
if save_path is None: # overwrite src_path
UpperCamelCase__ : List[Any] = src_path
torch.save(lowerCamelCase_ , lowerCamelCase_)
if __name__ == "__main__":
fire.Fire(convert)
| 6 | 0 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = ''''''
_lowerCamelCase = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
_lowerCamelCase = None # compression type in fsspec. ex: "gzip"
_lowerCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self : Optional[Any] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , **UpperCAmelCase_ : Dict):
super().__init__(self , **UpperCAmelCase_)
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
UpperCamelCase__ : int = fsspec.open(
UpperCAmelCase_ , mode='rb' , protocol=UpperCAmelCase_ , compression=self.compression , client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs' , {}), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
UpperCamelCase__ : Tuple = os.path.basename(self.file.path.split('::')[0])
UpperCamelCase__ : Union[str, Any] = (
self.compressed_name[: self.compressed_name.rindex('.')]
if '.' in self.compressed_name
else self.compressed_name
)
UpperCamelCase__ : str = None
@classmethod
def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : Dict):
# compressed file paths are always relative to the archive root
return super()._strip_protocol(UpperCAmelCase_).lstrip('/')
def __UpperCamelCase ( self : Any):
if self.dir_cache is None:
UpperCamelCase__ : Tuple = {**self.file.fs.info(self.file.path), 'name': self.uncompressed_name}
UpperCamelCase__ : Dict = {f['name']: f}
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str):
return self.file.open().read()
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : str , ):
UpperCamelCase__ : str = self._strip_protocol(UpperCAmelCase_)
if mode != "rb":
raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'')
return self.file.open()
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''bz2'''
_lowerCamelCase = '''bz2'''
_lowerCamelCase = '''.bz2'''
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''gzip'''
_lowerCamelCase = '''gzip'''
_lowerCamelCase = '''.gz'''
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''lz4'''
_lowerCamelCase = '''lz4'''
_lowerCamelCase = '''.lz4'''
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''xz'''
_lowerCamelCase = '''xz'''
_lowerCamelCase = '''.xz'''
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''zstd'''
_lowerCamelCase = '''zstd'''
_lowerCamelCase = '''.zst'''
def __init__( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , UpperCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **UpperCAmelCase_ : Dict , ):
super().__init__(
fo=UpperCAmelCase_ , mode=UpperCAmelCase_ , target_protocol=UpperCAmelCase_ , target_options=UpperCAmelCase_ , block_size=UpperCAmelCase_ , **UpperCAmelCase_ , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
UpperCamelCase__ : str = self.file.__enter__
class __lowercase :
def __init__( self : Optional[int] , UpperCAmelCase_ : Dict):
UpperCamelCase__ : str = file_
def __enter__( self : str):
self._file.__enter__()
return self
def __exit__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any):
self._file.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_)
def __iter__( self : Tuple):
return iter(self._file)
def __UpperCamelCase ( self : Any):
return next(self._file)
def __getattr__( self : str , UpperCAmelCase_ : Tuple):
return getattr(self._file , UpperCAmelCase_)
def fixed_enter(*UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict):
return WrappedFile(_enter(*UpperCAmelCase_ , **UpperCAmelCase_))
UpperCamelCase__ : str = fixed_enter
| 701 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'nvidia/segformer-b0-finetuned-ade-512-512': (
'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json'
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''segformer'''
def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ):
super().__init__(**UpperCAmelCase_)
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , )
UpperCamelCase__ : List[Any] = num_channels
UpperCamelCase__ : Any = num_encoder_blocks
UpperCamelCase__ : Dict = depths
UpperCamelCase__ : int = sr_ratios
UpperCamelCase__ : str = hidden_sizes
UpperCamelCase__ : List[str] = patch_sizes
UpperCamelCase__ : Optional[int] = strides
UpperCamelCase__ : Dict = mlp_ratios
UpperCamelCase__ : List[str] = num_attention_heads
UpperCamelCase__ : int = hidden_act
UpperCamelCase__ : Any = hidden_dropout_prob
UpperCamelCase__ : str = attention_probs_dropout_prob
UpperCamelCase__ : List[str] = classifier_dropout_prob
UpperCamelCase__ : List[Any] = initializer_range
UpperCamelCase__ : Union[str, Any] = drop_path_rate
UpperCamelCase__ : int = layer_norm_eps
UpperCamelCase__ : Dict = decoder_hidden_size
UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_)
UpperCamelCase__ : List[str] = semantic_loss_ignore_index
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self : Optional[Any]):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
])
@property
def __UpperCamelCase ( self : Optional[Any]):
return 1e-4
@property
def __UpperCamelCase ( self : Any):
return 12
| 6 | 0 |
'''simple docstring'''
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('KT')
lowerCAmelCase__ = TypeVar('VT')
class __lowercase (Generic[KT, VT] ):
def __init__( self : List[str] , UpperCAmelCase_ : KT | str = "root" , UpperCAmelCase_ : VT | None = None):
UpperCamelCase__ : Any = key
UpperCamelCase__ : Optional[int] = value
UpperCamelCase__ : list[Node[KT, VT]] = []
def __repr__( self : str):
return F'Node({self.key}: {self.value})'
@property
def __UpperCamelCase ( self : Dict):
return len(self.forward)
class __lowercase (Generic[KT, VT] ):
def __init__( self : int , UpperCAmelCase_ : float = 0.5 , UpperCAmelCase_ : int = 16):
UpperCamelCase__ : Node[KT, VT] = Node[KT, VT]()
UpperCamelCase__ : Any = 0
UpperCamelCase__ : List[str] = p
UpperCamelCase__ : List[str] = max_level
def __str__( self : List[str]):
UpperCamelCase__ : int = list(self)
if len(UpperCAmelCase_) == 0:
return F'SkipList(level={self.level})'
UpperCamelCase__ : Optional[Any] = max((len(str(UpperCAmelCase_)) for item in items) , default=4)
UpperCamelCase__ : int = max(UpperCAmelCase_ , 4) + 4
UpperCamelCase__ : Any = self.head
UpperCamelCase__ : Union[str, Any] = []
UpperCamelCase__ : Dict = node.forward.copy()
lines.append(F'[{node.key}]'.ljust(UpperCAmelCase_ , '-') + '* ' * len(UpperCAmelCase_))
lines.append(' ' * label_size + '| ' * len(UpperCAmelCase_))
while len(node.forward) != 0:
UpperCamelCase__ : str = node.forward[0]
lines.append(
F'[{node.key}]'.ljust(UpperCAmelCase_ , '-')
+ ' '.join(str(n.key) if n.key == node.key else '|' for n in forwards))
lines.append(' ' * label_size + '| ' * len(UpperCAmelCase_))
UpperCamelCase__ : Tuple = node.forward
lines.append('None'.ljust(UpperCAmelCase_) + '* ' * len(UpperCAmelCase_))
return F'SkipList(level={self.level})\n' + "\n".join(UpperCAmelCase_)
def __iter__( self : Dict):
UpperCamelCase__ : Optional[Any] = self.head
while len(node.forward) != 0:
yield node.forward[0].key
UpperCamelCase__ : str = node.forward[0]
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : List[str] = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : str):
UpperCamelCase__ : Dict = []
UpperCamelCase__ : List[str] = self.head
for i in reversed(range(self.level)):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
UpperCamelCase__ : Dict = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(UpperCAmelCase_)
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def __UpperCamelCase ( self : str , UpperCAmelCase_ : KT):
UpperCamelCase__ : Optional[Any] = self._locate_node(UpperCAmelCase_)
if node is not None:
for i, update_node in enumerate(UpperCAmelCase_):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
UpperCamelCase__ : int = node.forward[i]
else:
UpperCamelCase__ : Any = update_node.forward[:i]
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : KT , UpperCAmelCase_ : VT):
UpperCamelCase__ : Optional[Any] = self._locate_node(UpperCAmelCase_)
if node is not None:
UpperCamelCase__ : Optional[int] = value
else:
UpperCamelCase__ : Tuple = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , UpperCAmelCase_):
update_vector.append(self.head)
UpperCamelCase__ : Union[str, Any] = level
UpperCamelCase__ : List[str] = Node(UpperCAmelCase_ , UpperCAmelCase_)
for i, update_node in enumerate(update_vector[:level]):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i])
if update_node.level < i + 1:
update_node.forward.append(UpperCAmelCase_)
else:
UpperCamelCase__ : Tuple = new_node
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : VT):
UpperCamelCase__ : Optional[Any] = self._locate_node(UpperCAmelCase_)
if node is not None:
return node.value
return None
def __UpperCAmelCase ( ) -> int:
UpperCamelCase__ : Optional[Any] = SkipList()
skip_list.insert('Key1' , 3)
skip_list.insert('Key2' , 12)
skip_list.insert('Key3' , 41)
skip_list.insert('Key4' , -19)
UpperCamelCase__ : str = skip_list.head
UpperCamelCase__ : Dict = {}
while node.level != 0:
UpperCamelCase__ : Union[str, Any] = node.forward[0]
UpperCamelCase__ : List[str] = node.value
assert len(lowerCamelCase_) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def __UpperCAmelCase ( ) -> List[Any]:
UpperCamelCase__ : Optional[Any] = SkipList()
skip_list.insert('Key1' , 10)
skip_list.insert('Key1' , 12)
skip_list.insert('Key5' , 7)
skip_list.insert('Key7' , 10)
skip_list.insert('Key10' , 5)
skip_list.insert('Key7' , 7)
skip_list.insert('Key5' , 5)
skip_list.insert('Key10' , 10)
UpperCamelCase__ : Union[str, Any] = skip_list.head
UpperCamelCase__ : Dict = {}
while node.level != 0:
UpperCamelCase__ : List[str] = node.forward[0]
UpperCamelCase__ : List[str] = node.value
if len(lowerCamelCase_) != 4:
print()
assert len(lowerCamelCase_) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def __UpperCAmelCase ( ) -> Optional[int]:
UpperCamelCase__ : Optional[Any] = SkipList()
assert skip_list.find('Some key') is None
def __UpperCAmelCase ( ) -> List[str]:
UpperCamelCase__ : str = SkipList()
skip_list.insert('Key2' , 20)
assert skip_list.find('Key2') == 20
skip_list.insert('Some Key' , 10)
skip_list.insert('Key2' , 8)
skip_list.insert('V' , 13)
assert skip_list.find('Y') is None
assert skip_list.find('Key2') == 8
assert skip_list.find('Some Key') == 10
assert skip_list.find('V') == 13
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCamelCase__ : List[str] = SkipList()
skip_list.delete('Some key')
assert len(skip_list.head.forward) == 0
def __UpperCAmelCase ( ) -> Optional[int]:
UpperCamelCase__ : Tuple = SkipList()
skip_list.insert('Key1' , 12)
skip_list.insert('V' , 13)
skip_list.insert('X' , 14)
skip_list.insert('Key2' , 15)
skip_list.delete('V')
skip_list.delete('Key2')
assert skip_list.find('V') is None
assert skip_list.find('Key2') is None
def __UpperCAmelCase ( ) -> str:
UpperCamelCase__ : Optional[int] = SkipList()
skip_list.insert('Key1' , 12)
skip_list.insert('V' , 13)
skip_list.insert('X' , 14)
skip_list.insert('Key2' , 15)
skip_list.delete('V')
assert skip_list.find('V') is None
assert skip_list.find('X') == 14
assert skip_list.find('Key1') == 12
assert skip_list.find('Key2') == 15
skip_list.delete('X')
assert skip_list.find('V') is None
assert skip_list.find('X') is None
assert skip_list.find('Key1') == 12
assert skip_list.find('Key2') == 15
skip_list.delete('Key1')
assert skip_list.find('V') is None
assert skip_list.find('X') is None
assert skip_list.find('Key1') is None
assert skip_list.find('Key2') == 15
skip_list.delete('Key2')
assert skip_list.find('V') is None
assert skip_list.find('X') is None
assert skip_list.find('Key1') is None
assert skip_list.find('Key2') is None
def __UpperCAmelCase ( ) -> Any:
UpperCamelCase__ : Optional[Any] = SkipList()
skip_list.insert('Key1' , 12)
skip_list.insert('V' , 13)
skip_list.insert('X' , 142)
skip_list.insert('Key2' , 15)
skip_list.delete('X')
def traverse_keys(lowerCamelCase_):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(lowerCamelCase_)
assert len(set(traverse_keys(skip_list.head))) == 4
def __UpperCAmelCase ( ) -> List[str]:
def is_sorted(lowerCamelCase_):
return all(next_item >= item for item, next_item in zip(lowerCamelCase_ , lst[1:]))
UpperCamelCase__ : Any = SkipList()
for i in range(10):
skip_list.insert(lowerCamelCase_ , lowerCamelCase_)
assert is_sorted(list(lowerCamelCase_))
skip_list.delete(5)
skip_list.delete(8)
skip_list.delete(2)
assert is_sorted(list(lowerCamelCase_))
skip_list.insert(-12 , -12)
skip_list.insert(77 , 77)
assert is_sorted(list(lowerCamelCase_))
def __UpperCAmelCase ( ) -> Optional[int]:
for _ in range(100):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def __UpperCAmelCase ( ) -> Any:
UpperCamelCase__ : List[Any] = SkipList()
skip_list.insert(2 , '2')
skip_list.insert(4 , '4')
skip_list.insert(6 , '4')
skip_list.insert(4 , '5')
skip_list.insert(8 , '4')
skip_list.insert(9 , '4')
skip_list.delete(4)
print(lowerCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 702 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]:
return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 6 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_ = 600_851_475_143) -> int:
try:
UpperCamelCase__ : Dict = int(lowerCamelCase_)
except (TypeError, ValueError):
raise TypeError('Parameter n must be int or castable to int.')
if n <= 0:
raise ValueError('Parameter n must be greater than or equal to one.')
UpperCamelCase__ : Optional[int] = 1
UpperCamelCase__ : Union[str, Any] = 2
while i * i <= n:
while n % i == 0:
UpperCamelCase__ : List[str] = i
n //= i
i += 1
if n > 1:
UpperCamelCase__ : str = n
return int(lowerCamelCase_)
if __name__ == "__main__":
print(f'''{solution() = }''')
| 703 |
'''simple docstring'''
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def __UpperCAmelCase ( lowerCamelCase_) -> float:
return np.dot(lowerCamelCase_ , lowerCamelCase_)
class __lowercase :
def __init__( self : Tuple , *,
UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ):
UpperCamelCase__ : Union[str, Any] = regularization
UpperCamelCase__ : Optional[int] = gamma
if kernel == "linear":
UpperCamelCase__ : List[str] = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('rbf kernel requires gamma')
if not isinstance(self.gamma , (float, int)):
raise ValueError('gamma must be float or int')
if not self.gamma > 0:
raise ValueError('gamma must be > 0')
UpperCamelCase__ : Union[str, Any] = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}'
raise ValueError(UpperCAmelCase_)
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray):
return np.dot(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray):
return np.exp(-(self.gamma * norm_squared(vectora - vectora)))
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray):
UpperCamelCase__ : Any = observations
UpperCamelCase__ : Tuple = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_)
def to_minimize(UpperCAmelCase_ : ndarray) -> float:
UpperCamelCase__ : Union[str, Any] = 0
((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_)
for i in range(UpperCAmelCase_):
for j in range(UpperCAmelCase_):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j])
)
return 1 / 2 * s - sum(UpperCAmelCase_)
UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0)
UpperCamelCase__ : Dict = Bounds(0 , self.regularization)
UpperCamelCase__ : Any = minimize(
UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x
UpperCamelCase__ : str = l_star
# calculating mean offset of separation plane to points
UpperCamelCase__ : Any = 0
for i in range(UpperCAmelCase_):
for j in range(UpperCAmelCase_):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j])
UpperCamelCase__ : List[str] = s / n
def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray):
UpperCamelCase__ : Optional[int] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , UpperCAmelCase_)
for n in range(len(self.classes)))
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = ['''image_processor''', '''tokenizer''']
_lowerCamelCase = '''OwlViTImageProcessor'''
_lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Optional[int] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : List[Any]):
UpperCamelCase__ : str = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , UpperCAmelCase_ , )
UpperCamelCase__ : str = kwargs.pop('feature_extractor')
UpperCamelCase__ : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.')
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.')
super().__init__(UpperCAmelCase_ , UpperCAmelCase_)
def __call__( self : Tuple , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[Any]="max_length" , UpperCAmelCase_ : str="np" , **UpperCAmelCase_ : Optional[Any]):
if text is None and query_images is None and images is None:
raise ValueError(
'You have to specify at least one text or query image or image. All three cannot be none.')
if text is not None:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_) or (isinstance(UpperCAmelCase_ , UpperCAmelCase_) and not isinstance(text[0] , UpperCAmelCase_)):
UpperCamelCase__ : Union[str, Any] = [self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_)]
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(text[0] , UpperCAmelCase_):
UpperCamelCase__ : Union[str, Any] = []
# Maximum number of queries across batch
UpperCamelCase__ : Tuple = max([len(UpperCAmelCase_) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(UpperCAmelCase_) != max_num_queries:
UpperCamelCase__ : List[Any] = t + [' '] * (max_num_queries - len(UpperCAmelCase_))
UpperCamelCase__ : str = self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_)
encodings.append(UpperCAmelCase_)
else:
raise TypeError('Input text should be a string, a list of strings or a nested list of strings')
if return_tensors == "np":
UpperCamelCase__ : List[str] = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0)
UpperCamelCase__ : List[str] = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
UpperCamelCase__ : Union[str, Any] = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0)
UpperCamelCase__ : List[Any] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
UpperCamelCase__ : Dict = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0)
UpperCamelCase__ : Union[str, Any] = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
UpperCamelCase__ : List[str] = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0)
UpperCamelCase__ : Union[str, Any] = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0)
else:
raise ValueError('Target return tensor type could not be returned')
UpperCamelCase__ : Optional[Any] = BatchEncoding()
UpperCamelCase__ : str = input_ids
UpperCamelCase__ : Optional[Any] = attention_mask
if query_images is not None:
UpperCamelCase__ : Tuple = BatchEncoding()
UpperCamelCase__ : Tuple = self.image_processor(
UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_).pixel_values
UpperCamelCase__ : Union[str, Any] = query_pixel_values
if images is not None:
UpperCamelCase__ : List[str] = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_)
if text is not None and images is not None:
UpperCamelCase__ : Tuple = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
UpperCamelCase__ : int = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_)
def __UpperCamelCase ( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any]):
return self.image_processor.post_process(*UpperCAmelCase_ , **UpperCAmelCase_)
def __UpperCamelCase ( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any]):
return self.image_processor.post_process_object_detection(*UpperCAmelCase_ , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int):
return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase_ , **UpperCAmelCase_)
def __UpperCamelCase ( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict):
return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str):
return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_)
@property
def __UpperCamelCase ( self : str):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , )
return self.image_processor_class
@property
def __UpperCamelCase ( self : List[Any]):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase_ , )
return self.image_processor
| 704 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def __UpperCAmelCase ( lowerCamelCase_) -> Any:
UpperCamelCase__ : Dict = DPTConfig()
if "large" in checkpoint_url:
UpperCamelCase__ : List[str] = 1_024
UpperCamelCase__ : List[str] = 4_096
UpperCamelCase__ : Optional[int] = 24
UpperCamelCase__ : List[str] = 16
UpperCamelCase__ : List[str] = [5, 11, 17, 23]
UpperCamelCase__ : str = [256, 512, 1_024, 1_024]
UpperCamelCase__ : Union[str, Any] = (1, 384, 384)
if "ade" in checkpoint_url:
UpperCamelCase__ : int = True
UpperCamelCase__ : Optional[Any] = 150
UpperCamelCase__ : int = 'huggingface/label-files'
UpperCamelCase__ : List[Any] = 'ade20k-id2label.json'
UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r'))
UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()}
UpperCamelCase__ : Union[str, Any] = idalabel
UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()}
UpperCamelCase__ : Any = [1, 150, 480, 480]
return config, expected_shape
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias']
for k in ignore_keys:
state_dict.pop(lowerCamelCase_ , lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder')
if "pretrained.model" in name:
UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings')
if "patch_embed" in name:
UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings')
if "pos_embed" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings')
if "attn.proj" in name:
UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense')
if "proj" in name and "project" not in name:
UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection')
if "blocks" in name:
UpperCamelCase__ : int = name.replace('blocks' , 'layer')
if "mlp.fc1" in name:
UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense')
if "mlp.fc2" in name:
UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense')
if "norm1" in name:
UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before')
if "norm2" in name:
UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after')
if "scratch.output_conv" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head')
if "scratch" in name:
UpperCamelCase__ : int = name.replace('scratch' , 'neck')
if "layer1_rn" in name:
UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0')
if "layer2_rn" in name:
UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1')
if "layer3_rn" in name:
UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2')
if "layer4_rn" in name:
UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3')
if "refinenet" in name:
UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}')
if "out_conv" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection')
if "resConfUnit1" in name:
UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1')
if "resConfUnit2" in name:
UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2')
if "conv1" in name:
UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1')
if "conv2" in name:
UpperCamelCase__ : int = name.replace('conv2' , 'convolution2')
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0')
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0')
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0')
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0')
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection')
if "pretrained.act_postprocess1.4" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize')
if "pretrained.act_postprocess2.3" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection')
if "pretrained.act_postprocess2.4" in name:
UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize')
if "pretrained.act_postprocess3.3" in name:
UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection')
if "pretrained.act_postprocess4.3" in name:
UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection')
if "pretrained.act_postprocess4.4" in name:
UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize')
if "pretrained" in name:
UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt')
if "bn" in name:
UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm')
if "head" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head')
if "encoder.norm" in name:
UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm')
if "auxlayer" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head')
return name
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any:
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight')
UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias')
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :]
UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size]
UpperCamelCase__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCamelCase__ : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCamelCase__ : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :]
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw)
return im
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict:
UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_)
# load original state_dict from URL
UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu')
# remove certain keys
remove_ignore_keys_(lowerCamelCase_)
# rename keys
for key in state_dict.copy().keys():
UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_)
UpperCamelCase__ : List[str] = val
# read in qkv matrices
read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_)
# load HuggingFace model
UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_)
model.load_state_dict(lowerCamelCase_)
model.eval()
# Check outputs on an image
UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384
UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_)
UpperCamelCase__ : int = prepare_img()
UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt')
# forward pass
UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth
# Assert logits
UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]])
if "ade" in checkpoint_url:
UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]])
assert outputs.shape == torch.Size(lowerCamelCase_)
assert (
torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_)
)
Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_)
print(f'Saving model to {pytorch_dump_folder_path}')
model.save_pretrained(lowerCamelCase_)
print(f'Saving image processor to {pytorch_dump_folder_path}')
image_processor.save_pretrained(lowerCamelCase_)
if push_to_hub:
print('Pushing model to hub...')
model.push_to_hub(
repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
lowerCAmelCase__ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 6 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
DiffusionPipeline,
UnCLIPImageVariationPipeline,
UnCLIPScheduler,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowercase (__lowerCamelCase , unittest.TestCase ):
_lowerCamelCase = UnCLIPImageVariationPipeline
_lowerCamelCase = IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''guidance_scale'''}
_lowerCamelCase = IMAGE_VARIATION_BATCH_PARAMS
_lowerCamelCase = [
'''generator''',
'''return_dict''',
'''decoder_num_inference_steps''',
'''super_res_num_inference_steps''',
]
_lowerCamelCase = False
@property
def __UpperCamelCase ( self : Tuple):
return 32
@property
def __UpperCamelCase ( self : Tuple):
return 32
@property
def __UpperCamelCase ( self : int):
return self.time_input_dim
@property
def __UpperCamelCase ( self : Any):
return self.time_input_dim * 4
@property
def __UpperCamelCase ( self : List[Any]):
return 100
@property
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
return tokenizer
@property
def __UpperCamelCase ( self : Union[str, Any]):
torch.manual_seed(0)
UpperCamelCase__ : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : Tuple = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )
return CLIPVisionModelWithProjection(UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : Dict = {
'clip_embeddings_dim': self.text_embedder_hidden_size,
'time_embed_dim': self.time_embed_dim,
'cross_attention_dim': self.cross_attention_dim,
}
UpperCamelCase__ : int = UnCLIPTextProjModel(**UpperCAmelCase_)
return model
@property
def __UpperCamelCase ( self : Union[str, Any]):
torch.manual_seed(0)
UpperCamelCase__ : str = {
'sample_size': 32,
# RGB in channels
'in_channels': 3,
# Out channels is double in channels because predicts mean and variance
'out_channels': 6,
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': 'identity',
}
UpperCamelCase__ : Optional[Any] = UNetaDConditionModel(**UpperCAmelCase_)
return model
@property
def __UpperCamelCase ( self : List[str]):
return {
"sample_size": 64,
"layers_per_block": 1,
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"in_channels": 6,
"out_channels": 3,
}
@property
def __UpperCamelCase ( self : List[Any]):
torch.manual_seed(0)
UpperCamelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs)
return model
@property
def __UpperCamelCase ( self : Optional[Any]):
# seeded differently to get different unet than `self.dummy_super_res_first`
torch.manual_seed(1)
UpperCamelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs)
return model
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Optional[int] = self.dummy_decoder
UpperCamelCase__ : Dict = self.dummy_text_proj
UpperCamelCase__ : int = self.dummy_text_encoder
UpperCamelCase__ : Tuple = self.dummy_tokenizer
UpperCamelCase__ : Optional[Any] = self.dummy_super_res_first
UpperCamelCase__ : List[str] = self.dummy_super_res_last
UpperCamelCase__ : Optional[Any] = UnCLIPScheduler(
variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , )
UpperCamelCase__ : Tuple = UnCLIPScheduler(
variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , )
UpperCamelCase__ : List[Any] = CLIPImageProcessor(crop_size=32 , size=32)
UpperCamelCase__ : Optional[Any] = self.dummy_image_encoder
return {
"decoder": decoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_proj": text_proj,
"feature_extractor": feature_extractor,
"image_encoder": image_encoder,
"super_res_first": super_res_first,
"super_res_last": super_res_last,
"decoder_scheduler": decoder_scheduler,
"super_res_scheduler": super_res_scheduler,
}
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Dict=True):
UpperCamelCase__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_)
if str(UpperCAmelCase_).startswith('mps'):
UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_)
else:
UpperCamelCase__ : str = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_)
if pil_image:
UpperCamelCase__ : List[Any] = input_image * 0.5 + 0.5
UpperCamelCase__ : str = input_image.clamp(0 , 1)
UpperCamelCase__ : Optional[Any] = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
UpperCamelCase__ : int = DiffusionPipeline.numpy_to_pil(UpperCAmelCase_)[0]
return {
"image": input_image,
"generator": generator,
"decoder_num_inference_steps": 2,
"super_res_num_inference_steps": 2,
"output_type": "np",
}
def __UpperCamelCase ( self : List[str]):
UpperCamelCase__ : Any = 'cpu'
UpperCamelCase__ : Optional[Any] = self.get_dummy_components()
UpperCamelCase__ : Dict = self.pipeline_class(**UpperCAmelCase_)
UpperCamelCase__ : int = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_)
UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)
UpperCamelCase__ : int = output.images
UpperCamelCase__ : Dict = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_)
UpperCamelCase__ : List[str] = pipe(
**UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : int = image[0, -3:, -3:, -1]
UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : int = np.array(
[
0.99_97,
0.00_02,
0.99_97,
0.99_97,
0.99_69,
0.00_23,
0.99_97,
0.99_69,
0.99_70,
])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Tuple = 'cpu'
UpperCamelCase__ : Dict = self.get_dummy_components()
UpperCamelCase__ : Any = self.pipeline_class(**UpperCAmelCase_)
UpperCamelCase__ : Any = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[str] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = pipe(**UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = output.images
UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_)
UpperCamelCase__ : Dict = pipe(
**UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : Dict = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : int = 'cpu'
UpperCamelCase__ : int = self.get_dummy_components()
UpperCamelCase__ : Tuple = self.pipeline_class(**UpperCAmelCase_)
UpperCamelCase__ : Dict = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Dict = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_)
UpperCamelCase__ : Dict = [
pipeline_inputs['image'],
pipeline_inputs['image'],
]
UpperCamelCase__ : int = pipe(**UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = output.images
UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_)
UpperCamelCase__ : List[str] = [
tuple_pipeline_inputs['image'],
tuple_pipeline_inputs['image'],
]
UpperCamelCase__ : str = pipe(
**UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : str = image[0, -3:, -3:, -1]
UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (2, 64, 64, 3)
UpperCamelCase__ : Any = np.array(
[
0.99_97,
0.99_89,
0.00_08,
0.00_21,
0.99_60,
0.00_18,
0.00_14,
0.00_02,
0.99_33,
])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : List[Any] = torch.device('cpu')
class __lowercase :
_lowerCamelCase = 1
UpperCamelCase__ : List[Any] = self.get_dummy_components()
UpperCamelCase__ : Dict = self.pipeline_class(**UpperCAmelCase_)
UpperCamelCase__ : str = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Union[str, Any] = pipe.decoder.dtype
UpperCamelCase__ : Optional[int] = 1
UpperCamelCase__ : Optional[Any] = (
batch_size,
pipe.decoder.config.in_channels,
pipe.decoder.config.sample_size,
pipe.decoder.config.sample_size,
)
UpperCamelCase__ : Optional[int] = pipe.prepare_latents(
UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler())
UpperCamelCase__ : Any = (
batch_size,
pipe.super_res_first.config.in_channels // 2,
pipe.super_res_first.config.sample_size,
pipe.super_res_first.config.sample_size,
)
UpperCamelCase__ : str = pipe.prepare_latents(
UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler())
UpperCamelCase__ : List[str] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = pipe(
**UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_).images
UpperCamelCase__ : int = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_)
# Don't pass image, instead pass embedding
UpperCamelCase__ : Dict = pipeline_inputs.pop('image')
UpperCamelCase__ : int = pipe.image_encoder(UpperCAmelCase_).image_embeds
UpperCamelCase__ : int = pipe(
**UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_ , image_embeddings=UpperCAmelCase_ , ).images
# make sure passing text embeddings manually is identical
assert np.abs(img_out_a - img_out_a).max() < 1e-4
@skip_mps
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Optional[int] = torch_device == 'cpu'
# Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
UpperCamelCase__ : Optional[Any] = 1e-2
self._test_attention_slicing_forward_pass(
test_max_difference=UpperCAmelCase_ , expected_max_diff=UpperCAmelCase_)
@skip_mps
def __UpperCamelCase ( self : str):
UpperCamelCase__ : List[Any] = torch_device == 'cpu'
UpperCamelCase__ : Dict = True
UpperCamelCase__ : Optional[int] = [
'decoder_num_inference_steps',
'super_res_num_inference_steps',
]
self._test_inference_batch_single_identical(
test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , )
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : List[Any] = [
'decoder_num_inference_steps',
'super_res_num_inference_steps',
]
if torch_device == "mps":
# TODO: MPS errors with larger batch sizes
UpperCamelCase__ : Tuple = [2, 3]
self._test_inference_batch_consistent(
batch_sizes=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , )
else:
self._test_inference_batch_consistent(
additional_params_copy_to_batched_inputs=UpperCAmelCase_)
@skip_mps
def __UpperCamelCase ( self : List[Any]):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def __UpperCamelCase ( self : str):
return super().test_save_load_local()
@skip_mps
def __UpperCamelCase ( self : Optional[Any]):
return super().test_save_load_optional_components()
@slow
@require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Optional[int]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : Tuple):
UpperCamelCase__ : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png')
UpperCamelCase__ : Dict = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/unclip/karlo_v1_alpha_cat_variation_fp16.npy')
UpperCamelCase__ : Any = UnCLIPImageVariationPipeline.from_pretrained(
'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa)
UpperCamelCase__ : Dict = pipeline.to(UpperCAmelCase_)
pipeline.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = torch.Generator(device='cpu').manual_seed(0)
UpperCamelCase__ : Optional[int] = pipeline(
UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='np' , )
UpperCamelCase__ : List[Any] = output.images[0]
assert image.shape == (256, 256, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ , 15)
| 705 |
'''simple docstring'''
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowercase :
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ):
UpperCamelCase__ : Tuple = parent
UpperCamelCase__ : List[str] = batch_size
UpperCamelCase__ : Optional[Any] = image_size
UpperCamelCase__ : Optional[Any] = patch_size
UpperCamelCase__ : List[str] = num_channels
UpperCamelCase__ : Union[str, Any] = is_training
UpperCamelCase__ : int = use_labels
UpperCamelCase__ : Optional[int] = hidden_size
UpperCamelCase__ : Any = num_hidden_layers
UpperCamelCase__ : str = num_attention_heads
UpperCamelCase__ : str = intermediate_size
UpperCamelCase__ : Union[str, Any] = hidden_act
UpperCamelCase__ : Optional[int] = hidden_dropout_prob
UpperCamelCase__ : Tuple = attention_probs_dropout_prob
UpperCamelCase__ : Any = type_sequence_label_size
UpperCamelCase__ : int = initializer_range
UpperCamelCase__ : Optional[int] = mask_ratio
UpperCamelCase__ : int = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCamelCase__ : str = (image_size // patch_size) ** 2
UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1)))
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCamelCase__ : List[str] = None
if self.use_labels:
UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCamelCase__ : Any = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self : List[Any]):
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]):
UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple):
UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : Dict = model(UpperCAmelCase_)
UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2
UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels))
# test greyscale images
UpperCamelCase__ : List[Any] = 1
UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels))
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : List[str] = self.prepare_config_and_inputs()
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs
UpperCamelCase__ : Any = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
_lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
_lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {}
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : List[str] = ViTMAEModelTester(self)
UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37)
def __UpperCamelCase ( self : Any):
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds')
def __UpperCamelCase ( self : Tuple):
pass
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
UpperCamelCase__ : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear))
def __UpperCamelCase ( self : List[str]):
UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_)
UpperCamelCase__ : int = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ : Any = [*signature.parameters.keys()]
UpperCamelCase__ : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_)
def __UpperCamelCase ( self : str):
UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]):
# make masks reproducible
np.random.seed(2)
UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2)
UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_)
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCamelCase__ : List[str] = pt_noise
super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_))
UpperCamelCase__ : Dict = outputs[0].cpu().numpy()
UpperCamelCase__ : Optional[int] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_)
model.to(UpperCAmelCase_)
# make random mask reproducible
torch.manual_seed(2)
with torch.no_grad():
UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_))
# Make sure we don't have nans
UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy()
UpperCamelCase__ : Any = 0
UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a))
self.assertLessEqual(UpperCAmelCase_ , 1e-5)
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def __UpperCamelCase ( self : Tuple):
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def __UpperCamelCase ( self : Optional[int]):
pass
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.')
def __UpperCamelCase ( self : Tuple):
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load')
def __UpperCamelCase ( self : Tuple):
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.')
def __UpperCamelCase ( self : Optional[int]):
pass
@slow
def __UpperCamelCase ( self : Optional[Any]):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self : int):
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None
@slow
def __UpperCamelCase ( self : str):
# make random mask reproducible across the PT and TF model
np.random.seed(2)
UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.default_image_processor
UpperCamelCase__ : Dict = prepare_img()
UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_)
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCamelCase__ : Union[str, Any] = ViTMAEConfig()
UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2)
UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches))
# forward pass
with torch.no_grad():
UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_))
# verify the logits
UpperCamelCase__ : Tuple = torch.Size((1, 196, 768))
self.assertEqual(outputs.logits.shape , UpperCAmelCase_)
UpperCamelCase__ : Any = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]])
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
| 6 | 0 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
lowerCAmelCase__ = logging.getLogger(__name__)
torch.set_grad_enabled(False)
lowerCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu'
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=100 , lowerCamelCase_=" ") -> List[str]:
UpperCamelCase__ : Optional[int] = text.split(lowerCamelCase_)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(lowerCamelCase_) , lowerCamelCase_)]
def __UpperCAmelCase ( lowerCamelCase_) -> dict:
UpperCamelCase__ : Any = [], []
for title, text in zip(documents['title'] , documents['text']):
if text is not None:
for passage in split_text(lowerCamelCase_):
titles.append(title if title is not None else '')
texts.append(lowerCamelCase_)
return {"title": titles, "text": texts}
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> dict:
UpperCamelCase__ : str = ctx_tokenizer(
documents['title'] , documents['text'] , truncation=lowerCamelCase_ , padding='longest' , return_tensors='pt')['input_ids']
UpperCamelCase__ : Dict = ctx_encoder(input_ids.to(device=lowerCamelCase_) , return_dict=lowerCamelCase_).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> int:
######################################
logger.info('Step 1 - Create the dataset')
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
UpperCamelCase__ : Union[str, Any] = load_dataset(
'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
UpperCamelCase__ : str = dataset.map(lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=processing_args.num_proc)
# And compute the embeddings
UpperCamelCase__ : Optional[int] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=lowerCamelCase_)
UpperCamelCase__ : str = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
UpperCamelCase__ : str = Features(
{'text': Value('string'), 'title': Value('string'), 'embeddings': Sequence(Value('float32'))}) # optional, save as float32 instead of float64 to save space
UpperCamelCase__ : List[Any] = dataset.map(
partial(lowerCamelCase_ , ctx_encoder=lowerCamelCase_ , ctx_tokenizer=lowerCamelCase_) , batched=lowerCamelCase_ , batch_size=processing_args.batch_size , features=lowerCamelCase_ , )
# And finally save your dataset
UpperCamelCase__ : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset')
dataset.save_to_disk(lowerCamelCase_)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('Step 2 - Index the dataset')
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
UpperCamelCase__ : List[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index('embeddings' , custom_index=lowerCamelCase_)
# And save the index
UpperCamelCase__ : int = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss')
dataset.get_index('embeddings').save(lowerCamelCase_)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class __lowercase :
_lowerCamelCase = field(
default=str(Path(__lowerCamelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , )
_lowerCamelCase = field(
default=__lowerCamelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , )
_lowerCamelCase = field(
default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , )
_lowerCamelCase = field(
default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={
'''help''': (
'''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or'''
''' \'facebook/dpr-ctx_encoder-multiset-base\''''
)
} , )
_lowerCamelCase = field(
default=str(Path(__lowerCamelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , )
@dataclass
class __lowercase :
_lowerCamelCase = field(
default=__lowerCamelCase , metadata={
'''help''': '''The number of processes to use to split the documents into passages. Default is single process.'''
} , )
_lowerCamelCase = field(
default=16 , metadata={
'''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.'''
} , )
@dataclass
class __lowercase :
_lowerCamelCase = field(
default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , )
_lowerCamelCase = field(
default=128 , metadata={
'''help''': (
'''The number of bi-directional links created for every new element during the HNSW index construction.'''
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
lowerCAmelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 706 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __lowercase (metaclass=__lowerCamelCase ):
_lowerCamelCase = ['''torch''', '''scipy''']
def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int):
requires_backends(self , ['torch', 'scipy'])
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]):
requires_backends(cls , ['torch', 'scipy'])
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any):
requires_backends(cls , ['torch', 'scipy'])
| 6 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]:
UpperCamelCase__ : Optional[int] = WavaVecaForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_)
UpperCamelCase__ : str = downstream_dict['projector.weight']
UpperCamelCase__ : Dict = downstream_dict['projector.bias']
UpperCamelCase__ : Optional[Any] = downstream_dict['model.post_net.linear.weight']
UpperCamelCase__ : Optional[int] = downstream_dict['model.post_net.linear.bias']
return model
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]:
UpperCamelCase__ : Optional[Any] = WavaVecaForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_)
UpperCamelCase__ : Tuple = downstream_dict['model.linear.weight']
UpperCamelCase__ : List[str] = downstream_dict['model.linear.bias']
return model
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]:
UpperCamelCase__ : Optional[Any] = WavaVecaForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_)
UpperCamelCase__ : str = downstream_dict['connector.weight']
UpperCamelCase__ : Any = downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel):
UpperCamelCase__ : int = downstream_dict[
f'model.framelevel_feature_extractor.module.{i}.kernel.weight'
]
UpperCamelCase__ : List[Any] = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias']
UpperCamelCase__ : Any = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
UpperCamelCase__ : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
UpperCamelCase__ : Dict = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
UpperCamelCase__ : List[str] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
UpperCamelCase__ : str = downstream_dict['objective.W']
return model
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict:
UpperCamelCase__ : Optional[int] = torch.load(lowerCamelCase_ , map_location='cpu')
UpperCamelCase__ : Optional[int] = checkpoint['Downstream']
UpperCamelCase__ : int = WavaVecaConfig.from_pretrained(lowerCamelCase_)
UpperCamelCase__ : str = WavaVecaFeatureExtractor.from_pretrained(
lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_)
UpperCamelCase__ : List[str] = hf_config.architectures[0]
if arch.endswith('ForSequenceClassification'):
UpperCamelCase__ : int = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
elif arch.endswith('ForAudioFrameClassification'):
UpperCamelCase__ : Union[str, Any] = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
elif arch.endswith('ForXVector'):
UpperCamelCase__ : Optional[int] = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
else:
raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}')
if hf_config.use_weighted_layer_sum:
UpperCamelCase__ : Optional[int] = checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(lowerCamelCase_)
hf_model.save_pretrained(lowerCamelCase_)
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
lowerCAmelCase__ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path) | 707 |
'''simple docstring'''
class __lowercase :
def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False):
# Mapping from the first character of the prefix of the node
UpperCamelCase__ : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
UpperCamelCase__ : List[Any] = is_leaf
UpperCamelCase__ : Optional[Any] = prefix
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str):
UpperCamelCase__ : Optional[int] = 0
for q, w in zip(self.prefix , UpperCAmelCase_):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]):
for word in words:
self.insert(UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str):
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
UpperCamelCase__ : Optional[Any] = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_)
else:
UpperCamelCase__ : int = self.nodes[word[0]]
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match(
UpperCAmelCase_)
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(UpperCAmelCase_)
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
UpperCamelCase__ : Tuple = remaining_prefix
UpperCamelCase__ : str = self.nodes[matching_string[0]]
UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_)
UpperCamelCase__ : str = aux_node
if remaining_word == "":
UpperCamelCase__ : int = True
else:
self.nodes[matching_string[0]].insert(UpperCAmelCase_)
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str):
UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_)
if not incoming_node:
return False
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match(
UpperCAmelCase_)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(UpperCAmelCase_)
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str):
UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_)
if not incoming_node:
return False
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match(
UpperCAmelCase_)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(UpperCAmelCase_)
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
UpperCamelCase__ : List[str] = list(self.nodes.values())[0]
UpperCamelCase__ : Tuple = merging_node.is_leaf
self.prefix += merging_node.prefix
UpperCamelCase__ : Tuple = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes) > 1:
UpperCamelCase__ : str = False
# If there is 1 edge, we merge it with its child
else:
UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0]
UpperCamelCase__ : Optional[Any] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
UpperCamelCase__ : Union[str, Any] = merging_node.nodes
return True
def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0):
if self.prefix != "":
print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '')
for value in self.nodes.values():
value.print_tree(height + 1)
def __UpperCAmelCase ( ) -> bool:
UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split()
UpperCamelCase__ : List[Any] = RadixNode()
root.insert_many(lowerCamelCase_)
assert all(root.find(lowerCamelCase_) for word in words)
assert not root.find('bandanas')
assert not root.find('apps')
root.delete('all')
assert not root.find('all')
root.delete('banana')
assert not root.find('banana')
assert root.find('bananas')
return True
def __UpperCAmelCase ( ) -> None:
assert test_trie()
def __UpperCAmelCase ( ) -> None:
UpperCamelCase__ : List[Any] = RadixNode()
UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split()
root.insert_many(lowerCamelCase_)
print('Words:' , lowerCamelCase_)
print('Tree:')
root.print_tree()
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/mbart-large-en-ro': (
'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'
),
'facebook/mbart-large-cc25': (
'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json',
'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json',
},
}
lowerCAmelCase__ = {
'facebook/mbart-large-en-ro': 1024,
'facebook/mbart-large-cc25': 1024,
}
# fmt: off
lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = ['''input_ids''', '''attention_mask''']
_lowerCamelCase = MBartTokenizer
_lowerCamelCase = []
_lowerCamelCase = []
def __init__( self : int , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]="<s>" , UpperCAmelCase_ : Union[str, Any]="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : Dict="<pad>" , UpperCAmelCase_ : Any="<mask>" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : List[Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token
super().__init__(
vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , )
UpperCamelCase__ : Union[str, Any] = vocab_file
UpperCamelCase__ : Dict = False if not self.vocab_file else True
UpperCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens})
UpperCamelCase__ : Optional[Any] = {
lang_code: self.convert_tokens_to_ids(UpperCAmelCase_) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
UpperCamelCase__ : Tuple = src_lang if src_lang is not None else 'en_XX'
UpperCamelCase__ : Dict = self.convert_tokens_to_ids(self._src_lang)
UpperCamelCase__ : str = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def __UpperCamelCase ( self : Any):
return self._src_lang
@src_lang.setter
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str):
UpperCamelCase__ : List[str] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __UpperCamelCase ( self : int , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
UpperCamelCase__ : Any = [self.sep_token_id]
UpperCamelCase__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] , UpperCAmelCase_ : Optional[str] , **UpperCAmelCase_ : Optional[int]):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model')
UpperCamelCase__ : int = src_lang
UpperCamelCase__ : Tuple = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_)
UpperCamelCase__ : Dict = self.convert_tokens_to_ids(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = tgt_lang_id
return inputs
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str = "en_XX" , UpperCAmelCase_ : Optional[List[str]] = None , UpperCAmelCase_ : str = "ro_RO" , **UpperCAmelCase_ : Dict , ):
UpperCamelCase__ : List[Any] = src_lang
UpperCamelCase__ : Tuple = tgt_lang
return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_)
def __UpperCamelCase ( self : List[str]):
return self.set_src_lang_special_tokens(self.src_lang)
def __UpperCamelCase ( self : Optional[Any]):
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Any):
UpperCamelCase__ : Any = self.convert_tokens_to_ids(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = []
UpperCamelCase__ : str = [self.eos_token_id, self.cur_lang_code]
UpperCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens)
UpperCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens)
UpperCamelCase__ : List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str):
UpperCamelCase__ : Tuple = self.convert_tokens_to_ids(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = []
UpperCamelCase__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
UpperCamelCase__ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens)
UpperCamelCase__ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens)
UpperCamelCase__ : List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None):
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.')
if not os.path.isdir(UpperCAmelCase_):
logger.error(F'Vocabulary path ({save_directory}) should be a directory.')
return
UpperCamelCase__ : str = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_):
copyfile(self.vocab_file , UpperCAmelCase_)
return (out_vocab_file,)
| 708 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase__ = False
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Optional[Any]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __UpperCamelCase ( self : int):
return 12
@property
def __UpperCamelCase ( self : Tuple):
return 12
@property
def __UpperCamelCase ( self : Dict):
return 32
@property
def __UpperCamelCase ( self : Optional[int]):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
return tokenizer
@property
def __UpperCamelCase ( self : List[str]):
torch.manual_seed(0)
UpperCamelCase__ : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Optional[int]):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = 12
UpperCamelCase__ : Dict = 12
UpperCamelCase__ : Union[str, Any] = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_)
return model
def __UpperCamelCase ( self : int):
UpperCamelCase__ : List[Any] = 'cpu'
UpperCamelCase__ : List[str] = self.dummy_vqvae
UpperCamelCase__ : List[str] = self.dummy_text_encoder
UpperCamelCase__ : Optional[int] = self.dummy_tokenizer
UpperCamelCase__ : List[str] = self.dummy_transformer
UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed)
UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_)
UpperCamelCase__ : int = VQDiffusionPipeline(
vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , )
UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool'
UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : Optional[Any] = output.images
UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Any = pipe(
[prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0]
UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Optional[int] = 'cpu'
UpperCamelCase__ : str = self.dummy_vqvae
UpperCamelCase__ : Any = self.dummy_text_encoder
UpperCamelCase__ : List[Any] = self.dummy_tokenizer
UpperCamelCase__ : Dict = self.dummy_transformer
UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed)
UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings(
learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length)
UpperCamelCase__ : str = VQDiffusionPipeline(
vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , )
UpperCamelCase__ : str = pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool'
UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : int = output.images
UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Optional[Any] = pipe(
[prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0]
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88])
assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Any):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Optional[Any] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy')
UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq')
UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_)
pipeline.set_progress_bar_config(disable=UpperCAmelCase_)
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : int = pipeline(
'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , )
UpperCamelCase__ : int = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).max() < 2.0
| 6 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase__ = {
'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'],
'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['VisionTextDualEncoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['FlaxVisionTextDualEncoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['TFVisionTextDualEncoderModel']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 709 |
'''simple docstring'''
import numpy as np
from PIL import Image
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray:
UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : int = 0
UpperCamelCase__ : Optional[int] = 0
UpperCamelCase__ : str = 0
# compute the shape of the output matrix
UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape))
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size])
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : Optional[int] = 0
return updated_arr
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray:
UpperCamelCase__ : Tuple = np.array(lowerCamelCase_)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
UpperCamelCase__ : Optional[int] = 0
UpperCamelCase__ : int = 0
UpperCamelCase__ : List[str] = 0
UpperCamelCase__ : List[Any] = 0
# compute the shape of the output matrix
UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape))
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size]))
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ : Union[str, Any] = 0
UpperCamelCase__ : Optional[Any] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='avgpooling', verbose=True)
# Loading the image
lowerCAmelCase__ = Image.open('path_to_image')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 6 | 0 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def __UpperCAmelCase ( lowerCamelCase_) -> List[str]:
UpperCamelCase__ : Optional[Any] = model.config
UpperCamelCase__ : Optional[Any] = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
UpperCamelCase__ : Optional[Any] = MBartConfig(
is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , add_cross_attention=lowerCamelCase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer) , scale_embedding=lowerCamelCase_ , add_final_layer_norm=lowerCamelCase_ , )
return encoder_config, decoder_config
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]:
if "encoder.model" in name:
UpperCamelCase__ : Any = name.replace('encoder.model' , 'encoder')
if "decoder.model" in name:
UpperCamelCase__ : str = name.replace('decoder.model' , 'decoder')
if "patch_embed.proj" in name:
UpperCamelCase__ : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection')
if "patch_embed.norm" in name:
UpperCamelCase__ : int = name.replace('patch_embed.norm' , 'embeddings.norm')
if name.startswith('encoder'):
if "layers" in name:
UpperCamelCase__ : int = 'encoder.' + name
if "attn.proj" in name:
UpperCamelCase__ : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense')
if "attn" in name and "mask" not in name:
UpperCamelCase__ : Any = name.replace('attn' , 'attention.self')
if "norm1" in name:
UpperCamelCase__ : Tuple = name.replace('norm1' , 'layernorm_before')
if "norm2" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('norm2' , 'layernorm_after')
if "mlp.fc1" in name:
UpperCamelCase__ : List[str] = name.replace('mlp.fc1' , 'intermediate.dense')
if "mlp.fc2" in name:
UpperCamelCase__ : Union[str, Any] = name.replace('mlp.fc2' , 'output.dense')
if name == "encoder.norm.weight":
UpperCamelCase__ : Optional[int] = 'encoder.layernorm.weight'
if name == "encoder.norm.bias":
UpperCamelCase__ : Tuple = 'encoder.layernorm.bias'
return name
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str:
for key in orig_state_dict.copy().keys():
UpperCamelCase__ : List[str] = orig_state_dict.pop(lowerCamelCase_)
if "qkv" in key:
UpperCamelCase__ : List[Any] = key.split('.')
UpperCamelCase__ : Optional[Any] = int(key_split[3])
UpperCamelCase__ : Any = int(key_split[5])
UpperCamelCase__ : List[str] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCamelCase__ : Any = val[:dim, :]
UpperCamelCase__ : List[Any] = val[dim : dim * 2, :]
UpperCamelCase__ : Optional[Any] = val[-dim:, :]
else:
UpperCamelCase__ : Dict = val[:dim]
UpperCamelCase__ : List[str] = val[dim : dim * 2]
UpperCamelCase__ : str = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
UpperCamelCase__ : Tuple = val
return orig_state_dict
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False) -> Dict:
# load original model
UpperCamelCase__ : str = DonutModel.from_pretrained(lowerCamelCase_).eval()
# load HuggingFace model
UpperCamelCase__ : Optional[Any] = get_configs(lowerCamelCase_)
UpperCamelCase__ : int = DonutSwinModel(lowerCamelCase_)
UpperCamelCase__ : str = MBartForCausalLM(lowerCamelCase_)
UpperCamelCase__ : List[Any] = VisionEncoderDecoderModel(encoder=lowerCamelCase_ , decoder=lowerCamelCase_)
model.eval()
UpperCamelCase__ : List[str] = original_model.state_dict()
UpperCamelCase__ : str = convert_state_dict(lowerCamelCase_ , lowerCamelCase_)
model.load_state_dict(lowerCamelCase_)
# verify results on scanned document
UpperCamelCase__ : Dict = load_dataset('hf-internal-testing/example-documents')
UpperCamelCase__ : int = dataset['test'][0]['image'].convert('RGB')
UpperCamelCase__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(lowerCamelCase_ , from_slow=lowerCamelCase_)
UpperCamelCase__ : int = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1])
UpperCamelCase__ : Any = DonutProcessor(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : Union[str, Any] = processor(lowerCamelCase_ , return_tensors='pt').pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
UpperCamelCase__ : int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>'
UpperCamelCase__ : List[str] = 'When is the coffee break?'
UpperCamelCase__ : Optional[int] = task_prompt.replace('{user_input}' , lowerCamelCase_)
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
UpperCamelCase__ : Any = '<s_rvlcdip>'
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
UpperCamelCase__ : Dict = '<s_cord>'
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
UpperCamelCase__ : Optional[int] = 's_cord-v2>'
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
UpperCamelCase__ : Optional[int] = '<s_zhtrainticket>'
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
UpperCamelCase__ : Union[str, Any] = 'hello world'
else:
raise ValueError('Model name not supported')
UpperCamelCase__ : Optional[int] = original_model.decoder.tokenizer(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors='pt')[
'input_ids'
]
UpperCamelCase__ : Union[str, Any] = original_model.encoder.model.patch_embed(lowerCamelCase_)
UpperCamelCase__ : Any = model.encoder.embeddings(lowerCamelCase_)
assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3)
# verify encoder hidden states
UpperCamelCase__ : int = original_model.encoder(lowerCamelCase_)
UpperCamelCase__ : Tuple = model.encoder(lowerCamelCase_).last_hidden_state
assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2)
# verify decoder hidden states
UpperCamelCase__ : Optional[int] = original_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_).logits
UpperCamelCase__ : Optional[int] = model(lowerCamelCase_ , decoder_input_ids=lowerCamelCase_).logits
assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3)
print('Looks ok!')
if pytorch_dump_folder_path is not None:
print(f'Saving model and processor to {pytorch_dump_folder_path}')
model.save_pretrained(lowerCamelCase_)
processor.save_pretrained(lowerCamelCase_)
if push_to_hub:
model.push_to_hub('nielsr/' + model_name.split('/')[-1] , commit_message='Update model')
processor.push_to_hub('nielsr/' + model_name.split('/')[-1] , commit_message='Update model')
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
lowerCAmelCase__ = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 710 |
'''simple docstring'''
from __future__ import annotations
class __lowercase :
def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]):
UpperCamelCase__ : int = TypeError(
'Matrices must be formed from a list of zero or more lists containing at '
'least one and the same number of values, each of which must be of type '
'int or float.')
if len(UpperCAmelCase_) != 0:
UpperCamelCase__ : str = len(rows[0])
if cols == 0:
raise error
for row in rows:
if len(UpperCAmelCase_) != cols:
raise error
for value in row:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise error
UpperCamelCase__ : Optional[int] = rows
else:
UpperCamelCase__ : Optional[Any] = []
def __UpperCamelCase ( self : Union[str, Any]):
return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))]
@property
def __UpperCamelCase ( self : Dict):
return len(self.rows)
@property
def __UpperCamelCase ( self : Tuple):
return len(self.rows[0])
@property
def __UpperCamelCase ( self : List[Any]):
return (self.num_rows, self.num_columns)
@property
def __UpperCamelCase ( self : Any):
return self.order[0] == self.order[1]
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Optional[int] = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows)]
for row_num in range(self.num_rows)
]
return Matrix(UpperCAmelCase_)
def __UpperCamelCase ( self : Dict):
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0])
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]))
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns))
def __UpperCamelCase ( self : str):
return bool(self.determinant())
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
UpperCamelCase__ : Optional[Any] = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns)
if other_column != column
]
for other_row in range(self.num_rows)
if other_row != row
]
return Matrix(UpperCAmelCase_).determinant()
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
if (row + column) % 2 == 0:
return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_)
return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : List[Any]):
return Matrix(
[
[self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)]
for row in range(self.num_rows)
])
def __UpperCamelCase ( self : Optional[int]):
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns)
]
for row in range(self.minors().num_rows)
])
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Dict = [
[self.cofactors().rows[column][row] for column in range(self.num_columns)]
for row in range(self.num_rows)
]
return Matrix(UpperCAmelCase_)
def __UpperCamelCase ( self : int):
UpperCamelCase__ : List[Any] = self.determinant()
if not determinant:
raise TypeError('Only matrices with a non-zero determinant have an inverse')
return self.adjugate() * (1 / determinant)
def __repr__( self : Any):
return str(self.rows)
def __str__( self : List[Any]):
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0])) + "]]"
return (
"["
+ "\n ".join(
[
'[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]'
for row in self.rows
])
+ "]"
)
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None):
UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats')
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise type_error
for value in row:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise type_error
if len(UpperCAmelCase_) != self.num_columns:
raise ValueError(
'Row must be equal in length to the other rows in the matrix')
if position is None:
self.rows.append(UpperCAmelCase_)
else:
UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:]
def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None):
UpperCamelCase__ : int = TypeError(
'Column must be a list containing all ints and/or floats')
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise type_error
for value in column:
if not isinstance(UpperCAmelCase_ , (int, float)):
raise type_error
if len(UpperCAmelCase_) != self.num_rows:
raise ValueError(
'Column must be equal in length to the other columns in the matrix')
if position is None:
UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)]
else:
UpperCamelCase__ : str = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows)
]
def __eq__( self : List[Any] , UpperCAmelCase_ : object):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
return NotImplemented
return self.rows == other.rows
def __ne__( self : Any , UpperCAmelCase_ : object):
return not self == other
def __neg__( self : Union[str, Any]):
return self * -1
def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix):
if self.order != other.order:
raise ValueError('Addition requires matrices of the same order')
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
])
def __sub__( self : Tuple , UpperCAmelCase_ : Matrix):
if self.order != other.order:
raise ValueError('Subtraction requires matrices of the same order')
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
])
def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float):
if isinstance(UpperCAmelCase_ , (int, float)):
return Matrix(
[[int(element * other) for element in row] for row in self.rows])
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
if self.num_columns != other.num_rows:
raise ValueError(
'The number of columns in the first matrix must '
'be equal to the number of rows in the second')
return Matrix(
[
[Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()]
for row in self.rows
])
else:
raise TypeError(
'A Matrix can only be multiplied by an int, float, or another matrix')
def __pow__( self : Dict , UpperCAmelCase_ : int):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise TypeError('A Matrix can only be raised to the power of an int')
if not self.is_square:
raise ValueError('Only square matrices can be raised to a power')
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
'Only invertable matrices can be raised to a negative power')
UpperCamelCase__ : str = self
for _ in range(other - 1):
result *= self
return result
@classmethod
def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]):
return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
'''simple docstring'''
import math
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]:
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(lowerCamelCase_)
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError('This should never happen')
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
lowerCAmelCase__ = 'Enter the base and the power separated by a comma: '
lowerCAmelCase__ , lowerCAmelCase__ = map(int, input(prompt).split(','))
lowerCAmelCase__ , lowerCAmelCase__ = map(int, input(prompt).split(','))
# We find the log of each number, using the function res(), which takes two
# arguments.
lowerCAmelCase__ = res(xa, ya)
lowerCAmelCase__ = res(xa, ya)
# We check for the largest number
if resa > resa:
print('Largest number is', xa, '^', ya)
elif resa > resa:
print('Largest number is', xa, '^', ya)
else:
print('Both are equal')
| 711 |
'''simple docstring'''
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class __lowercase :
def __UpperCamelCase ( self : Union[str, Any]):
torch.manual_seed(0)
UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : List[str] = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , )
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
UpperCamelCase__ : Optional[Any] = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __UpperCamelCase ( self : Dict):
torch.manual_seed(0)
UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5')
torch.manual_seed(0)
UpperCamelCase__ : Any = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
'ResnetDownsampleBlock2D',
'SimpleCrossAttnDownBlock2D',
] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
UpperCamelCase__ : str = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , )
torch.manual_seed(0)
UpperCamelCase__ : List[str] = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , )
torch.manual_seed(0)
UpperCamelCase__ : Optional[Any] = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Dict = self.get_dummy_components()
UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_)
pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = inputs['prompt']
UpperCamelCase__ : List[Any] = inputs['generator']
UpperCamelCase__ : Tuple = inputs['num_inference_steps']
UpperCamelCase__ : List[Any] = inputs['output_type']
if "image" in inputs:
UpperCamelCase__ : Tuple = inputs['image']
else:
UpperCamelCase__ : Union[str, Any] = None
if "mask_image" in inputs:
UpperCamelCase__ : Optional[int] = inputs['mask_image']
else:
UpperCamelCase__ : int = None
if "original_image" in inputs:
UpperCamelCase__ : List[Any] = inputs['original_image']
else:
UpperCamelCase__ : Optional[Any] = None
UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_)
# inputs with prompt converted to embeddings
UpperCamelCase__ : List[Any] = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
UpperCamelCase__ : Dict = image
if mask_image is not None:
UpperCamelCase__ : Optional[int] = mask_image
if original_image is not None:
UpperCamelCase__ : Union[str, Any] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_)
pipe_loaded.to(UpperCAmelCase_)
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , )
UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = inputs['generator']
UpperCamelCase__ : List[Any] = inputs['num_inference_steps']
UpperCamelCase__ : Optional[int] = inputs['output_type']
# inputs with prompt converted to embeddings
UpperCamelCase__ : Any = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'generator': generator,
'num_inference_steps': num_inference_steps,
'output_type': output_type,
}
if image is not None:
UpperCamelCase__ : Tuple = image
if mask_image is not None:
UpperCamelCase__ : Union[str, Any] = mask_image
if original_image is not None:
UpperCamelCase__ : str = original_image
UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0]
UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max()
self.assertLess(UpperCAmelCase_ , 1e-4)
def __UpperCamelCase ( self : Optional[int]):
UpperCamelCase__ : Any = self.get_dummy_components()
UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_)
pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_)
pipe_loaded.to(UpperCAmelCase_)
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_)
UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0]
UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max()
self.assertLess(UpperCAmelCase_ , 1e-4)
| 6 | 0 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''linear'''
_lowerCamelCase = '''cosine'''
_lowerCamelCase = '''cosine_with_restarts'''
_lowerCamelCase = '''polynomial'''
_lowerCamelCase = '''constant'''
_lowerCamelCase = '''constant_with_warmup'''
_lowerCamelCase = '''piecewise_constant'''
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = -1):
return LambdaLR(lowerCamelCase_ , lambda lowerCamelCase_: 1 , last_epoch=lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = -1):
def lr_lambda(lowerCamelCase_):
if current_step < num_warmup_steps:
return float(lowerCamelCase_) / float(max(1.0 , lowerCamelCase_))
return 1.0
return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , last_epoch=lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = -1):
UpperCamelCase__ : Union[str, Any] = {}
UpperCamelCase__ : List[str] = step_rules.split(',')
for rule_str in rule_list[:-1]:
UpperCamelCase__ : str = rule_str.split(':')
UpperCamelCase__ : Optional[int] = int(lowerCamelCase_)
UpperCamelCase__ : Optional[int] = float(lowerCamelCase_)
UpperCamelCase__ : Optional[int] = value
UpperCamelCase__ : str = float(rule_list[-1])
def create_rules_function(lowerCamelCase_ , lowerCamelCase_):
def rule_func(lowerCamelCase_) -> float:
UpperCamelCase__ : Dict = sorted(rules_dict.keys())
for i, sorted_step in enumerate(lowerCamelCase_):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
UpperCamelCase__ : str = create_rules_function(lowerCamelCase_ , lowerCamelCase_)
return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , last_epoch=lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=-1):
def lr_lambda(lowerCamelCase_):
if current_step < num_warmup_steps:
return float(lowerCamelCase_) / float(max(1 , lowerCamelCase_))
return max(
0.0 , float(num_training_steps - current_step) / float(max(1 , num_training_steps - num_warmup_steps)))
return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0.5 , lowerCamelCase_ = -1):
def lr_lambda(lowerCamelCase_):
if current_step < num_warmup_steps:
return float(lowerCamelCase_) / float(max(1 , lowerCamelCase_))
UpperCamelCase__ : List[Any] = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps))
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase_) * 2.0 * progress)))
return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 , lowerCamelCase_ = -1):
def lr_lambda(lowerCamelCase_):
if current_step < num_warmup_steps:
return float(lowerCamelCase_) / float(max(1 , lowerCamelCase_))
UpperCamelCase__ : str = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase_) * progress) % 1.0))))
return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=1e-7 , lowerCamelCase_=1.0 , lowerCamelCase_=-1):
UpperCamelCase__ : Dict = optimizer.defaults['lr']
if not (lr_init > lr_end):
raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})')
def lr_lambda(lowerCamelCase_):
if current_step < num_warmup_steps:
return float(lowerCamelCase_) / float(max(1 , lowerCamelCase_))
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
UpperCamelCase__ : Union[str, Any] = lr_init - lr_end
UpperCamelCase__ : int = num_training_steps - num_warmup_steps
UpperCamelCase__ : str = 1 - (current_step - num_warmup_steps) / decay_steps
UpperCamelCase__ : Dict = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
lowerCAmelCase__ = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = 1 , lowerCamelCase_ = 1.0 , lowerCamelCase_ = -1 , ):
UpperCamelCase__ : Union[str, Any] = SchedulerType(lowerCamelCase_)
UpperCamelCase__ : Tuple = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(lowerCamelCase_ , last_epoch=lowerCamelCase_)
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(lowerCamelCase_ , step_rules=lowerCamelCase_ , last_epoch=lowerCamelCase_)
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.')
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , last_epoch=lowerCamelCase_)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.')
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , num_cycles=lowerCamelCase_ , last_epoch=lowerCamelCase_ , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , power=lowerCamelCase_ , last_epoch=lowerCamelCase_ , )
return schedule_func(
lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , last_epoch=lowerCamelCase_)
| 712 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
lowerCAmelCase__ = 3
def __UpperCAmelCase ( lowerCamelCase_) -> int:
print('Generating primitive root of p')
while True:
UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_)
if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1:
continue
if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1:
continue
return g
def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print('Generating prime p...')
UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number.
UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p.
UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety.
UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_)
UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p)
UpperCamelCase__ : Optional[Any] = (key_size, d)
return public_key, private_key
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None:
if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'):
print('\nWARNING:')
print(
f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
'Use a different name or delete these files and re-run this program.')
sys.exit()
UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_)
print(f'\nWriting public key to file {name}_pubkey.txt...')
with open(f'{name}_pubkey.txt' , 'w') as fo:
fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}')
print(f'Writing private key to file {name}_privkey.txt...')
with open(f'{name}_privkey.txt' , 'w') as fo:
fo.write(f'{private_key[0]},{private_key[1]}')
def __UpperCAmelCase ( ) -> None:
print('Making key files...')
make_key_files('elgamal' , 2_048)
print('Key files generation successful')
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def __UpperCAmelCase ( lowerCamelCase_) -> Any:
return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device)
def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]:
UpperCamelCase__ : Optional[int] = create_tensor(lowerCamelCase_)
UpperCamelCase__ : List[Any] = gather(lowerCamelCase_)
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1))
def __UpperCAmelCase ( lowerCamelCase_) -> Dict:
UpperCamelCase__ : Dict = [state.process_index]
UpperCamelCase__ : Any = gather_object(lowerCamelCase_)
assert len(lowerCamelCase_) == state.num_processes, f'{gathered_obj}, {len(lowerCamelCase_)} != {state.num_processes}'
assert gathered_obj == list(range(state.num_processes)), f'{gathered_obj} != {list(range(state.num_processes))}'
def __UpperCAmelCase ( lowerCamelCase_) -> int:
UpperCamelCase__ : Dict = create_tensor(lowerCamelCase_)
UpperCamelCase__ : Optional[Any] = broadcast(lowerCamelCase_)
assert broadcasted_tensor.shape == torch.Size([state.num_processes])
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1))
def __UpperCAmelCase ( lowerCamelCase_) -> str:
# We need to pad the tensor with one more element if we are the main process
# to ensure that we can pad
if state.is_main_process:
UpperCamelCase__ : Optional[Any] = torch.arange(state.num_processes + 1).to(state.device)
else:
UpperCamelCase__ : Any = torch.arange(state.num_processes).to(state.device)
UpperCamelCase__ : int = pad_across_processes(lowerCamelCase_)
assert padded_tensor.shape == torch.Size([state.num_processes + 1])
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes)) + [0]
def __UpperCAmelCase ( lowerCamelCase_) -> int:
# For now runs on only two processes
if state.num_processes != 2:
return
UpperCamelCase__ : Dict = create_tensor(lowerCamelCase_)
UpperCamelCase__ : int = reduce(lowerCamelCase_ , 'sum')
UpperCamelCase__ : Tuple = torch.tensor([4.0, 6]).to(state.device)
assert torch.allclose(lowerCamelCase_ , lowerCamelCase_), f'{reduced_tensor} != {truth_tensor}'
def __UpperCAmelCase ( lowerCamelCase_) -> Any:
# For now runs on only two processes
if state.num_processes != 2:
return
UpperCamelCase__ : List[str] = create_tensor(lowerCamelCase_)
UpperCamelCase__ : List[str] = reduce(lowerCamelCase_ , 'mean')
UpperCamelCase__ : List[Any] = torch.tensor([2.0, 3]).to(state.device)
assert torch.allclose(lowerCamelCase_ , lowerCamelCase_), f'{reduced_tensor} != {truth_tensor}'
def __UpperCAmelCase ( lowerCamelCase_) -> Any:
# For xla_spawn (TPUs)
main()
def __UpperCAmelCase ( ) -> Union[str, Any]:
UpperCamelCase__ : Any = PartialState()
state.print(f'State: {state}')
state.print('testing gather')
test_gather(lowerCamelCase_)
state.print('testing gather_object')
test_gather_object(lowerCamelCase_)
state.print('testing broadcast')
test_broadcast(lowerCamelCase_)
state.print('testing pad_across_processes')
test_pad_across_processes(lowerCamelCase_)
state.print('testing reduce_sum')
test_reduce_sum(lowerCamelCase_)
state.print('testing reduce_mean')
test_reduce_mean(lowerCamelCase_)
if __name__ == "__main__":
main()
| 713 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'ctc_proj',
'mask_emb': 'masked_spec_embed',
}
lowerCAmelCase__ = [
'ctc_proj',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str:
for attribute in key.split('.'):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
UpperCamelCase__ : str = 'lm_head'
UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_)
if weight_type is not None:
UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape
else:
UpperCamelCase__ : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
UpperCamelCase__ : Optional[Any] = value
elif weight_type == "weight_g":
UpperCamelCase__ : Union[str, Any] = value
elif weight_type == "weight_v":
UpperCamelCase__ : List[Any] = value
elif weight_type == "bias":
UpperCamelCase__ : Any = value
else:
UpperCamelCase__ : Optional[int] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.')
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]:
UpperCamelCase__ : List[Any] = []
UpperCamelCase__ : int = fairseq_model.state_dict()
UpperCamelCase__ : int = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase__ : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase__ : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]:
UpperCamelCase__ : Any = True
if "*" in mapped_key:
UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2]
UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_)
if "weight_g" in name:
UpperCamelCase__ : int = 'weight_g'
elif "weight_v" in name:
UpperCamelCase__ : Any = 'weight_v'
elif "bias" in name:
UpperCamelCase__ : Union[str, Any] = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase__ : Any = 'weight'
else:
UpperCamelCase__ : Tuple = None
set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
continue
if not is_used:
unused_weights.append(lowerCamelCase_)
logger.warning(f'Unused weights: {unused_weights}')
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1]
UpperCamelCase__ : List[Any] = name.split('.')
UpperCamelCase__ : Any = int(items[0])
UpperCamelCase__ : int = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
UpperCamelCase__ : Tuple = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
UpperCamelCase__ : int = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
UpperCamelCase__ : Optional[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
UpperCamelCase__ : List[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.')
else:
unused_weights.append(lowerCamelCase_)
@torch.no_grad()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple:
if config_path is not None:
UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_)
else:
UpperCamelCase__ : int = UniSpeechConfig()
if is_finetuned:
if dict_path:
UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase__ : List[Any] = target_dict.pad_index
UpperCamelCase__ : Dict = target_dict.bos_index
UpperCamelCase__ : Union[str, Any] = target_dict.eos_index
UpperCamelCase__ : Tuple = len(target_dict.symbols)
UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json')
if not os.path.isdir(lowerCamelCase_):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_))
return
os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_)
UpperCamelCase__ : Optional[int] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase__ : Any = 42
UpperCamelCase__ : List[str] = 43
with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle:
json.dump(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer(
lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , )
UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , )
UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_)
processor.save_pretrained(lowerCamelCase_)
UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_)
else:
UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_)
if is_finetuned:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path})
else:
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path])
UpperCamelCase__ : int = model[0].eval()
recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
hf_unispeech.save_pretrained(lowerCamelCase_)
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
lowerCAmelCase__ = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 6 | 0 |
'''simple docstring'''
import argparse
import copy
def __UpperCAmelCase ( lowerCamelCase_) -> List[str]:
UpperCamelCase__ : List[str] = {}
with open(lowerCamelCase_) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
UpperCamelCase__ : Any = []
_list.append([line.split()[1], line.split()[2]])
UpperCamelCase__ : int = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]])
if line.split()[1] not in dict_of_neighbours:
UpperCamelCase__ : Union[str, Any] = []
_list.append([line.split()[0], line.split()[2]])
UpperCamelCase__ : Optional[Any] = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]])
return dict_of_neighbours
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]:
with open(lowerCamelCase_) as f:
UpperCamelCase__ : str = f.read(1)
UpperCamelCase__ : Dict = start_node
UpperCamelCase__ : Optional[int] = []
UpperCamelCase__ : Tuple = start_node
UpperCamelCase__ : Optional[Any] = 0
while visiting not in first_solution:
UpperCamelCase__ : Dict = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1]) < int(lowerCamelCase_) and k[0] not in first_solution:
UpperCamelCase__ : Optional[int] = k[1]
UpperCamelCase__ : Optional[Any] = k[0]
first_solution.append(lowerCamelCase_)
UpperCamelCase__ : Tuple = distance_of_first_solution + int(lowerCamelCase_)
UpperCamelCase__ : Tuple = best_node
first_solution.append(lowerCamelCase_)
UpperCamelCase__ : List[Any] = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
UpperCamelCase__ : int = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1])
- 10_000
)
return first_solution, distance_of_first_solution
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict:
UpperCamelCase__ : Optional[Any] = []
for n in solution[1:-1]:
UpperCamelCase__ : int = solution.index(lowerCamelCase_)
for kn in solution[1:-1]:
UpperCamelCase__ : List[Any] = solution.index(lowerCamelCase_)
if n == kn:
continue
UpperCamelCase__ : Optional[int] = copy.deepcopy(lowerCamelCase_)
UpperCamelCase__ : Dict = kn
UpperCamelCase__ : Tuple = n
UpperCamelCase__ : int = 0
for k in _tmp[:-1]:
UpperCamelCase__ : Union[str, Any] = _tmp[_tmp.index(lowerCamelCase_) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
UpperCamelCase__ : Optional[int] = distance + int(i[1])
_tmp.append(lowerCamelCase_)
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp)
UpperCamelCase__ : Dict = len(neighborhood_of_solution[0]) - 1
neighborhood_of_solution.sort(key=lambda lowerCamelCase_: x[index_of_last_item_in_the_list])
return neighborhood_of_solution
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Optional[Any] = 1
UpperCamelCase__ : Tuple = first_solution
UpperCamelCase__ : Dict = []
UpperCamelCase__ : int = distance_of_first_solution
UpperCamelCase__ : List[str] = solution
while count <= iters:
UpperCamelCase__ : List[str] = find_neighborhood(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : Any = neighborhood[index_of_best_solution]
UpperCamelCase__ : Any = len(lowerCamelCase_) - 1
UpperCamelCase__ : int = False
while not found:
UpperCamelCase__ : Any = 0
while i < len(lowerCamelCase_):
if best_solution[i] != solution[i]:
UpperCamelCase__ : Optional[Any] = best_solution[i]
UpperCamelCase__ : Union[str, Any] = solution[i]
break
UpperCamelCase__ : List[Any] = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node])
UpperCamelCase__ : Union[str, Any] = True
UpperCamelCase__ : Optional[int] = best_solution[:-1]
UpperCamelCase__ : List[Any] = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
UpperCamelCase__ : Optional[Any] = cost
UpperCamelCase__ : Any = solution
else:
UpperCamelCase__ : List[str] = index_of_best_solution + 1
UpperCamelCase__ : List[str] = neighborhood[index_of_best_solution]
if len(lowerCamelCase_) >= size:
tabu_list.pop(0)
UpperCamelCase__ : List[str] = count + 1
return best_solution_ever, best_cost
def __UpperCAmelCase ( lowerCamelCase_=None) -> Dict:
UpperCamelCase__ : List[str] = generate_neighbours(args.File)
UpperCamelCase__ : Optional[Any] = generate_first_solution(
args.File , lowerCamelCase_)
UpperCamelCase__ : Union[str, Any] = tabu_search(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.Iterations , args.Size , )
print(f'Best solution: {best_sol}, with total distance: {best_cost}.')
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 714 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : List[str]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Union[str, Any] = 1
UpperCamelCase__ : Union[str, Any] = 3
UpperCamelCase__ : Dict = (32, 32)
UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_)
return image
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def __UpperCamelCase ( self : Any):
torch.manual_seed(0)
UpperCamelCase__ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def __UpperCamelCase ( self : str):
torch.manual_seed(0)
UpperCamelCase__ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Optional[Any]):
def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict):
class __lowercase :
def __init__( self : List[Any]):
UpperCamelCase__ : Optional[Any] = torch.ones([0])
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int):
self.pixel_values.to(UpperCAmelCase_)
return self
return Out()
return extract
def __UpperCamelCase ( self : str):
UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ : Any = self.dummy_cond_unet
UpperCamelCase__ : Any = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , )
UpperCamelCase__ : List[str] = self.dummy_vae
UpperCamelCase__ : str = self.dummy_text_encoder
UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : Tuple = output.images
UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Tuple = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ : int = self.dummy_cond_unet
UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = self.dummy_vae
UpperCamelCase__ : Optional[int] = self.dummy_text_encoder
UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Dict = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np')
UpperCamelCase__ : List[str] = output.images
UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0)
UpperCamelCase__ : Optional[Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0]
UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1]
UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_)
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_)
assert isinstance(pipe.scheduler , UpperCAmelCase_)
assert pipe.safety_checker is None
UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(UpperCAmelCase_)
UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU')
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Dict = self.dummy_cond_unet
UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_)
UpperCamelCase__ : Any = self.dummy_vae
UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder
UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
# put models in fp16
UpperCamelCase__ : Any = unet.half()
UpperCamelCase__ : Tuple = vae.half()
UpperCamelCase__ : Optional[int] = bert.half()
# make sure here that pndm scheduler skips prk
UpperCamelCase__ : Optional[int] = StableDiffusionPipeline(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger'
UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : Optional[int]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = (
'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'
' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'
' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'
' children from bahnhof zoo, detailed '
)
UpperCamelCase__ : Any = 4_003_660_346
UpperCamelCase__ : Any = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : str = output.images
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# without safety guidance (strong configuration)
UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : str = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Dict = output.images
UpperCamelCase__ : str = image[0, -3:, -3:, -1]
UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Optional[Any]):
UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_)
UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity'
UpperCamelCase__ : Tuple = 2_734_971_755
UpperCamelCase__ : Tuple = 7
UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : int = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : int = output.images
UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Tuple = output.images
UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1]
UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def __UpperCamelCase ( self : Any):
UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5')
UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_)
UpperCamelCase__ : int = (
'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'
' leyendecker'
)
UpperCamelCase__ : Any = 1_044_355_234
UpperCamelCase__ : Optional[int] = 12
UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : str = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase__ : List[str] = output.images
UpperCamelCase__ : Any = image[0, -3:, -3:, -1]
UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7
UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_)
UpperCamelCase__ : List[str] = sd_pipe(
[prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase__ : Optional[Any] = output.images
UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 6 | 0 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = ['''image_processor''', '''tokenizer''']
_lowerCamelCase = '''LayoutLMv3ImageProcessor'''
_lowerCamelCase = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''')
def __init__( self : Any , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Any):
UpperCamelCase__ : str = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , UpperCAmelCase_ , )
UpperCamelCase__ : Dict = kwargs.pop('feature_extractor')
UpperCamelCase__ : Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.')
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.')
super().__init__(UpperCAmelCase_ , UpperCAmelCase_)
def __call__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase_ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : List[str] , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.')
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.')
# first, apply the image processor
UpperCamelCase__ : Optional[Any] = self.image_processor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_)
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
UpperCamelCase__ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension)
UpperCamelCase__ : int = features['words']
UpperCamelCase__ : int = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , )
# add pixel values
UpperCamelCase__ : Any = features.pop('pixel_values')
if return_overflowing_tokens is True:
UpperCamelCase__ : List[Any] = self.get_overflowing_images(UpperCAmelCase_ , encoded_inputs['overflow_to_sample_mapping'])
UpperCamelCase__ : Any = images
return encoded_inputs
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
UpperCamelCase__ : List[str] = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx])
if len(UpperCAmelCase_) != len(UpperCAmelCase_):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
F' {len(UpperCAmelCase_)} and {len(UpperCAmelCase_)}')
return images_with_overflow
def __UpperCamelCase ( self : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int):
return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any]):
return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_)
@property
def __UpperCamelCase ( self : Dict):
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def __UpperCamelCase ( self : List[Any]):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , )
return self.image_processor_class
@property
def __UpperCamelCase ( self : Any):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase_ , )
return self.image_processor
| 715 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
lowerCAmelCase__ = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
lowerCAmelCase__ = {'facebook/blenderbot-3B': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __UpperCAmelCase ( ) -> Union[str, Any]:
UpperCamelCase__ : Optional[Any] = (
list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1))
)
UpperCamelCase__ : List[Any] = bs[:]
UpperCamelCase__ : Optional[int] = 0
for b in range(2**8):
if b not in bs:
bs.append(lowerCamelCase_)
cs.append(2**8 + n)
n += 1
UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs]
return dict(zip(lowerCamelCase_ , lowerCamelCase_))
def __UpperCAmelCase ( lowerCamelCase_) -> Tuple:
UpperCamelCase__ : Any = set()
UpperCamelCase__ : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
UpperCamelCase__ : str = char
return pairs
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ):
UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token
UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token
UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token
UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token
UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token
UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token
super().__init__(
errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , )
with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle:
UpperCamelCase__ : Any = json.load(UpperCAmelCase_)
UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()}
UpperCamelCase__ : Any = errors # how to handle errors in decoding
UpperCamelCase__ : Tuple = bytes_to_unicode()
UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle:
UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1]
UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges]
UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
UpperCamelCase__ : Dict = {}
UpperCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+')
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def __UpperCamelCase ( self : Tuple):
return len(self.encoder)
def __UpperCamelCase ( self : Tuple):
return dict(self.encoder , **self.added_tokens_encoder)
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]):
if token in self.cache:
return self.cache[token]
UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_)
UpperCamelCase__ : int = get_pairs(UpperCAmelCase_)
if not pairs:
return token
while True:
UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf')))
if bigram not in self.bpe_ranks:
break
UpperCamelCase__, UpperCamelCase__ : Tuple = bigram
UpperCamelCase__ : Dict = []
UpperCamelCase__ : Optional[int] = 0
while i < len(UpperCAmelCase_):
try:
UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
UpperCamelCase__ : Any = j
if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_)
UpperCamelCase__ : Dict = new_word
if len(UpperCAmelCase_) == 1:
break
else:
UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_)
UpperCamelCase__ : List[Any] = word
return word
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any):
UpperCamelCase__ : Optional[Any] = []
for token in re.findall(self.pat , UpperCAmelCase_):
UpperCamelCase__ : Optional[int] = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' '))
return bpe_tokens
def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]):
return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token))
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]):
return self.decoder.get(UpperCAmelCase_)
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int):
UpperCamelCase__ : int = ''.join(UpperCAmelCase_)
UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors)
return text
def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None):
if not os.path.isdir(UpperCAmelCase_):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
UpperCamelCase__ : str = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
UpperCamelCase__ : Optional[Any] = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n')
UpperCamelCase__ : str = 0
with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!')
UpperCamelCase__ : List[Any] = token_index
writer.write(' '.join(UpperCAmelCase_) + '\n')
index += 1
return vocab_file, merge_file
def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase_)) + [1]
return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1]
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
UpperCamelCase__ : Any = [self.sep_token_id]
UpperCamelCase__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]):
UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()):
UpperCamelCase__ : str = ' ' + text
return (text, kwargs)
def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None):
return token_ids_a + [self.eos_token_id]
def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"):
UpperCamelCase__ : List[str] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text)
else:
# Generated responses should contain them already.
inputs.append(UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_)
UpperCamelCase__ : int = self.encode(UpperCAmelCase_)
if len(UpperCAmelCase_) > self.model_max_length:
UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :]
logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.')
return input_ids
| 6 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( lowerCamelCase_) -> list:
if any(not isinstance(lowerCamelCase_ , lowerCamelCase_) or x < 0 for x in sequence):
raise TypeError('Sequence must be list of non-negative integers')
for _ in range(len(lowerCamelCase_)):
for i, (rod_upper, rod_lower) in enumerate(zip(lowerCamelCase_ , sequence[1:])):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 716 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str:
UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser')
UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_).find('span').text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 6 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __lowercase (metaclass=__lowerCamelCase ):
_lowerCamelCase = ['''torch''', '''scipy''']
def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int):
requires_backends(self , ['torch', 'scipy'])
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]):
requires_backends(cls , ['torch', 'scipy'])
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any):
requires_backends(cls , ['torch', 'scipy'])
| 717 |
'''simple docstring'''
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@slow
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip')
model.to(UpperCAmelCase_)
from datasets import load_dataset
UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo')
UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB')
UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_)
# forward pass
with torch.no_grad():
UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_)
UpperCamelCase__ : Tuple = outputs.logits
UpperCamelCase__ : str = torch.Size((1, 16))
self.assertEqual(logits.shape , UpperCAmelCase_)
UpperCamelCase__ : Tuple = torch.tensor(
[-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
| 6 | 0 |
'''simple docstring'''
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
lowerCAmelCase__ = 'tiny-wmt19-en-ru'
# Build
# borrowed from a test
lowerCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
lowerCAmelCase__ = dict(zip(vocab, range(len(vocab))))
lowerCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ = Path(tmpdirname)
lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES['src_vocab_file']
lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file']
lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES['merges_file']
with open(src_vocab_file, 'w') as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, 'w') as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, 'w') as fp:
fp.write('\n'.join(merges))
lowerCAmelCase__ = FSMTTokenizer(
langs=['en', 'ru'],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
lowerCAmelCase__ = FSMTConfig(
langs=['ru', 'en'],
src_vocab_size=1000,
tgt_vocab_size=1000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
lowerCAmelCase__ = FSMTForConditionalGeneration(config)
print(f'''num of params {tiny_model.num_parameters()}''')
# Test
lowerCAmelCase__ = tokenizer(['Making tiny model'], return_tensors='pt')
lowerCAmelCase__ = tiny_model(**batch)
print('test output:', len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(f'''Generated {mname_tiny}''')
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 718 |
'''simple docstring'''
import argparse
import struct
import unittest
class __lowercase :
def __init__( self : Tuple , UpperCAmelCase_ : bytes):
UpperCamelCase__ : Dict = data
# Initialize hash values
UpperCamelCase__ : Any = [
0X6A_09E_667,
0XBB_67A_E85,
0X3C_6EF_372,
0XA5_4FF_53A,
0X51_0E5_27F,
0X9B_056_88C,
0X1F_83D_9AB,
0X5B_E0C_D19,
]
# Initialize round constants
UpperCamelCase__ : List[Any] = [
0X42_8A2_F98,
0X71_374_491,
0XB5_C0F_BCF,
0XE9_B5D_BA5,
0X39_56C_25B,
0X59_F11_1F1,
0X92_3F8_2A4,
0XAB_1C5_ED5,
0XD8_07A_A98,
0X12_835_B01,
0X24_318_5BE,
0X55_0C7_DC3,
0X72_BE5_D74,
0X80_DEB_1FE,
0X9B_DC0_6A7,
0XC1_9BF_174,
0XE4_9B6_9C1,
0XEF_BE4_786,
0X0F_C19_DC6,
0X24_0CA_1CC,
0X2D_E92_C6F,
0X4A_748_4AA,
0X5C_B0A_9DC,
0X76_F98_8DA,
0X98_3E5_152,
0XA8_31C_66D,
0XB0_032_7C8,
0XBF_597_FC7,
0XC6_E00_BF3,
0XD5_A79_147,
0X06_CA6_351,
0X14_292_967,
0X27_B70_A85,
0X2E_1B2_138,
0X4D_2C6_DFC,
0X53_380_D13,
0X65_0A7_354,
0X76_6A0_ABB,
0X81_C2C_92E,
0X92_722_C85,
0XA2_BFE_8A1,
0XA8_1A6_64B,
0XC2_4B8_B70,
0XC7_6C5_1A3,
0XD1_92E_819,
0XD6_990_624,
0XF4_0E3_585,
0X10_6AA_070,
0X19_A4C_116,
0X1E_376_C08,
0X27_487_74C,
0X34_B0B_CB5,
0X39_1C0_CB3,
0X4E_D8A_A4A,
0X5B_9CC_A4F,
0X68_2E6_FF3,
0X74_8F8_2EE,
0X78_A56_36F,
0X84_C87_814,
0X8C_C70_208,
0X90_BEF_FFA,
0XA4_506_CEB,
0XBE_F9A_3F7,
0XC6_717_8F2,
]
UpperCamelCase__ : Tuple = self.preprocessing(self.data)
self.final_hash()
@staticmethod
def __UpperCamelCase ( UpperCAmelCase_ : bytes):
UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64))
UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8))
return data + padding + big_endian_integer
def __UpperCamelCase ( self : Union[str, Any]):
# Convert into blocks of 64 bytes
UpperCamelCase__ : int = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data) , 64)
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_))
# add 48 0-ed integers
words += [0] * 48
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes
for index in range(0 , 64):
if index > 15:
# modify the zero-ed indexes at the end of the array
UpperCamelCase__ : Dict = (
self.ror(words[index - 15] , 7)
^ self.ror(words[index - 15] , 18)
^ (words[index - 15] >> 3)
)
UpperCamelCase__ : Tuple = (
self.ror(words[index - 2] , 17)
^ self.ror(words[index - 2] , 19)
^ (words[index - 2] >> 10)
)
UpperCamelCase__ : int = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X100_000_000
# Compression
UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25)
UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g)
UpperCamelCase__ : List[Any] = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X100_000_000
UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22)
UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c)
UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000
UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = (
g,
f,
e,
((d + tempa) % 0X100_000_000),
c,
b,
a,
((tempa + tempa) % 0X100_000_000),
)
UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h]
# Modify final values
UpperCamelCase__ : Optional[Any] = [
((element + mutated_hash_values[index]) % 0X100_000_000)
for index, element in enumerate(self.hashes)
]
UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes])
def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int):
return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations)
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : int):
import hashlib
UpperCamelCase__ : str = bytes('Test String' , 'utf-8')
self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest())
def __UpperCAmelCase ( ) -> None:
import doctest
doctest.testmod()
UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file')
UpperCamelCase__ : List[str] = parser.parse_args()
UpperCamelCase__ : str = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb') as f:
UpperCamelCase__ : Any = f.read()
else:
UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8')
print(SHAaaa(lowerCamelCase_).hash)
if __name__ == "__main__":
main()
| 6 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class __lowercase :
_lowerCamelCase = 42
_lowerCamelCase = None
_lowerCamelCase = None
lowerCAmelCase__ = namedtuple('CoinsDistribResult', 'moves excess')
def __UpperCAmelCase ( lowerCamelCase_) -> int:
if root is None:
return 0
# Validation
def count_nodes(lowerCamelCase_) -> int:
if node is None:
return 0
return count_nodes(node.left) + count_nodes(node.right) + 1
def count_coins(lowerCamelCase_) -> int:
if node is None:
return 0
return count_coins(node.left) + count_coins(node.right) + node.data
if count_nodes(lowerCamelCase_) != count_coins(lowerCamelCase_):
raise ValueError('The nodes number should be same as the number of coins')
# Main calculation
def get_distrib(lowerCamelCase_) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1)
UpperCamelCase__ : List[Any] = get_distrib(node.left)
UpperCamelCase__ : Tuple = get_distrib(node.right)
UpperCamelCase__ : Optional[Any] = 1 - left_distrib_excess
UpperCamelCase__ : Optional[int] = 1 - right_distrib_excess
UpperCamelCase__ : str = (
left_distrib_moves
+ right_distrib_moves
+ abs(lowerCamelCase_)
+ abs(lowerCamelCase_)
)
UpperCamelCase__ : str = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(lowerCamelCase_ , lowerCamelCase_)
return get_distrib(lowerCamelCase_)[0]
if __name__ == "__main__":
import doctest
doctest.testmod() | 719 |
'''simple docstring'''
from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase__ = 300 # TEMPERATURE (unit = K)
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float:
if donor_conc <= 0:
raise ValueError('Donor concentration should be positive')
elif acceptor_conc <= 0:
raise ValueError('Acceptor concentration should be positive')
elif intrinsic_conc <= 0:
raise ValueError('Intrinsic concentration should be positive')
elif donor_conc <= intrinsic_conc:
raise ValueError(
'Donor concentration should be greater than intrinsic concentration')
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
'Acceptor concentration should be greater than intrinsic concentration')
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2)
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 | 0 |
'''simple docstring'''
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
lowerCAmelCase__ = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
lowerCAmelCase__ = [file for file in filepaths if file != file.lower()]
if upper_files:
print(f'''{len(upper_files)} files contain uppercase characters:''')
print('\n'.join(upper_files) + '\n')
lowerCAmelCase__ = [file for file in filepaths if ' ' in file]
if space_files:
print(f'''{len(space_files)} files contain space characters:''')
print('\n'.join(space_files) + '\n')
lowerCAmelCase__ = [file for file in filepaths if '-' in file]
if hyphen_files:
print(f'''{len(hyphen_files)} files contain hyphen characters:''')
print('\n'.join(hyphen_files) + '\n')
lowerCAmelCase__ = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(f'''{len(nodir_files)} files are not in a directory:''')
print('\n'.join(nodir_files) + '\n')
lowerCAmelCase__ = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 720 |
'''simple docstring'''
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]:
UpperCamelCase__ : int = []
if isinstance(lowerCamelCase_ , lowerCamelCase_):
for v in tree.values():
shapes.extend(_fetch_dims(lowerCamelCase_))
elif isinstance(lowerCamelCase_ , (list, tuple)):
for t in tree:
shapes.extend(_fetch_dims(lowerCamelCase_))
elif isinstance(lowerCamelCase_ , torch.Tensor):
shapes.append(tree.shape)
else:
raise ValueError('Not supported')
return shapes
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]:
UpperCamelCase__ : int = []
for d in reversed(lowerCamelCase_):
idx.append(flat_idx % d)
UpperCamelCase__ : Any = flat_idx // d
return tuple(reversed(lowerCamelCase_))
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]:
# start_edges and end_edges both indicate whether, starting from any given
# dimension, the start/end index is at the top/bottom edge of the
# corresponding tensor, modeled as a tree
def reduce_edge_list(lowerCamelCase_) -> None:
UpperCamelCase__ : Tuple = True
for i in range(len(lowerCamelCase_)):
UpperCamelCase__ : List[Any] = -1 * (i + 1)
l[reversed_idx] &= tally
UpperCamelCase__ : Optional[Any] = l[reversed_idx]
if start_edges is None:
UpperCamelCase__ : int = [s == 0 for s in start]
reduce_edge_list(lowerCamelCase_)
if end_edges is None:
UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)]
reduce_edge_list(lowerCamelCase_)
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(lowerCamelCase_) == 0:
return [()]
elif len(lowerCamelCase_) == 1:
return [(slice(start[0] , end[0] + 1),)]
UpperCamelCase__ : List[Tuple[slice, ...]] = []
UpperCamelCase__ : List[slice] = []
# Dimensions common to start and end can be selected directly
for s, e in zip(lowerCamelCase_ , lowerCamelCase_):
if s == e:
path_list.append(slice(lowerCamelCase_ , s + 1))
else:
break
UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_)
UpperCamelCase__ : Dict = len(lowerCamelCase_)
# start == end, and we're done
if divergence_idx == len(lowerCamelCase_):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ : str = start[divergence_idx]
return tuple(
path + (slice(lowerCamelCase_ , sdi + 1),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ))
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ : Optional[int] = end[divergence_idx]
return tuple(
path + (slice(lowerCamelCase_ , edi + 1),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ))
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),))
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),))
slices.extend(lower())
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper())
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),))
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper())
UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),))
slices.extend(lower())
return slices
@torch.jit.ignore
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor:
UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims]
UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_))
# _get_minimal_slice_set is inclusive
UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_))
# Get an ordered list of slices to perform
UpperCamelCase__ : int = _get_minimal_slice_set(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , )
UpperCamelCase__ : List[Any] = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors])
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any:
if not (len(lowerCamelCase_) > 0):
raise ValueError('Must provide at least one input')
UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)]
UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)])
def _prep_inputs(lowerCamelCase_) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims]) == no_batch_dims:
UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:])
else:
UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
return t
UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_)
UpperCamelCase__ : int = None
if _out is not None:
UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out)
UpperCamelCase__ : Dict = 1
for d in orig_batch_dims:
flat_batch_dim *= d
UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(lowerCamelCase_) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : Optional[Any] = prepped_outputs
for _ in range(lowerCamelCase_):
# Chunk the input
if not low_mem:
UpperCamelCase__ : str = _select_chunk
else:
UpperCamelCase__ : List[Any] = partial(
_chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , )
UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_)
# Run the layer on the chunk
UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_)
# Allocate space for the output
if out is None:
UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_)
# Put the chunk in its pre-allocated space
if isinstance(lowerCamelCase_ , lowerCamelCase_):
def assign(lowerCamelCase_ , lowerCamelCase_) -> None:
for k, v in da.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_):
assign(lowerCamelCase_ , da[k])
else:
if _add_into_out:
v[i : i + chunk_size] += da[k]
else:
UpperCamelCase__ : List[str] = da[k]
assign(lowerCamelCase_ , lowerCamelCase_)
elif isinstance(lowerCamelCase_ , lowerCamelCase_):
for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_):
if _add_into_out:
xa[i : i + chunk_size] += xa
else:
UpperCamelCase__ : int = xa
elif isinstance(lowerCamelCase_ , torch.Tensor):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
UpperCamelCase__ : Dict = output_chunk
else:
raise ValueError('Not supported')
i += chunk_size
UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_)
return out
class __lowercase :
def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ):
UpperCamelCase__ : str = max_chunk_size
UpperCamelCase__ : Optional[int] = None
UpperCamelCase__ : Optional[tuple] = None
def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int):
logging.info('Tuning chunk size...')
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)]
UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size]
UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(UpperCAmelCase_ : int) -> bool:
try:
with torch.no_grad():
fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_)
return True
except RuntimeError:
return False
UpperCamelCase__ : Tuple = 0
UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1
while i > min_viable_chunk_size_index:
UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i])
if not viable:
UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2
else:
UpperCamelCase__ : Optional[int] = i
UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2
return candidates[min_viable_chunk_size_index]
def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable):
UpperCamelCase__ : List[str] = True
for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_):
assert type(UpperCAmelCase_) == type(UpperCAmelCase_)
if isinstance(UpperCAmelCase_ , (list, tuple)):
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_)
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])]
UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])]
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_)
else:
consistent &= aa == aa
return consistent
def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ):
UpperCamelCase__ : List[Any] = True
UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_)
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data) == len(UpperCAmelCase_)
UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_)
else:
# Otherwise, we can reuse the precomputed value
UpperCamelCase__ : Optional[int] = False
if not consistent:
UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )
UpperCamelCase__ : Optional[Any] = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
| 6 | 0 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase__ = Lock()
def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(lowerCamelCase_)
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCamelCase__ : int = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCamelCase__ : List[Any] = min(lowerCamelCase_ , lowerCamelCase_)
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(lowerCamelCase_)
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCamelCase__ : int = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCamelCase__ : List[Any] = max(lowerCamelCase_ , lowerCamelCase_)
# after all swaps are performed, send the values back to main
result_pipe[1].send(lowerCamelCase_)
def __UpperCAmelCase ( lowerCamelCase_) -> List[str]:
UpperCamelCase__ : Tuple = []
UpperCamelCase__ : Optional[Any] = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe())
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCamelCase__ : Optional[int] = Pipe()
UpperCamelCase__ : List[Any] = Pipe()
process_array_.append(
Process(
target=lowerCamelCase_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ))
UpperCamelCase__ : Tuple = temp_rs
UpperCamelCase__ : Tuple = temp_rr
for i in range(1 , len(lowerCamelCase_) - 1):
UpperCamelCase__ : int = Pipe()
UpperCamelCase__ : Any = Pipe()
process_array_.append(
Process(
target=lowerCamelCase_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ))
UpperCamelCase__ : List[Any] = temp_rs
UpperCamelCase__ : int = temp_rr
process_array_.append(
Process(
target=lowerCamelCase_ , args=(
len(lowerCamelCase_) - 1,
arr[len(lowerCamelCase_) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(lowerCamelCase_) - 1],
) , ))
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(lowerCamelCase_)):
UpperCamelCase__ : Union[str, Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __UpperCAmelCase ( ) -> List[str]:
UpperCamelCase__ : Union[str, Any] = list(range(10 , 0 , -1))
print('Initial List')
print(*lowerCamelCase_)
UpperCamelCase__ : Optional[int] = odd_even_transposition(lowerCamelCase_)
print('Sorted List\n')
print(*lowerCamelCase_)
if __name__ == "__main__":
main()
| 721 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __lowercase (unittest.TestCase ):
def __UpperCamelCase ( self : List[Any]):
UpperCamelCase__ : int = tempfile.mkdtemp()
# fmt: off
UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'}
UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as fp:
fp.write(json.dumps(UpperCAmelCase_) + '\n')
with open(self.merges_file , 'w' , encoding='utf-8') as fp:
fp.write('\n'.join(UpperCAmelCase_))
UpperCamelCase__ : Dict = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_)
with open(self.image_processor_file , 'w' , encoding='utf-8') as fp:
json.dump(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def __UpperCamelCase ( self : str):
shutil.rmtree(self.tmpdirname)
def __UpperCamelCase ( self : Tuple):
UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Union[str, Any] = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer()
UpperCamelCase__ : Any = self.get_image_processor()
UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
processor_slow.save_pretrained(self.tmpdirname)
UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_)
UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
processor_fast.save_pretrained(self.tmpdirname)
UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_)
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_)
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_)
def __UpperCamelCase ( self : List[str]):
UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0)
UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , UpperCAmelCase_)
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Optional[Any] = self.get_image_processor()
UpperCamelCase__ : int = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : int = self.prepare_image_inputs()
UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np')
UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np')
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2)
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Optional[Any] = self.get_image_processor()
UpperCamelCase__ : Dict = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Any = 'lower newer'
UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def __UpperCamelCase ( self : int):
UpperCamelCase__ : Optional[int] = self.get_image_processor()
UpperCamelCase__ : List[str] = self.get_tokenizer()
UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = 'lower newer'
UpperCamelCase__ : List[Any] = self.prepare_image_inputs()
UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_)
self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values'])
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_):
processor()
def __UpperCamelCase ( self : Dict):
UpperCamelCase__ : Any = self.get_image_processor()
UpperCamelCase__ : Dict = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_)
UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
def __UpperCamelCase ( self : str):
UpperCamelCase__ : Union[str, Any] = self.get_image_processor()
UpperCamelCase__ : List[str] = self.get_tokenizer()
UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_)
UpperCamelCase__ : List[Any] = 'lower newer'
UpperCamelCase__ : Optional[int] = self.prepare_image_inputs()
UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 6 | 0 |
'''simple docstring'''
from __future__ import annotations
def _UpperCAmelCase ( a : str , a : str ) -> bool:
"""simple docstring"""
lowercase_ : Union[str, Any] = get_failure_array(a )
# 2) Step through text searching for pattern
lowercase_ , lowercase_ : Dict = 0, 0 # index into text, pattern
while i < len(a ):
if pattern[j] == text[i]:
if j == (len(a ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
lowercase_ : Optional[Any] = failure[j - 1]
continue
i += 1
return False
def _UpperCAmelCase ( a : str ) -> list[int]:
"""simple docstring"""
lowercase_ : int = [0]
lowercase_ : List[Any] = 0
lowercase_ : Union[str, Any] = 1
while j < len(a ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
lowercase_ : Dict = failure[i - 1]
continue
j += 1
failure.append(a )
return failure
if __name__ == "__main__":
# Test 1)
A: Optional[int] = "abc1abc12"
A: Optional[int] = "alskfjaldsabc1abc1abc12k23adsfabcabc"
A: List[Any] = "alskfjaldsk23adsfabcabc"
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
A: List[Any] = "ABABX"
A: List[Any] = "ABABZABABYABABX"
assert kmp(pattern, text)
# Test 3)
A: Union[str, Any] = "AAAB"
A: Union[str, Any] = "ABAAAAAB"
assert kmp(pattern, text)
# Test 4)
A: Optional[int] = "abcdabcy"
A: Union[str, Any] = "abcxabcdabxabcdabcdabcy"
assert kmp(pattern, text)
# Test 5)
A: Tuple = "aabaabaaa"
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 7 |
'''simple docstring'''
def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]:
"""simple docstring"""
lowercase_ : list[list[float]] = []
for data in source_data:
for i, el in enumerate(a ):
if len(a ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(a ) )
return data_lists
def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]:
"""simple docstring"""
lowercase_ : list[list[float]] = []
for dlist, weight in zip(a , a ):
lowercase_ : Tuple = min(a )
lowercase_ : Any = max(a )
lowercase_ : list[float] = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
lowercase_ : str = f"Invalid weight of {weight:f} provided"
raise ValueError(a )
score_lists.append(a )
return score_lists
def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]:
"""simple docstring"""
lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(a ):
lowercase_ : List[Any] = final_scores[j] + ele
return final_scores
def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]:
"""simple docstring"""
lowercase_ : int = get_data(a )
lowercase_ : Optional[int] = calculate_each_score(a , a )
lowercase_ : Dict = generate_final_scores(a )
# append scores to source data
for i, ele in enumerate(a ):
source_data[i].append(a )
return source_data
| 7 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A: List[str] = {
"configuration_poolformer": [
"POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"PoolFormerConfig",
"PoolFormerOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A: int = ["PoolFormerFeatureExtractor"]
A: int = ["PoolFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A: Optional[int] = [
"POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PoolFormerForImageClassification",
"PoolFormerModel",
"PoolFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
A: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 7 |
'''simple docstring'''
def _UpperCAmelCase ( a : int , a : int ) -> int:
"""simple docstring"""
while second != 0:
lowercase_ : Any = first & second
first ^= second
lowercase_ : List[str] = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
A: Union[str, Any] = int(input("Enter the first number: ").strip())
A: Union[str, Any] = int(input("Enter the second number: ").strip())
print(f"""{add(first, second) = }""")
| 7 | 1 |
'''simple docstring'''
A: Dict = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)]
def _UpperCAmelCase ( a : int ) -> int:
"""simple docstring"""
lowercase_ : Any = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0]
number //= 1_0_0_0_0_0
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
A: list[bool | None] = [None] * 1_0_0_0_0_0_0_0
A: Optional[Any] = True
A: List[Any] = False
def _UpperCAmelCase ( a : int ) -> bool:
"""simple docstring"""
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowercase_ : Union[str, Any] = chain(next_number(a ) )
lowercase_ : Any = number_chain
while number < 1_0_0_0_0_0_0_0:
lowercase_ : Dict = number_chain
number *= 1_0
return number_chain
def _UpperCAmelCase ( a : int = 1_0_0_0_0_0_0_0 ) -> int:
"""simple docstring"""
for i in range(1 , a ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(a )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution() = }""")
| 7 |
'''simple docstring'''
class __magic_name__ :
"""simple docstring"""
def __init__( self , _lowercase ) -> Union[str, Any]:
lowercase_ : Dict = n
lowercase_ : Dict = [None] * self.n
lowercase_ : Tuple = 0 # index of the first element
lowercase_ : List[Any] = 0
lowercase_ : List[Any] = 0
def __len__( self ) -> int:
return self.size
def lowerCamelCase__ ( self ) -> bool:
return self.size == 0
def lowerCamelCase__ ( self ) -> List[Any]:
return False if self.is_empty() else self.array[self.front]
def lowerCamelCase__ ( self , _lowercase ) -> Any:
if self.size >= self.n:
raise Exception('QUEUE IS FULL' )
lowercase_ : Tuple = data
lowercase_ : List[Any] = (self.rear + 1) % self.n
self.size += 1
return self
def lowerCamelCase__ ( self ) -> Any:
if self.size == 0:
raise Exception('UNDERFLOW' )
lowercase_ : Dict = self.array[self.front]
lowercase_ : Tuple = None
lowercase_ : int = (self.front + 1) % self.n
self.size -= 1
return temp
| 7 | 1 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _UpperCAmelCase ( a : Optional[int] ) -> List[Any]:
"""simple docstring"""
for param in module.parameters():
lowercase_ : Union[str, Any] = False
def _UpperCAmelCase ( ) -> List[Any]:
"""simple docstring"""
lowercase_ : Dict = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
lowercase_ : Tuple = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _UpperCAmelCase ( a : List[str] ) -> List[str]:
"""simple docstring"""
lowercase_ : str = plt.imshow(a )
fig.axes.get_xaxis().set_visible(a )
fig.axes.get_yaxis().set_visible(a )
plt.show()
def _UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
lowercase_ : Optional[int] = datetime.now()
lowercase_ : Tuple = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n"
def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict:
"""simple docstring"""
lowercase_ : List[Any] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
lowercase_ : List[str] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple:
"""simple docstring"""
lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
lowercase_ : int = np.array(pil_image.convert('RGB' ) )
lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1
lowercase_ : Any = np.transpose(a , [2, 0, 1] )
lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 )
return image
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]:
super().__init__()
self.register_modules(
unet=_lowercase , scheduler=_lowercase , movq=_lowercase , )
lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int:
# get the original timestep using init_timestep
lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase )
lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 )
lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any:
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" )
lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase )
lowercase_ : Dict = batch_size * num_images_per_prompt
if image.shape[1] == 4:
lowercase_ : str = image
else:
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators." )
elif isinstance(_lowercase , _lowercase ):
lowercase_ : List[Any] = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase )
]
lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 )
else:
lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase )
lowercase_ : str = self.movq.config.scaling_factor * init_latents
lowercase_ : int = torch.cat([init_latents] , dim=0 )
lowercase_ : Dict = init_latents.shape
lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
lowercase_ : Optional[Any] = init_latents
return latents
def lowerCamelCase__ ( self , _lowercase=0 ) -> int:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" )
lowercase_ : Optional[Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_lowercase , _lowercase )
def lowerCamelCase__ ( self , _lowercase=0 ) -> int:
if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' )
lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" )
if self.device.type != "cpu":
self.to('cpu' , silence_dtype_warnings=_lowercase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
lowercase_ : Tuple = None
for cpu_offloaded_model in [self.unet, self.movq]:
lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase )
# We'll offload the last model manually.
lowercase_ : List[str] = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCamelCase__ ( self ) -> List[str]:
if not hasattr(self.unet , '_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_lowercase , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(_lowercase )
def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str:
lowercase_ : List[Any] = self._execution_device
lowercase_ : List[Any] = guidance_scale > 1.0
if isinstance(_lowercase , _lowercase ):
lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 )
lowercase_ : Optional[Any] = image_embeds.shape[0]
if isinstance(_lowercase , _lowercase ):
lowercase_ : List[str] = torch.cat(_lowercase , dim=0 )
if do_classifier_free_guidance:
lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 )
lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 )
lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase )
if not isinstance(_lowercase , _lowercase ):
lowercase_ : Union[str, Any] = [image]
if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" )
lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 )
lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase )
lowercase_ : Dict = self.movq.encode(_lowercase )['latents']
lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 )
self.scheduler.set_timesteps(_lowercase , device=_lowercase )
lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase )
lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt )
lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor )
lowercase_ : List[str] = self.prepare_latents(
_lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase )
for i, t in enumerate(self.progress_bar(_lowercase ) ):
# expand the latents if we are doing classifier free guidance
lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowercase_ : str = {'image_embeds': image_embeds}
lowercase_ : str = self.unet(
sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0]
if do_classifier_free_guidance:
lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 )
lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 )
lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , 'variance_type' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
lowercase_ : Dict = self.scheduler.step(
_lowercase , _lowercase , _lowercase , generator=_lowercase , )[0]
# post-processing
lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" )
if output_type in ["np", "pil"]:
lowercase_ : Dict = image * 0.5 + 0.5
lowercase_ : Dict = image.clamp(0 , 1 )
lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowercase_ : int = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowercase )
| 7 | 1 |
'''simple docstring'''
def _UpperCAmelCase ( a : int , a : int ) -> int:
"""simple docstring"""
while a != 0:
lowercase_ , lowercase_ : int = b % a, a
return b
def _UpperCAmelCase ( a : int , a : int ) -> int:
"""simple docstring"""
if gcd(a , a ) != 1:
lowercase_ : List[Any] = f"mod inverse of {a!r} and {m!r} does not exist"
raise ValueError(a )
lowercase_ , lowercase_ , lowercase_ : int = 1, 0, a
lowercase_ , lowercase_ , lowercase_ : Tuple = 0, 1, m
while va != 0:
lowercase_ : List[str] = ua // va
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 7 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
A: int = {
"config": [
"EXTERNAL_DATA_FORMAT_SIZE_LIMIT",
"OnnxConfig",
"OnnxConfigWithPast",
"OnnxSeq2SeqConfigWithPast",
"PatchingSpec",
],
"convert": ["export", "validate_model_outputs"],
"features": ["FeaturesManager"],
"utils": ["ParameterFormat", "compute_serialized_parameters_size"],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 7 | 1 |
'''simple docstring'''
from math import sqrt
def _UpperCAmelCase ( a : int ) -> int:
"""simple docstring"""
lowercase_ : List[str] = 0
for i in range(1 , int(sqrt(a ) + 1 ) ):
if n % i == 0 and i != sqrt(a ):
total += i + n // i
elif i == sqrt(a ):
total += i
return total - n
def _UpperCAmelCase ( a : int = 1_0_0_0_0 ) -> int:
"""simple docstring"""
lowercase_ : Dict = sum(
i
for i in range(1 , a )
if sum_of_divisors(sum_of_divisors(a ) ) == i and sum_of_divisors(a ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 7 |
'''simple docstring'''
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
A: List[Any] = json.load(f)
@require_torch
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self , _lowercase ) -> Tuple:
return FSMTTokenizer.from_pretrained(_lowercase )
def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]:
lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['en-ru', 26.0],
['ru-en', 22.0],
['en-de', 22.0],
['de-en', 29.0],
] )
@slow
def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]:
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}"
lowercase_ : str = self.get_tokenizer(_lowercase )
lowercase_ : Any = self.get_model(_lowercase )
lowercase_ : Any = bleu_data[pair]['src']
lowercase_ : Any = bleu_data[pair]['tgt']
lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase )
lowercase_ : str = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
lowercase_ : Any = tokenizer.batch_decode(
_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase )
lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase )
print(_lowercase )
self.assertGreaterEqual(scores['bleu'] , _lowercase )
| 7 | 1 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = (KDPMaDiscreteScheduler,)
SCREAMING_SNAKE_CASE_ : Dict = 1_0
def lowerCamelCase__ ( self , **_lowercase ) -> List[Any]:
lowercase_ : str = {
'num_train_timesteps': 1100,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_lowercase )
return config
def lowerCamelCase__ ( self ) -> Dict:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_lowercase )
def lowerCamelCase__ ( self ) -> List[str]:
for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def lowerCamelCase__ ( self ) -> int:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_lowercase )
def lowerCamelCase__ ( self ) -> Any:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def lowerCamelCase__ ( self ) -> Any:
lowercase_ : Dict = self.scheduler_classes[0]
lowercase_ : int = self.get_scheduler_config(prediction_type='v_prediction' )
lowercase_ : Union[str, Any] = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps )
lowercase_ : Optional[int] = self.dummy_model()
lowercase_ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase_ : Union[str, Any] = sample.to(_lowercase )
for i, t in enumerate(scheduler.timesteps ):
lowercase_ : Optional[int] = scheduler.scale_model_input(_lowercase , _lowercase )
lowercase_ : Tuple = model(_lowercase , _lowercase )
lowercase_ : Any = scheduler.step(_lowercase , _lowercase , _lowercase )
lowercase_ : str = output.prev_sample
lowercase_ : Optional[Any] = torch.sum(torch.abs(_lowercase ) )
lowercase_ : List[Any] = torch.mean(torch.abs(_lowercase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.00_02 ) < 1E-3
def lowerCamelCase__ ( self ) -> Optional[Any]:
if torch_device == "mps":
return
lowercase_ : str = self.scheduler_classes[0]
lowercase_ : Tuple = self.get_scheduler_config()
lowercase_ : Tuple = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps )
lowercase_ : Optional[int] = self.dummy_model()
lowercase_ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase_ : str = sample.to(_lowercase )
for i, t in enumerate(scheduler.timesteps ):
lowercase_ : Dict = scheduler.scale_model_input(_lowercase , _lowercase )
lowercase_ : Union[str, Any] = model(_lowercase , _lowercase )
lowercase_ : List[Any] = scheduler.step(_lowercase , _lowercase , _lowercase )
lowercase_ : List[Any] = output.prev_sample
lowercase_ : Union[str, Any] = torch.sum(torch.abs(_lowercase ) )
lowercase_ : str = torch.mean(torch.abs(_lowercase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
def lowerCamelCase__ ( self ) -> Dict:
if torch_device == "mps":
return
lowercase_ : str = self.scheduler_classes[0]
lowercase_ : Dict = self.get_scheduler_config()
lowercase_ : Optional[int] = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps , device=_lowercase )
lowercase_ : Dict = self.dummy_model()
lowercase_ : List[Any] = self.dummy_sample_deter.to(_lowercase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
lowercase_ : Tuple = scheduler.scale_model_input(_lowercase , _lowercase )
lowercase_ : Union[str, Any] = model(_lowercase , _lowercase )
lowercase_ : Dict = scheduler.step(_lowercase , _lowercase , _lowercase )
lowercase_ : Union[str, Any] = output.prev_sample
lowercase_ : Any = torch.sum(torch.abs(_lowercase ) )
lowercase_ : Optional[Any] = torch.mean(torch.abs(_lowercase ) )
if str(_lowercase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.41_25 ) < 1E-2
assert abs(result_mean.item() - 0.02_66 ) < 1E-3
| 7 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A: int = {
"configuration_trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A: Union[str, Any] = [
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
"load_tf_weights_in_trajectory_transformer",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 7 | 1 |
'''simple docstring'''
def _UpperCAmelCase ( a : int = 1_0_0 ) -> int:
"""simple docstring"""
lowercase_ : Dict = n * (n + 1) * (2 * n + 1) / 6
lowercase_ : Tuple = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 7 |
'''simple docstring'''
def _UpperCAmelCase ( a : str ) -> str:
"""simple docstring"""
lowercase_ : Dict = 0
# if input_string is "aba" than new_input_string become "a|b|a"
lowercase_ : Dict = ''
lowercase_ : Any = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(a ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
lowercase_ , lowercase_ : Dict = 0, 0
# length[i] shows the length of palindromic substring with center i
lowercase_ : List[Any] = [1 for i in range(len(a ) )]
# for each character in new_string find corresponding palindromic string
lowercase_ : Dict = 0
for j in range(len(a ) ):
lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(a )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
lowercase_ : int = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
lowercase_ : Tuple = j - k + 1 # noqa: E741
lowercase_ : Tuple = j + k - 1
# update max_length and start position
if max_length < length[j]:
lowercase_ : Tuple = length[j]
lowercase_ : List[Any] = j
# create that string
lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
'''simple docstring'''
import os
import numpy
import onnx
def _UpperCAmelCase ( a : Optional[Any] , a : Any ) -> List[str]:
"""simple docstring"""
lowercase_ : Optional[Any] = a.name
lowercase_ : List[str] = b.name
lowercase_ : int = ''
lowercase_ : Dict = ''
lowercase_ : Optional[Any] = a == b
lowercase_ : Optional[Any] = name_a
lowercase_ : Optional[Any] = name_b
return res
def _UpperCAmelCase ( a : Any , a : Optional[Any] , a : Any ) -> Union[str, Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(a , a )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , a , a )
_graph_replace_input_with(node_proto.attribute[1].g , a , a )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , a , a )
def _UpperCAmelCase ( a : Dict , a : Union[str, Any] , a : Any ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(a , a , a )
def _UpperCAmelCase ( a : List[Any] , a : Dict , a : str ) -> List[Any]:
"""simple docstring"""
lowercase_ : Tuple = list(model.graph.initializer )
lowercase_ : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
lowercase_ : List[str] = inits[i].name
lowercase_ : Dict = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , a , a )
def _UpperCAmelCase ( a : List[Any] ) -> str:
"""simple docstring"""
lowercase_ : List[Any] = os.path.dirname(a )
lowercase_ : List[str] = os.path.basename(a )
lowercase_ : Dict = onnx.load(os.path.join(a , a ) )
lowercase_ : Optional[int] = list(model.graph.initializer )
lowercase_ : Tuple = set()
lowercase_ : int = {}
lowercase_ : Optional[Any] = []
lowercase_ : Optional[Any] = 0
for i in range(len(a ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(a ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(a )
dup_set.add(a )
lowercase_ : Any = inits[j].data_type
lowercase_ : Dict = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 1_1:
mem_size *= 8
else:
print('unexpected data type: ' , a )
total_reduced_size += mem_size
lowercase_ : List[str] = inits[i].name
lowercase_ : List[Any] = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(a )
else:
lowercase_ : str = [name_j]
ind_to_replace.append((j, i) )
print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' )
lowercase_ : Optional[Any] = sorted(a )
_remove_dup_initializers_from_model(a , a , a )
lowercase_ : Dict = 'optimized_' + model_file_name
lowercase_ : str = os.path.join(a , a )
onnx.save(a , a )
return new_model
| 7 |
'''simple docstring'''
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]:
super().__init__(self , **_lowercase )
lowercase_ : int = repo_info
lowercase_ : List[Any] = token
lowercase_ : Union[str, Any] = None
def lowerCamelCase__ ( self ) -> Optional[Any]:
if self.dir_cache is None:
lowercase_ : Optional[Any] = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
lowercase_ : str = {
'name': hf_file.rfilename,
'size': None,
'type': 'file',
}
self.dir_cache.update(
{
str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict:
if not isinstance(self.repo_info , _lowercase ):
raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" )
lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha )
return fsspec.open(
_lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open()
def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple:
self._get_dirs()
lowercase_ : str = self._strip_protocol(_lowercase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_lowercase )
def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]:
self._get_dirs()
lowercase_ : List[str] = PurePosixPath(path.strip('/' ) )
lowercase_ : List[str] = {}
for p, f in self.dir_cache.items():
lowercase_ : Tuple = PurePosixPath(p.strip('/' ) )
lowercase_ : Optional[int] = p.parent
if root == path:
lowercase_ : List[str] = f
lowercase_ : List[str] = list(paths.values() )
if detail:
return out
else:
return sorted(f['name'] for f in out )
| 7 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = IFPipeline
SCREAMING_SNAKE_CASE_ : Any = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'}
SCREAMING_SNAKE_CASE_ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ : Dict = PipelineTesterMixin.required_optional_params - {'latents'}
def lowerCamelCase__ ( self ) -> Any:
return self._get_dummy_components()
def lowerCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Optional[int]:
if str(_lowercase ).startswith('mps' ):
lowercase_ : List[Any] = torch.manual_seed(_lowercase )
else:
lowercase_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
lowercase_ : Tuple = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def lowerCamelCase__ ( self ) -> str:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def lowerCamelCase__ ( self ) -> int:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def lowerCamelCase__ ( self ) -> List[Any]:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def lowerCamelCase__ ( self ) -> Union[str, Any]:
self._test_save_load_local()
def lowerCamelCase__ ( self ) -> Tuple:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def lowerCamelCase__ ( self ) -> List[str]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ ( self ) -> int:
# if
lowercase_ : List[Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa )
lowercase_ : Dict = IFSuperResolutionPipeline.from_pretrained(
'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=_lowercase , tokenizer=_lowercase )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('cuda' )
lowercase_ , lowercase_ : Union[str, Any] = pipe_a.encode_prompt('anime turtle' , device='cuda' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
lowercase_ : str = None
lowercase_ : Optional[Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(_lowercase , _lowercase , _lowercase , _lowercase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
lowercase_ : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components )
lowercase_ : str = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(_lowercase , _lowercase , _lowercase , _lowercase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
lowercase_ : int = IFInpaintingPipeline(**pipe_a.components )
lowercase_ : Optional[int] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(_lowercase , _lowercase , _lowercase , _lowercase )
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
# pipeline 1
_start_torch_memory_measurement()
lowercase_ : int = torch.Generator(device='cpu' ).manual_seed(0 )
lowercase_ : Any = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type='np' , )
lowercase_ : int = output.images[0]
assert image.shape == (64, 64, 3)
lowercase_ : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
lowercase_ : Any = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' )
assert_mean_pixel_difference(_lowercase , _lowercase )
# pipeline 2
_start_torch_memory_measurement()
lowercase_ : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 )
lowercase_ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase )
lowercase_ : Any = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='np' , )
lowercase_ : Optional[int] = output.images[0]
assert image.shape == (256, 256, 3)
lowercase_ : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
lowercase_ : str = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' )
assert_mean_pixel_difference(_lowercase , _lowercase )
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any:
# pipeline 1
_start_torch_memory_measurement()
lowercase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase )
lowercase_ : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 )
lowercase_ : List[Any] = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type='np' , )
lowercase_ : Any = output.images[0]
assert image.shape == (64, 64, 3)
lowercase_ : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
lowercase_ : List[Any] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' )
assert_mean_pixel_difference(_lowercase , _lowercase )
# pipeline 2
_start_torch_memory_measurement()
lowercase_ : Any = torch.Generator(device='cpu' ).manual_seed(0 )
lowercase_ : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_lowercase )
lowercase_ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase )
lowercase_ : Any = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='np' , )
lowercase_ : Dict = output.images[0]
assert image.shape == (256, 256, 3)
lowercase_ : int = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
lowercase_ : Any = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' )
assert_mean_pixel_difference(_lowercase , _lowercase )
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]:
# pipeline 1
_start_torch_memory_measurement()
lowercase_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase )
lowercase_ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_lowercase )
lowercase_ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 )
lowercase_ : List[str] = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type='np' , )
lowercase_ : List[str] = output.images[0]
assert image.shape == (64, 64, 3)
lowercase_ : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
lowercase_ : Optional[int] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' )
assert_mean_pixel_difference(_lowercase , _lowercase )
# pipeline 2
_start_torch_memory_measurement()
lowercase_ : Any = torch.Generator(device='cpu' ).manual_seed(0 )
lowercase_ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase )
lowercase_ : str = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_lowercase )
lowercase_ : Tuple = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_lowercase )
lowercase_ : str = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='np' , )
lowercase_ : Any = output.images[0]
assert image.shape == (256, 256, 3)
lowercase_ : Union[str, Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
lowercase_ : Any = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' )
assert_mean_pixel_difference(_lowercase , _lowercase )
def _UpperCAmelCase ( ) -> Any:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 7 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A: List[Any] = logging.get_logger(__name__)
def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]:
"""simple docstring"""
lowercase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append(
(f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append(
(f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
lowercase_ : Optional[int] = 'vilt.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" )
lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowercase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowercase_ : List[str] = in_proj_bias[: config.hidden_size]
lowercase_ : int = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase_ : Tuple = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ : Dict = in_proj_bias[-config.hidden_size :]
def _UpperCAmelCase ( a : List[str] ) -> Optional[int]:
"""simple docstring"""
lowercase_ : Union[str, Any] = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(a , a )
def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowercase_ : List[Any] = dct.pop(a )
lowercase_ : Dict = val
@torch.no_grad()
def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a )
lowercase_ : int = False
lowercase_ : Union[str, Any] = False
lowercase_ : List[str] = False
lowercase_ : str = False
if "vqa" in checkpoint_url:
lowercase_ : str = True
lowercase_ : Optional[int] = 3_1_2_9
lowercase_ : Any = 'huggingface/label-files'
lowercase_ : Optional[Any] = 'vqa2-id2label.json'
lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) )
lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()}
lowercase_ : List[Any] = idalabel
lowercase_ : str = {v: k for k, v in idalabel.items()}
lowercase_ : List[Any] = ViltForQuestionAnswering(a )
elif "nlvr" in checkpoint_url:
lowercase_ : Dict = True
lowercase_ : List[str] = 2
lowercase_ : Tuple = {0: 'False', 1: 'True'}
lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()}
lowercase_ : int = 3
lowercase_ : Any = ViltForImagesAndTextClassification(a )
elif "irtr" in checkpoint_url:
lowercase_ : Union[str, Any] = True
lowercase_ : Dict = ViltForImageAndTextRetrieval(a )
elif "mlm_itm" in checkpoint_url:
lowercase_ : int = True
lowercase_ : Tuple = ViltForMaskedLM(a )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict']
lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a )
for src, dest in rename_keys:
rename_key(a , a , a )
read_in_q_k_v(a , a )
if mlm_model or irtr_model:
lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias']
for k in ignore_keys:
state_dict.pop(a , a )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(a )
# Define processor
lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 )
lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' )
lowercase_ : Any = ViltProcessor(a , a )
# Forward pass on example inputs (image + text)
if nlvr_model:
lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw )
lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw )
lowercase_ : Any = (
'The left image contains twice the number of dogs as the right image, and at least two dogs in total are'
' standing.'
)
lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' )
lowercase_ : List[str] = processor(a , a , return_tensors='pt' )
lowercase_ : Union[str, Any] = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw )
if mlm_model:
lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].'
else:
lowercase_ : List[Any] = 'How many cats are there?'
lowercase_ : List[Any] = processor(a , a , return_tensors='pt' )
lowercase_ : Optional[int] = model(**a )
# Verify outputs
if mlm_model:
lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] )
lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 )
# verify masked token prediction equals "cats"
lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] )
lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] )
assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 )
# verify vqa prediction equals "2"
lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
lowercase_ : Optional[Any] = torch.Size([1, 2] )
lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] )
assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(a ).mkdir(exist_ok=a )
print(f"Saving model and processor to {pytorch_dump_folder_path}" )
model.save_pretrained(a )
processor.save_pretrained(a )
if __name__ == "__main__":
A: Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
A: Union[str, Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 7 | 1 |
'''simple docstring'''
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
A: Optional[int] = sys.version_info >= (3, 1_0)
def _UpperCAmelCase ( a : Tuple=None , a : List[str]=None ) -> Dict:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=a )
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int
SCREAMING_SNAKE_CASE_ : float
SCREAMING_SNAKE_CASE_ : str
SCREAMING_SNAKE_CASE_ : bool
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = 4_2
SCREAMING_SNAKE_CASE_ : str = field(default='toto', metadata={'help': 'help message'} )
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : bool = False
SCREAMING_SNAKE_CASE_ : bool = True
SCREAMING_SNAKE_CASE_ : Optional[bool] = None
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = 'titi'
SCREAMING_SNAKE_CASE_ : Any = 'toto'
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = 'titi'
SCREAMING_SNAKE_CASE_ : Optional[int] = 'toto'
SCREAMING_SNAKE_CASE_ : List[Any] = 4_2
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : BasicEnum = "toto"
def lowerCamelCase__ ( self ) -> Union[str, Any]:
lowercase_ : str = BasicEnum(self.foo )
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : MixedTypeEnum = "toto"
def lowerCamelCase__ ( self ) -> str:
lowercase_ : Dict = MixedTypeEnum(self.foo )
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : Optional[float] = field(default=UpperCAmelCase_, metadata={'help': 'help message'} )
SCREAMING_SNAKE_CASE_ : Optional[str] = None
SCREAMING_SNAKE_CASE_ : Optional[List[str]] = list_field(default=[] )
SCREAMING_SNAKE_CASE_ : Optional[List[int]] = list_field(default=[] )
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[int] = list_field(default=[] )
SCREAMING_SNAKE_CASE_ : List[int] = list_field(default=[1, 2, 3] )
SCREAMING_SNAKE_CASE_ : List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
SCREAMING_SNAKE_CASE_ : List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[int] = field()
SCREAMING_SNAKE_CASE_ : str = field()
SCREAMING_SNAKE_CASE_ : BasicEnum = field()
def lowerCamelCase__ ( self ) -> Tuple:
lowercase_ : Dict = BasicEnum(self.required_enum )
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int
SCREAMING_SNAKE_CASE_ : "BasicEnum" = field()
SCREAMING_SNAKE_CASE_ : "Optional[bool]" = None
SCREAMING_SNAKE_CASE_ : "str" = field(default='toto', metadata={'help': 'help message'} )
SCREAMING_SNAKE_CASE_ : "List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : bool = False
SCREAMING_SNAKE_CASE_ : bool = True
SCREAMING_SNAKE_CASE_ : bool | None = None
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int | None = None
SCREAMING_SNAKE_CASE_ : float | None = field(default=UpperCAmelCase_, metadata={'help': 'help message'} )
SCREAMING_SNAKE_CASE_ : str | None = None
SCREAMING_SNAKE_CASE_ : list[str] | None = list_field(default=[] )
SCREAMING_SNAKE_CASE_ : list[int] | None = list_field(default=[] )
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
lowercase_ : List[str] = {k: v for k, v in vars(_lowercase ).items() if k != 'container'}
lowercase_ : List[str] = {k: v for k, v in vars(_lowercase ).items() if k != 'container'}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('choices' , _lowercase ) and yy.get('choices' , _lowercase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['type'](_lowercase ) , yy['type'](_lowercase ) )
del xx["type"], yy["type"]
self.assertEqual(_lowercase , _lowercase )
def lowerCamelCase__ ( self ) -> List[str]:
lowercase_ : Optional[int] = HfArgumentParser(_lowercase )
lowercase_ : List[str] = argparse.ArgumentParser()
expected.add_argument('--foo' , type=_lowercase , required=_lowercase )
expected.add_argument('--bar' , type=_lowercase , required=_lowercase )
expected.add_argument('--baz' , type=_lowercase , required=_lowercase )
expected.add_argument('--flag' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='?' )
self.argparsersEqual(_lowercase , _lowercase )
lowercase_ : List[Any] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5']
((lowercase_) , ) : Any = parser.parse_args_into_dataclasses(_lowercase , look_for_args_file=_lowercase )
self.assertFalse(example.flag )
def lowerCamelCase__ ( self ) -> List[Any]:
lowercase_ : Union[str, Any] = HfArgumentParser(_lowercase )
lowercase_ : Union[str, Any] = argparse.ArgumentParser()
expected.add_argument('--foo' , default=42 , type=_lowercase )
expected.add_argument('--baz' , default='toto' , type=_lowercase , help='help message' )
self.argparsersEqual(_lowercase , _lowercase )
def lowerCamelCase__ ( self ) -> str:
lowercase_ : Any = argparse.ArgumentParser()
expected.add_argument('--foo' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='?' )
expected.add_argument('--baz' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='?' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('--no_baz' , action='store_false' , default=_lowercase , dest='baz' )
expected.add_argument('--opt' , type=_lowercase , default=_lowercase )
lowercase_ : Any = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_lowercase )
for dataclass_type in dataclass_types:
lowercase_ : List[str] = HfArgumentParser(_lowercase )
self.argparsersEqual(_lowercase , _lowercase )
lowercase_ : Dict = parser.parse_args([] )
self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) )
lowercase_ : Any = parser.parse_args(['--foo', '--no_baz'] )
self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) )
lowercase_ : Optional[Any] = parser.parse_args(['--foo', '--baz'] )
self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) )
lowercase_ : Any = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] )
self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) )
lowercase_ : str = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] )
self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : Any = HfArgumentParser(_lowercase )
lowercase_ : Union[str, Any] = argparse.ArgumentParser()
expected.add_argument(
'--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , )
self.argparsersEqual(_lowercase , _lowercase )
lowercase_ : Tuple = parser.parse_args([] )
self.assertEqual(args.foo , 'toto' )
lowercase_ : List[str] = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
lowercase_ : Any = parser.parse_args(['--foo', 'titi'] )
self.assertEqual(args.foo , 'titi' )
lowercase_ : List[str] = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
lowercase_ : Optional[Any] = parser.parse_args(['--foo', '42'] )
self.assertEqual(args.foo , 42 )
lowercase_ : Any = parser.parse_args_into_dataclasses(['--foo', '42'] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def lowerCamelCase__ ( self ) -> int:
@dataclass
class __magic_name__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Literal["titi", "toto", 4_2] = "toto"
lowercase_ : Tuple = HfArgumentParser(_lowercase )
lowercase_ : Dict = argparse.ArgumentParser()
expected.add_argument(
'--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , )
self.argparsersEqual(_lowercase , _lowercase )
lowercase_ : Any = parser.parse_args([] )
self.assertEqual(args.foo , 'toto' )
lowercase_ : Dict = parser.parse_args(['--foo', 'titi'] )
self.assertEqual(args.foo , 'titi' )
lowercase_ : int = parser.parse_args(['--foo', '42'] )
self.assertEqual(args.foo , 42 )
def lowerCamelCase__ ( self ) -> str:
lowercase_ : Union[str, Any] = HfArgumentParser(_lowercase )
lowercase_ : Optional[int] = argparse.ArgumentParser()
expected.add_argument('--foo_int' , nargs='+' , default=[] , type=_lowercase )
expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=_lowercase )
expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_lowercase )
expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=_lowercase )
self.argparsersEqual(_lowercase , _lowercase )
lowercase_ : int = parser.parse_args([] )
self.assertEqual(
_lowercase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , )
lowercase_ : Any = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() )
self.assertEqual(_lowercase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : Union[str, Any] = argparse.ArgumentParser()
expected.add_argument('--foo' , default=_lowercase , type=_lowercase )
expected.add_argument('--bar' , default=_lowercase , type=_lowercase , help='help message' )
expected.add_argument('--baz' , default=_lowercase , type=_lowercase )
expected.add_argument('--ces' , nargs='+' , default=[] , type=_lowercase )
expected.add_argument('--des' , nargs='+' , default=[] , type=_lowercase )
lowercase_ : Any = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_lowercase )
for dataclass_type in dataclass_types:
lowercase_ : List[Any] = HfArgumentParser(_lowercase )
self.argparsersEqual(_lowercase , _lowercase )
lowercase_ : Any = parser.parse_args([] )
self.assertEqual(_lowercase , Namespace(foo=_lowercase , bar=_lowercase , baz=_lowercase , ces=[] , des=[] ) )
lowercase_ : Optional[Any] = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() )
self.assertEqual(_lowercase , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) )
def lowerCamelCase__ ( self ) -> List[str]:
lowercase_ : List[str] = HfArgumentParser(_lowercase )
lowercase_ : Dict = argparse.ArgumentParser()
expected.add_argument('--required_list' , nargs='+' , type=_lowercase , required=_lowercase )
expected.add_argument('--required_str' , type=_lowercase , required=_lowercase )
expected.add_argument(
'--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_lowercase , )
self.argparsersEqual(_lowercase , _lowercase )
def lowerCamelCase__ ( self ) -> Union[str, Any]:
lowercase_ : Tuple = HfArgumentParser(_lowercase )
lowercase_ : List[Any] = argparse.ArgumentParser()
expected.add_argument('--foo' , type=_lowercase , required=_lowercase )
expected.add_argument(
'--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_lowercase , )
expected.add_argument('--opt' , type=_lowercase , default=_lowercase )
expected.add_argument('--baz' , default='toto' , type=_lowercase , help='help message' )
expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_lowercase )
self.argparsersEqual(_lowercase , _lowercase )
def lowerCamelCase__ ( self ) -> Union[str, Any]:
lowercase_ : Optional[int] = HfArgumentParser(_lowercase )
lowercase_ : Dict = {
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
}
lowercase_ : List[str] = parser.parse_dict(_lowercase )[0]
lowercase_ : List[Any] = BasicExample(**_lowercase )
self.assertEqual(_lowercase , _lowercase )
def lowerCamelCase__ ( self ) -> Dict:
lowercase_ : Dict = HfArgumentParser(_lowercase )
lowercase_ : Optional[int] = {
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
'extra': 42,
}
self.assertRaises(_lowercase , parser.parse_dict , _lowercase , allow_extra_keys=_lowercase )
def lowerCamelCase__ ( self ) -> Union[str, Any]:
lowercase_ : Dict = HfArgumentParser(_lowercase )
lowercase_ : List[str] = {
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Any = os.path.join(_lowercase , 'temp_json' )
os.mkdir(_lowercase )
with open(temp_local_path + '.json' , 'w+' ) as f:
json.dump(_lowercase , _lowercase )
lowercase_ : int = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0]
lowercase_ : List[str] = BasicExample(**_lowercase )
self.assertEqual(_lowercase , _lowercase )
def lowerCamelCase__ ( self ) -> Tuple:
lowercase_ : List[str] = HfArgumentParser(_lowercase )
lowercase_ : List[Any] = {
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : str = os.path.join(_lowercase , 'temp_yaml' )
os.mkdir(_lowercase )
with open(temp_local_path + '.yaml' , 'w+' ) as f:
yaml.dump(_lowercase , _lowercase )
lowercase_ : List[Any] = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0]
lowercase_ : Optional[Any] = BasicExample(**_lowercase )
self.assertEqual(_lowercase , _lowercase )
def lowerCamelCase__ ( self ) -> List[str]:
lowercase_ : str = HfArgumentParser(_lowercase )
self.assertIsNotNone(_lowercase )
| 7 |
'''simple docstring'''
def _UpperCAmelCase ( a : list ) -> list:
"""simple docstring"""
for i in range(len(a ) - 1 , 0 , -1 ):
lowercase_ : Any = False
for j in range(a , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j]
lowercase_ : int = True
for j in range(a ):
if unsorted[j] > unsorted[j + 1]:
lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j]
lowercase_ : Optional[Any] = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip()
A: Tuple = [int(item) for item in user_input.split(",")]
print(f"""{cocktail_shaker_sort(unsorted) = }""")
| 7 | 1 |
'''simple docstring'''
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def _UpperCAmelCase ( a : Any , a : Optional[int] ) -> Optional[int]:
"""simple docstring"""
lowercase_ : Any = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
lowercase_ : int = Image.open(requests.get(a , stream=a ).raw ).convert('RGB' )
lowercase_ : int = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ),
] )
lowercase_ : List[str] = transform(a ).unsqueeze(0 ).to(a )
return image
def _UpperCAmelCase ( a : Tuple ) -> int:
"""simple docstring"""
if "visual_encoder" in key:
lowercase_ : str = re.sub('visual_encoder*' , 'vision_model.encoder' , a )
if "blocks" in key:
lowercase_ : List[str] = re.sub(R'blocks' , 'layers' , a )
if "attn" in key:
lowercase_ : List[str] = re.sub(R'attn' , 'self_attn' , a )
if "norm1" in key:
lowercase_ : Tuple = re.sub(R'norm1' , 'layer_norm1' , a )
if "norm2" in key:
lowercase_ : str = re.sub(R'norm2' , 'layer_norm2' , a )
if "encoder.norm" in key:
lowercase_ : Union[str, Any] = re.sub(R'encoder.norm' , 'post_layernorm' , a )
if "encoder.patch_embed.proj" in key:
lowercase_ : Tuple = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , a )
if "encoder.pos_embed" in key:
lowercase_ : Tuple = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , a )
if "encoder.cls_token" in key:
lowercase_ : List[str] = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , a )
if "self_attn" in key:
lowercase_ : List[Any] = re.sub(R'self_attn.proj' , 'self_attn.projection' , a )
return key
@torch.no_grad()
def _UpperCAmelCase ( a : Union[str, Any] , a : str=None ) -> str:
"""simple docstring"""
if config_path is not None:
lowercase_ : List[Any] = BlipConfig.from_pretrained(a )
else:
lowercase_ : Tuple = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} )
lowercase_ : Optional[int] = BlipForConditionalGeneration(a ).eval()
lowercase_ : Optional[int] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'
lowercase_ : int = blip_decoder(pretrained=a , image_size=3_8_4 , vit='base' )
lowercase_ : Optional[Any] = pt_model.eval()
lowercase_ : List[str] = pt_model.state_dict()
for key in modified_state_dict.copy():
lowercase_ : int = modified_state_dict.pop(a )
lowercase_ : Dict = rename_key(a )
lowercase_ : Dict = value
hf_model.load_state_dict(a )
lowercase_ : Dict = 3_8_4
lowercase_ : List[Any] = load_demo_image(image_size=a , device='cpu' )
lowercase_ : List[Any] = BertTokenizer.from_pretrained('bert-base-uncased' )
lowercase_ : Dict = tokenizer(['a picture of'] ).input_ids
lowercase_ : List[str] = hf_model.generate(a , a )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
lowercase_ : Any = hf_model.generate(a )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(a )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
lowercase_ : List[Any] = (
'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
)
lowercase_ : Any = blip_vqa(pretrained=a , image_size=a , vit='base' )
vqa_model.eval()
lowercase_ : str = vqa_model.state_dict()
for key in modified_state_dict.copy():
lowercase_ : Any = modified_state_dict.pop(a )
lowercase_ : Tuple = rename_key(a )
lowercase_ : List[str] = value
lowercase_ : Tuple = BlipForQuestionAnswering(a )
hf_vqa_model.load_state_dict(a )
lowercase_ : int = ['How many dogs are in this image?']
lowercase_ : List[str] = tokenizer(a , return_tensors='pt' ).input_ids
lowercase_ : Optional[Any] = hf_vqa_model.generate(a , a )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' )
lowercase_ : List[str] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
lowercase_ : Any = blip_itm(pretrained=a , image_size=a , vit='base' )
itm_model.eval()
lowercase_ : List[Any] = itm_model.state_dict()
for key in modified_state_dict.copy():
lowercase_ : Optional[Any] = modified_state_dict.pop(a )
lowercase_ : str = rename_key(a )
lowercase_ : Any = value
lowercase_ : List[Any] = BlipForImageTextRetrieval(a )
lowercase_ : Union[str, Any] = ['A picture of a woman with a dog sitting in a beach']
lowercase_ : Any = tokenizer(
a , return_tensors='pt' , padding='max_length' , truncation=a , max_length=3_5 , ).input_ids
hf_itm_model.load_state_dict(a )
hf_itm_model.eval()
lowercase_ : int = hf_itm_model(a , a , use_itm_head=a )
lowercase_ : str = hf_itm_model(a , a , use_itm_head=a )
assert out[0].item() == 0.21_10_68_74_94_27_79_54
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' )
if __name__ == "__main__":
A: str = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
A: Union[str, Any] = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 7 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __magic_name__ ( metaclass=UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq']
def __init__( self , *_lowercase , **_lowercase ) -> Dict:
requires_backends(self , ['transformers', 'torch', 'note_seq'] )
@classmethod
def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]:
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
@classmethod
def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict:
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
| 7 | 1 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = RobertaTokenizer
SCREAMING_SNAKE_CASE_ : Union[str, Any] = RobertaTokenizerFast
SCREAMING_SNAKE_CASE_ : List[str] = True
SCREAMING_SNAKE_CASE_ : List[Any] = {'cls_token': '<s>'}
def lowerCamelCase__ ( self ) -> List[Any]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase_ : List[str] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
lowercase_ : Dict = dict(zip(_lowercase , range(len(_lowercase ) ) ) )
lowercase_ : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
lowercase_ : Optional[int] = {'unk_token': '<unk>'}
lowercase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
lowercase_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_lowercase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(_lowercase ) )
def lowerCamelCase__ ( self , **_lowercase ) -> List[str]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase )
def lowerCamelCase__ ( self , **_lowercase ) -> Any:
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase )
def lowerCamelCase__ ( self , _lowercase ) -> List[str]:
lowercase_ : List[str] = 'lower newer'
lowercase_ : str = 'lower newer'
return input_text, output_text
def lowerCamelCase__ ( self ) -> Any:
lowercase_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowercase_ : str = 'lower newer'
lowercase_ : Dict = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
lowercase_ : Optional[int] = tokenizer.tokenize(_lowercase ) # , add_prefix_space=True)
self.assertListEqual(_lowercase , _lowercase )
lowercase_ : Any = tokens + [tokenizer.unk_token]
lowercase_ : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase )
def lowerCamelCase__ ( self ) -> str:
lowercase_ : Dict = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_lowercase ) , [0, 3_1414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_lowercase ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , )
@slow
def lowerCamelCase__ ( self ) -> Optional[int]:
lowercase_ : Any = self.tokenizer_class.from_pretrained('roberta-base' )
lowercase_ : Any = tokenizer.encode('sequence builders' , add_special_tokens=_lowercase )
lowercase_ : int = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowercase )
lowercase_ : Dict = tokenizer.encode(
'sequence builders' , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
lowercase_ : Any = tokenizer.encode(
'sequence builders' , 'multi-sequence build' , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
lowercase_ : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowercase )
lowercase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def lowerCamelCase__ ( self ) -> Dict:
lowercase_ : Tuple = self.get_tokenizer()
lowercase_ : int = 'Encode this sequence.'
lowercase_ : int = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
lowercase_ : Optional[int] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(_lowercase , _lowercase )
lowercase_ : List[str] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(_lowercase , _lowercase )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
lowercase_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
lowercase_ : int = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(_lowercase , _lowercase )
# Testing spaces after special tokens
lowercase_ : List[str] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase )} ) # mask token has a left space
lowercase_ : List[str] = tokenizer.convert_tokens_to_ids(_lowercase )
lowercase_ : Optional[Any] = 'Encode <mask> sequence'
lowercase_ : str = 'Encode <mask>sequence'
lowercase_ : int = tokenizer.encode(_lowercase )
lowercase_ : Optional[int] = encoded.index(_lowercase )
lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(_lowercase , _lowercase )
lowercase_ : Tuple = tokenizer.encode(_lowercase )
lowercase_ : Optional[Any] = encoded.index(_lowercase )
lowercase_ : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(_lowercase , _lowercase )
def lowerCamelCase__ ( self ) -> Dict:
pass
def lowerCamelCase__ ( self ) -> Tuple:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowercase_ : str = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
lowercase_ : Optional[Any] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
lowercase_ : Any = 'A, <mask> AllenNLP sentence.'
lowercase_ : Tuple = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase )
lowercase_ : List[str] = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , )
lowercase_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
lowercase_ : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(
_lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
_lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def lowerCamelCase__ ( self ) -> List[Any]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowercase_ : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
lowercase_ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _lowercase )
self.assertEqual(post_processor_state['add_prefix_space'] , _lowercase )
self.assertEqual(post_processor_state['trim_offsets'] , _lowercase )
def lowerCamelCase__ ( self ) -> Union[str, Any]:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowercase_ : Optional[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
lowercase_ : List[str] = f"{text_of_1_token} {text_of_1_token}"
lowercase_ : List[Any] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowercase_ : Optional[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , )
lowercase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowercase_ : Optional[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , )
lowercase_ : Any = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowercase_ : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , )
lowercase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowercase_ : str = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , )
lowercase_ : str = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
lowercase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowercase_ : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
lowercase_ : Tuple = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowercase_ : List[str] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
lowercase_ : str = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowercase_ : Any = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
| 7 |
'''simple docstring'''
def _UpperCAmelCase ( a : str , a : str ) -> float:
"""simple docstring"""
def get_matched_characters(a : str , a : str ) -> str:
lowercase_ : Union[str, Any] = []
lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
lowercase_ : Optional[int] = int(max(0 , i - limit ) )
lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(a )
lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}"
return "".join(a )
# matching characters
lowercase_ : Union[str, Any] = get_matched_characters(a , a )
lowercase_ : Optional[Any] = get_matched_characters(a , a )
lowercase_ : Optional[int] = len(a )
# transposition
lowercase_ : Dict = (
len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2
)
if not match_count:
lowercase_ : List[str] = 0.0
else:
lowercase_ : Any = (
1
/ 3
* (
match_count / len(a )
+ match_count / len(a )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
lowercase_ : Optional[Any] = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("hello", "world"))
| 7 | 1 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
A: Tuple = logging.get_logger(__name__)
A: List[Any] = {
"speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json",
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = 'mctct'
def __init__( self , _lowercase=8065 , _lowercase=1536 , _lowercase=36 , _lowercase=6144 , _lowercase=4 , _lowercase=384 , _lowercase=920 , _lowercase=1E-5 , _lowercase=0.3 , _lowercase="relu" , _lowercase=0.02 , _lowercase=0.3 , _lowercase=0.3 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=1 , _lowercase=0.3 , _lowercase=1 , _lowercase=(7,) , _lowercase=(3,) , _lowercase=80 , _lowercase=1 , _lowercase=None , _lowercase="sum" , _lowercase=False , **_lowercase , ) -> Optional[Any]:
super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase )
lowercase_ : Union[str, Any] = vocab_size
lowercase_ : List[Any] = hidden_size
lowercase_ : Union[str, Any] = num_hidden_layers
lowercase_ : str = intermediate_size
lowercase_ : List[Any] = num_attention_heads
lowercase_ : Optional[int] = attention_head_dim
lowercase_ : Optional[Any] = max_position_embeddings
lowercase_ : Optional[int] = layer_norm_eps
lowercase_ : List[Any] = layerdrop
lowercase_ : str = hidden_act
lowercase_ : List[str] = initializer_range
lowercase_ : List[Any] = hidden_dropout_prob
lowercase_ : int = attention_probs_dropout_prob
lowercase_ : Dict = pad_token_id
lowercase_ : Dict = bos_token_id
lowercase_ : Dict = eos_token_id
lowercase_ : Dict = conv_glu_dim
lowercase_ : int = conv_dropout
lowercase_ : List[Any] = num_conv_layers
lowercase_ : List[Any] = input_feat_per_channel
lowercase_ : List[Any] = input_channels
lowercase_ : List[Any] = conv_channels
lowercase_ : List[Any] = ctc_loss_reduction
lowercase_ : List[Any] = ctc_zero_infinity
# prevents config testing fail with exporting to json
lowercase_ : Optional[Any] = list(_lowercase )
lowercase_ : Optional[int] = list(_lowercase )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '
f"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, "
f"`config.num_conv_layers = {self.num_conv_layers}`." )
| 7 |
'''simple docstring'''
from __future__ import annotations
def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]:
"""simple docstring"""
lowercase_ : Tuple = abs(a ) or 4
return [[1 + x + y * row_size for x in range(a )] for y in range(a )]
def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]:
"""simple docstring"""
return reverse_row(transpose(a ) )
# OR.. transpose(reverse_column(matrix))
def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]:
"""simple docstring"""
return reverse_row(reverse_column(a ) )
# OR.. reverse_column(reverse_row(matrix))
def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]:
"""simple docstring"""
return reverse_column(transpose(a ) )
# OR.. transpose(reverse_row(matrix))
def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]:
"""simple docstring"""
lowercase_ : Any = [list(a ) for x in zip(*a )]
return matrix
def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]:
"""simple docstring"""
lowercase_ : List[str] = matrix[::-1]
return matrix
def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]:
"""simple docstring"""
lowercase_ : str = [x[::-1] for x in matrix]
return matrix
def _UpperCAmelCase ( a : list[list[int]] ) -> None:
"""simple docstring"""
for i in matrix:
print(*a )
if __name__ == "__main__":
A: Dict = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 90 counterclockwise:\n")
print_matrix(rotate_aa(matrix))
A: List[Any] = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 180:\n")
print_matrix(rotate_aaa(matrix))
A: List[str] = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 270 counterclockwise:\n")
print_matrix(rotate_aaa(matrix))
| 7 | 1 |
'''simple docstring'''
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
A: Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = XLMProphetNetTokenizer
SCREAMING_SNAKE_CASE_ : List[str] = False
SCREAMING_SNAKE_CASE_ : Optional[int] = True
def lowerCamelCase__ ( self ) -> Dict:
super().setUp()
# We have a SentencePiece fixture for testing
lowercase_ : List[Any] = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self ) -> Dict:
lowercase_ : Dict = '[PAD]'
lowercase_ : Optional[int] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def lowerCamelCase__ ( self ) -> List[Any]:
lowercase_ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '[PAD]' )
self.assertEqual(vocab_keys[1] , '[CLS]' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_lowercase ) , 1012 )
def lowerCamelCase__ ( self ) -> List[str]:
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def lowerCamelCase__ ( self ) -> str:
lowercase_ : List[str] = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase )
lowercase_ : str = tokenizer.tokenize('This is a test' )
self.assertListEqual(_lowercase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowercase_ : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_lowercase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowercase_ : int = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'[UNK]',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'[UNK]',
'.',
] , )
@cached_property
def lowerCamelCase__ ( self ) -> Any:
return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' )
@slow
def lowerCamelCase__ ( self ) -> Tuple:
lowercase_ : List[Any] = 'Hello World!'
lowercase_ : Any = [3_5389, 6672, 49, 2]
self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) )
@slow
def lowerCamelCase__ ( self ) -> Any:
# fmt: off
lowercase_ : int = {'input_ids': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
| 7 |
'''simple docstring'''
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]:
"""simple docstring"""
lowercase_ : Any = {
'en': 'Machine learning is great, isn\'t it?',
'ru': 'Машинное обучение - это здорово, не так ли?',
'de': 'Maschinelles Lernen ist großartig, oder?',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
lowercase_ : List[str] = {
'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'],
'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'],
'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'],
'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'],
}
lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}"
lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n"
os.makedirs(a , exist_ok=a )
lowercase_ : int = os.path.join(a , 'README.md' )
print(f"Generating {path}" )
with open(a , 'w' , encoding='utf-8' ) as f:
f.write(a )
# make sure we are under the root of the project
A: List[str] = Path(__file__).resolve().parent.parent.parent
A: List[str] = repo_dir / "model_cards"
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
A , A , A: Any = model_name.split("-")
A: int = model_cards_dir / "facebook" / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 7 | 1 |
'''simple docstring'''
def _UpperCAmelCase ( a : list ) -> list:
"""simple docstring"""
for i in range(len(a ) - 1 , 0 , -1 ):
lowercase_ : Any = False
for j in range(a , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j]
lowercase_ : int = True
for j in range(a ):
if unsorted[j] > unsorted[j + 1]:
lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j]
lowercase_ : Optional[Any] = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip()
A: Tuple = [int(item) for item in user_input.split(",")]
print(f"""{cocktail_shaker_sort(unsorted) = }""")
| 7 |
'''simple docstring'''
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
A: Tuple = logging.getLogger(__name__)
def _UpperCAmelCase ( a : str ) -> List[Any]:
"""simple docstring"""
lowercase_ : List[str] = git.Repo(search_parent_directories=a )
lowercase_ : Union[str, Any] = {
'repo_id': str(a ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
}
with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f:
json.dump(a , a , indent=4 )
def _UpperCAmelCase ( a : str ) -> Union[str, Any]:
"""simple docstring"""
if params.n_gpu <= 0:
lowercase_ : int = 0
lowercase_ : Union[str, Any] = -1
lowercase_ : List[str] = True
lowercase_ : Optional[Any] = False
return
assert torch.cuda.is_available()
logger.info('Initializing GPUs' )
if params.n_gpu > 1:
assert params.local_rank != -1
lowercase_ : Dict = int(os.environ['WORLD_SIZE'] )
lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] )
lowercase_ : Optional[int] = int(os.environ['RANK'] )
# number of nodes / node ID
lowercase_ : int = params.world_size // params.n_gpu_per_node
lowercase_ : str = params.global_rank // params.n_gpu_per_node
lowercase_ : Dict = True
assert params.n_nodes == int(os.environ['N_NODES'] )
assert params.node_id == int(os.environ['NODE_RANK'] )
# local job (single GPU)
else:
assert params.local_rank == -1
lowercase_ : str = 1
lowercase_ : Dict = 0
lowercase_ : Tuple = 0
lowercase_ : List[Any] = 0
lowercase_ : int = 1
lowercase_ : Tuple = 1
lowercase_ : str = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0
lowercase_ : Optional[Any] = params.n_nodes > 1
# summary
lowercase_ : int = f"--- Global rank: {params.global_rank} - "
logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes )
logger.info(PREFIX + 'Node ID : %i' % params.node_id )
logger.info(PREFIX + 'Local rank : %i' % params.local_rank )
logger.info(PREFIX + 'World size : %i' % params.world_size )
logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node )
logger.info(PREFIX + 'Master : %s' % str(params.is_master ) )
logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) )
logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) )
logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('Initializing PyTorch distributed' )
torch.distributed.init_process_group(
init_method='env://' , backend='nccl' , )
def _UpperCAmelCase ( a : Dict ) -> Optional[int]:
"""simple docstring"""
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 7 | 1 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True)
def _UpperCAmelCase ( a : str ) -> Optional[int]:
"""simple docstring"""
if hor == 1_2_8:
lowercase_ : str = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D')
lowercase_ : str = (3_2, 1_2_8, 2_5_6)
lowercase_ : Tuple = ('UpResnetBlock1D', 'UpResnetBlock1D')
elif hor == 3_2:
lowercase_ : Optional[int] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D')
lowercase_ : Tuple = (3_2, 6_4, 1_2_8, 2_5_6)
lowercase_ : List[Any] = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D')
lowercase_ : Any = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" )
lowercase_ : Optional[int] = model.state_dict()
lowercase_ : Optional[int] = {
'down_block_types': down_block_types,
'block_out_channels': block_out_channels,
'up_block_types': up_block_types,
'layers_per_block': 1,
'use_timestep_embedding': True,
'out_block_type': 'OutConv1DBlock',
'norm_num_groups': 8,
'downsample_each_block': False,
'in_channels': 1_4,
'out_channels': 1_4,
'extra_in_channels': 0,
'time_embedding_type': 'positional',
'flip_sin_to_cos': False,
'freq_shift': 1,
'sample_size': 6_5_5_3_6,
'mid_block_type': 'MidResTemporalBlock1D',
'act_fn': 'mish',
}
lowercase_ : Any = UNetaDModel(**a )
print(f"length of state dict: {len(state_dict.keys() )}" )
print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
lowercase_ : List[str] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowercase_ : str = state_dict.pop(a )
hf_value_function.load_state_dict(a )
torch.save(hf_value_function.state_dict() , f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" )
with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json" , 'w' ) as f:
json.dump(a , a )
def _UpperCAmelCase ( ) -> List[Any]:
"""simple docstring"""
lowercase_ : str = {
'in_channels': 1_4,
'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'),
'up_block_types': (),
'out_block_type': 'ValueFunction',
'mid_block_type': 'ValueFunctionMidBlock1D',
'block_out_channels': (3_2, 6_4, 1_2_8, 2_5_6),
'layers_per_block': 1,
'downsample_each_block': True,
'sample_size': 6_5_5_3_6,
'out_channels': 1_4,
'extra_in_channels': 0,
'time_embedding_type': 'positional',
'use_timestep_embedding': True,
'flip_sin_to_cos': False,
'freq_shift': 1,
'norm_num_groups': 8,
'act_fn': 'mish',
}
lowercase_ : Tuple = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' )
lowercase_ : Union[str, Any] = model
lowercase_ : int = UNetaDModel(**a )
print(f"length of state dict: {len(state_dict.keys() )}" )
print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
lowercase_ : Optional[Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowercase_ : int = state_dict.pop(a )
hf_value_function.load_state_dict(a )
torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' )
with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f:
json.dump(a , a )
if __name__ == "__main__":
unet(3_2)
# unet(128)
value_function()
| 7 |
'''simple docstring'''
import os
from distutils.util import strtobool
def _UpperCAmelCase ( a : Any , a : int ) -> Any:
"""simple docstring"""
for e in env_keys:
lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) )
if val >= 0:
return val
return default
def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]:
"""simple docstring"""
lowercase_ : Optional[int] = os.environ.get(a , str(a ) )
return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int...
def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str:
"""simple docstring"""
lowercase_ : List[Any] = os.environ.get(a , str(a ) )
return value
| 7 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A: Dict = logging.get_logger(__name__)
class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = 'maskformer-swin'
SCREAMING_SNAKE_CASE_ : Dict = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self , _lowercase=224 , _lowercase=4 , _lowercase=3 , _lowercase=96 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 12, 24] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=None , _lowercase=None , **_lowercase , ) -> str:
super().__init__(**_lowercase )
lowercase_ : List[str] = image_size
lowercase_ : Dict = patch_size
lowercase_ : Union[str, Any] = num_channels
lowercase_ : Tuple = embed_dim
lowercase_ : int = depths
lowercase_ : str = len(_lowercase )
lowercase_ : Optional[Any] = num_heads
lowercase_ : Any = window_size
lowercase_ : int = mlp_ratio
lowercase_ : Dict = qkv_bias
lowercase_ : Optional[int] = hidden_dropout_prob
lowercase_ : Any = attention_probs_dropout_prob
lowercase_ : List[str] = drop_path_rate
lowercase_ : Any = hidden_act
lowercase_ : Union[str, Any] = use_absolute_embeddings
lowercase_ : Tuple = layer_norm_eps
lowercase_ : str = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowercase_ : Optional[Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
lowercase_ : Tuple = ['stem'] + [f"stage{idx}" for idx in range(1 , len(_lowercase ) + 1 )]
lowercase_ , lowercase_ : List[str] = get_aligned_output_features_output_indices(
out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
| 7 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n"
A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n"
A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}"
def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str:
"""simple docstring"""
if label_map is not None:
for old_id, new_id in label_map.items():
lowercase_ : Union[str, Any] = new_id
# turn into Numpy arrays
lowercase_ : List[Any] = np.array(a )
lowercase_ : Optional[Any] = np.array(a )
if reduce_labels:
lowercase_ : Any = 2_5_5
lowercase_ : Dict = label - 1
lowercase_ : List[Any] = 2_5_5
lowercase_ : Any = label != ignore_index
lowercase_ : List[Any] = np.not_equal(a , a )
lowercase_ : Optional[int] = pred_label[mask]
lowercase_ : Union[str, Any] = np.array(a )[mask]
lowercase_ : Optional[int] = pred_label[pred_label == label]
lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0]
lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0]
lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0]
lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict:
"""simple docstring"""
lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa )
lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa )
lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(a , a ):
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union(
a , a , a , a , a , a )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]:
"""simple docstring"""
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union(
a , a , a , a , a , a )
# compute metrics
lowercase_ : str = {}
lowercase_ : str = total_area_intersect.sum() / total_area_label.sum()
lowercase_ : Optional[Any] = total_area_intersect / total_area_union
lowercase_ : List[Any] = total_area_intersect / total_area_label
lowercase_ : Any = np.nanmean(a )
lowercase_ : Optional[Any] = np.nanmean(a )
lowercase_ : int = all_acc
lowercase_ : Union[str, Any] = iou
lowercase_ : Optional[Any] = acc
if nan_to_num is not None:
lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
"""simple docstring"""
def lowerCamelCase__ ( self ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ),
'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ),
} ) , reference_urls=[
'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'
] , )
def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple:
lowercase_ : Optional[int] = mean_iou(
results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , )
return iou_result
| 7 | 1 |
'''simple docstring'''
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def _UpperCAmelCase ( a : List[str] , a : Optional[int]=7 ) -> Optional[int]:
"""simple docstring"""
lowercase_ : str = None
if token is not None:
lowercase_ : Dict = {'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"}
# The id of a workflow (not of a workflow run)
lowercase_ : Optional[int] = '636036'
lowercase_ : Union[str, Any] = f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs"
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}"
lowercase_ : Any = requests.get(a , headers=a ).json()
return result["workflow_runs"]
def _UpperCAmelCase ( a : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase_ : Optional[Any] = get_daily_ci_runs(a )
lowercase_ : Optional[int] = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
lowercase_ : Optional[Any] = workflow_run['id']
break
return workflow_run_id
def _UpperCAmelCase ( a : Optional[Any] , a : int , a : List[str] ) -> str:
"""simple docstring"""
lowercase_ : Union[str, Any] = get_last_daily_ci_runs(a )
if workflow_run_id is not None:
lowercase_ : List[str] = get_artifacts_links(worflow_run_id=a , token=a )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
lowercase_ : List[Any] = artifacts_links[artifact_name]
download_artifact(
artifact_name=a , artifact_url=a , output_dir=a , token=a )
def _UpperCAmelCase ( a : List[Any] , a : Optional[int] , a : str ) -> Dict:
"""simple docstring"""
get_last_daily_ci_artifacts(a , a , a )
lowercase_ : Tuple = {}
for artifact_name in artifact_names:
lowercase_ : Tuple = os.path.join(a , f"{artifact_name}.zip" )
if os.path.isfile(a ):
lowercase_ : str = {}
with zipfile.ZipFile(a ) as z:
for filename in z.namelist():
if not os.path.isdir(a ):
# read the file
with z.open(a ) as f:
lowercase_ : Tuple = f.read().decode('UTF-8' )
return results
| 7 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A: Dict = logging.get_logger(__name__)
A: Optional[Any] = {
"google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json",
# See all ViT models at https://huggingface.co/models?filter=vit
}
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit'
def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]:
super().__init__(**_lowercase )
lowercase_ : Optional[int] = hidden_size
lowercase_ : str = num_hidden_layers
lowercase_ : str = num_attention_heads
lowercase_ : int = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Any = hidden_dropout_prob
lowercase_ : List[str] = attention_probs_dropout_prob
lowercase_ : str = initializer_range
lowercase_ : List[str] = layer_norm_eps
lowercase_ : Any = image_size
lowercase_ : Tuple = patch_size
lowercase_ : Optional[Any] = num_channels
lowercase_ : str = qkv_bias
lowercase_ : List[str] = encoder_stride
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' )
@property
def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def lowerCamelCase__ ( self ) -> float:
return 1E-4
| 7 | 1 |
'''simple docstring'''
def _UpperCAmelCase ( a : str , a : int ) -> str:
"""simple docstring"""
lowercase_ : list[list[str]] = [[] for _ in range(a )]
lowercase_ : Dict = key - 1
if key <= 0:
raise ValueError('Height of grid can\'t be 0 or negative' )
if key == 1 or len(a ) <= key:
return input_string
for position, character in enumerate(a ):
lowercase_ : Dict = position % (lowest * 2) # puts it in bounds
lowercase_ : int = min(a , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append(a )
lowercase_ : List[str] = [''.join(a ) for row in temp_grid]
lowercase_ : Optional[int] = ''.join(a )
return output_string
def _UpperCAmelCase ( a : str , a : int ) -> str:
"""simple docstring"""
lowercase_ : List[Any] = []
lowercase_ : List[str] = key - 1
if key <= 0:
raise ValueError('Height of grid can\'t be 0 or negative' )
if key == 1:
return input_string
lowercase_ : list[list[str]] = [[] for _ in range(a )] # generates template
for position in range(len(a ) ):
lowercase_ : Tuple = position % (lowest * 2) # puts it in bounds
lowercase_ : str = min(a , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append('*' )
lowercase_ : List[Any] = 0
for row in temp_grid: # fills in the characters
lowercase_ : List[str] = input_string[counter : counter + len(a )]
grid.append(list(a ) )
counter += len(a )
lowercase_ : Tuple = '' # reads as zigzag
for position in range(len(a ) ):
lowercase_ : int = position % (lowest * 2) # puts it in bounds
lowercase_ : str = min(a , lowest * 2 - num ) # creates zigzag pattern
output_string += grid[num][0]
grid[num].pop(0 )
return output_string
def _UpperCAmelCase ( a : str ) -> dict[int, str]:
"""simple docstring"""
lowercase_ : Tuple = {}
for key_guess in range(1 , len(a ) ): # tries every key
lowercase_ : str = decrypt(a , a )
return results
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A: int = logging.get_logger(__name__)
A: int = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode'
SCREAMING_SNAKE_CASE_ : int = ['past_key_values']
SCREAMING_SNAKE_CASE_ : Any = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any:
lowercase_ : Tuple = vocab_size
lowercase_ : str = n_positions
lowercase_ : List[str] = n_embd
lowercase_ : str = n_layer
lowercase_ : Optional[Any] = n_head
lowercase_ : Optional[int] = n_inner
lowercase_ : Union[str, Any] = activation_function
lowercase_ : Dict = resid_pdrop
lowercase_ : str = embd_pdrop
lowercase_ : Optional[Any] = attn_pdrop
lowercase_ : List[Any] = layer_norm_epsilon
lowercase_ : Optional[int] = initializer_range
lowercase_ : List[Any] = scale_attn_weights
lowercase_ : Any = use_cache
lowercase_ : List[str] = attention_softmax_in_fpaa
lowercase_ : Any = scale_attention_softmax_in_fpaa
lowercase_ : Optional[Any] = multi_query
lowercase_ : Optional[Any] = bos_token_id
lowercase_ : Optional[Any] = eos_token_id
super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
| 7 | 1 |
'''simple docstring'''
def _UpperCAmelCase ( a : int = 1 , a : int = 1_0_0_0 ) -> int:
"""simple docstring"""
lowercase_ : Union[str, Any] = 1
lowercase_ : Any = 0
for divide_by_number in range(a , digit + 1 ):
lowercase_ : list[int] = []
lowercase_ : Optional[int] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(a ):
lowercase_ : Union[str, Any] = len(a )
lowercase_ : str = divide_by_number
else:
has_been_divided.append(a )
lowercase_ : Optional[Any] = now_divide * 1_0 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
'''simple docstring'''
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self ) -> Optional[Any]:
lowercase_ : Tuple = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Dict:
lowercase_ : Tuple = [
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> str:
lowercase_ : int = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Any:
lowercase_ : Dict = [
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Optional[Any]:
lowercase_ : List[Any] = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
# Removed: 'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Optional[int]:
lowercase_ : str = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Union[str, Any] = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : Optional[int] = [
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
# pass variant but use the non-variant filenames
lowercase_ : Optional[int] = [
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> Union[str, Any]:
lowercase_ : int = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : str = [
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
]
lowercase_ : str = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> List[str]:
# pass variant but use the non-variant filenames
lowercase_ : List[Any] = [
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> List[str]:
lowercase_ : Union[str, Any] = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
# 'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
| 7 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.